LINEAS DE TRANSMISION: MEDICIONES BASICAS

TESIS PROFESIONAL

PARA OBTENER EL TITULO DE:

INGENIERO ELECTRONICO

PRESENTA:

Miguel Angel Avila Garcia

SAN LUIS POTOSI, S. L. P.
JUNIO DE 2004
LINEAS DE TRANSMISION: MEDICIONES BASICAS

TESIS PROFESIONAL
para obtener el título de

INGENIERO ELECTRONICO

PRESENTA:
Miguel Angel Avila García

ASESOR DE TESIS:
M.C. José Gustavo Pérez

SAN LUIS POTOSI, S. L. P. JUNIO DE 2004
AGRADECIMIENTOS

A DIOS todopoderoso quien hace posible todo, por darme el privilegio de vivir, por prestarme todo lo que tengo y cuanto soy, y por ayudarme en todo momento a lo largo de mi vida.

A mis padres:
Perfecto Avila Banda y María Ascensión García de Avila
Por haber tenido fe en mí, por sus consejos, por su ejemplo, por su paciencia y por el apoyo que me brindaron en todo momento.

A mi esposa:
Diana Martínez de Avila
Porque siempre me ha brindado su cariño y apoyo cuando más lo he necesitado.

A mis hermanos:
Rubén, Silvia, Juan Antonio y César
Por compartir bellos momentos conmigo, por su apoyo y por la confianza que siempre han depositado en mí para seguir adelante.

A mi asesor:
M.C. José Gustavo Pérez
Por la orientación, el apoyo y los consejos durante la elaboración de esta tesis.

Al encargado del Laboratorio de Comunicaciones:
Ing. Gerardo Quintana Ortiz
Por su apoyo, su colaboración y por todas las facilidades otorgadas para la realización de esta tesis.
INDICE

INTRODUCCION

CAPITULO 1.- EQUIPOS DE MEDICION EN ALTA FRECUENCIA

1.1.- GENERADORES DE RADIO FRECUENCIA

1.1.1.- Generador de Radio Frecuencia modelo LAG/EV

1.2.- MEDIDORES DE CAMPO

1.2.1.- Medidor de Campo modelo FSM/LA

1.3.- DETECTORES DE VOLTAJE/CORRIENTE

1.3.1.- Detector de Voltaje/Corriente modelo VI/LA

1.4.- PUENTE REFLECTOMETRICO

1.4.1.- Aplicación del Reflectómetro

1.5.- LINEA RANURADA

1.5.1.- Aplicación de la Línea Ranurada modelo SL/LA

CAPITULO 2.- MEDICIONES EN LINEAS DE TRANSMISION

2.1.- INTRODUCCION A LINEAS DE TRANSMISION

2.1.1.- Línea de transmisión

2.1.2.- Modelo básico de una línea de transmisión

2.1.3.- Parámetros de una línea de transmisión
2.2.- MEDICION DE LA ATENUACION EN UNA LINEA DE
TRANSMISION DEL TIPO COAXIAL................................. 19

2.2.1.- Línea de transmisión coaxial................................ 19

2.2.2.- Medida de atenuación de la línea coaxial............... 20

2.3.- MEDICION DE SWR (RAZON DE ONDA ESTACIONARIA).... 22

2.3.1.- Razón de Onda Estacionaria.................................. 22

2.3.2.- Medición de la Razón de Onda Estacionaria (SWR)
utilizando la Línea Ranurada... 23

2.4.- MEDICION DE LA LONGITUD DE ONDA...................... 25

2.4.1.- Longitud de Onda.. 25

2.4.2.- Medición de la Longitud de Onda utilizando la Línea
Ranurada... 26

2.5.- MEDICION DEL COEFICIENTE DE REFLEXION............ 29

2.5.1.- Coeficiente de Reflexión...................................... 29

2.5.2.- Medición del Coeficiente de Reflexión para simples
frecuencias... 30

2.5.3.- Medida Panorámica del Coeficiente de Reflexión........ 31

2.6.- TRANSFORMACION DE IMPEDANCIAS....................... 36

CONCLUSIONES.. 40

BIBLIOGRAFIA .. 41
INTRODUCCION.

En la retícula del Plan 2003 de la carrera de Ingeniero Electrónico de la Facultad de Ciencias, está contemplada la materia de Líneas de Transmisión como materia obligatoria especial 1.

Por tal motivo se adquirió el equipo LINEAS DE TRANSMISION Y ANTENAS modelo LA/EV marca Elettronica Veneta para analizar de manera práctica el comportamiento de las líneas de transmisión, ya que en años anteriores el análisis de las líneas de transmisión solamente se realizaba de manera teórica en las distintas materias que se tocaba el tema.

En este proyecto se pretende hacer un análisis práctico del comportamiento de una línea de transmisión y compararlo con el análisis teórico de la misma. Asimismo comprobar que con el equipo adquirido se puede realizar un análisis práctico de una línea de transmisión para que sirva como apoyo a las materias impartidas en la Facultad de Ciencias que contemplan el análisis de este tema.

Debido a que el comportamiento de una línea de transmisión depende de sus características físicas y de la frecuencia que se emplea, se pretende analizar la atenuación de la señal a medida que ésta se propaga a lo largo de la línea.

Se analizará el comportamiento de una Línea de Transmisión cuando la impedancia característica Z_0 es igual a la carga Z_L, ya que teóricamente, cuando $Z_0 = Z_L$ en una línea de transmisión, no hay ondas reflejadas. En este caso la línea de transmisión actúa como una línea infinita, hay una máxima transferencia de potencia del generador hacia la carga, las pérdidas de la línea son mínimas por unidad de longitud, el voltaje incidente y la corriente incidente están en fase en cualquier punto de la línea y son constantes a través de la longitud de la línea, si existe una perfecta adaptación entre los conectores de la línea y la carga.
También se analizará el comportamiento de la Línea de Transmisión cuando la impedancia característica Z_0 y su carga Z_1 son diferentes, ya que cada vez que la impedancia característica de una línea de transmisión y su carga no son iguales, las ondas estacionarias están presentes en la línea y la potencia máxima no se transfiere a la carga. Las ondas estacionarias causan la pérdida de potencia, el deterioro dieléctrico, ruido, radiación y señales fantasma.

La cantidad de energía reflejada y la cantidad de energía absorbida dependen de la diferencia entre la impedancia característica Z_0 de la línea de transmisión y la impedancia de la carga Z_1 en el extremo de la línea.
CAPÍTULO 1.- EQUIPOS DE MEDICIÓN EN ALTA FRECUENCIA.

1.1.- GENERADORES DE RADIO FRECUENCIA.

Son uno de los más importantes instrumentos de trabajo que pueden utilizarse en el área del audio y el video. Además de su amplia utilidad en calibraciones diversas, entre otras cosas, puede usarse como instrumento de búsqueda de defectos en equipos electrónicos, agilizando en buena forma el mantenimiento. El funcionamiento del generador de RF es simple, posee un circuito oscilador de radiofrecuencia. Este oscilador tiene varios circuitos tanques (circuitos formados a partir de inductores y capacitores con el fin de formar oscilaciones de determinada frecuencia) seleccionables por llaves, que alteran su frecuencia básica. También existe otro circuito oscilador más simple, que genera una señal senoidal, llamada señal modulante (o moduladora). Estas dos señales deben encontrarse en el circuito mezclador, resultando la modulación en amplitud con sus respectivas bandas laterales. Además, existe la opción de que el generador de RF trabaje con una señal moduladora externa o, bien, que la señal de RF salga pura, sin ninguna modulación.

1.1.1.- Generador de Radio Frecuencia modelo LAG/EV.

El generador de RF modelo LAG/EV (figura 1.1), permite la realización de experiencias con antenas y líneas en la gama UHF (banda IV y V).

Las frecuencias utilizadas están sintonizadas en torno al centro banda de 701.5 MHz, frecuencia en la que el generador se predispone automáticamente para el encendido.
El cambio de la frecuencia es efectuado de manera cíclica pulsando las teclas *UP* o *DOWN*, a cada pulsación le corresponde una variación en la dirección deseada.

![Figura 1.1](image)

Figura 1.1

Una vez alcanzado el límite de la banda (469.5 = extremo inferior; 853.5 = extremo superior), la exploración se para temporalmente, para luego comenzar de nuevo por el extremo opuesto.

La salida del generador es mantenida constante (±1 dB) mediante un circuito ALC (Automatic Level Control) que interviene antes de una resistencia de carga de 75 Ω, la que constituye por lo tanto la impedancia de salida del generador mismo. El circuito ALC podrá desconectarse para realizar algunas prácticas en las que se necesite aprovechar al máximo la potencia producida por el generador; considere que en este caso la salida ya no es constante al variar la frecuencia.

La variación de la potencia de salida con la manopla del panel es de alrededor de 60 dB (1:1000), ya que a menudo en las medidas resulta muy cómodo poder demediar la potencia de salida (-6 dB), para esto se ha previsto un interruptor *HI/LOW POWER*.
La modulación de onda cuadrada permite la utilización de un voltímetro de c.a. (por lo tanto de un amplificador de baja frecuencia para aumentar la sensibilidad) para efectuar las medidas de campo o de señales.

El carga-baterías suministra dos corrientes constantes de +10 ó -10 mA en condiciones de cargar las baterías de níquel-cadmio utilizadas para el medidor de campo, el medidor de V/I y el amplificador del puente reflectométrico.

El "Sweep" incorporado realiza una exploración casi lineal de aproximadamente ±15 MHz entorno a la frecuencia de centro-banda planteada mediante los pulsadores del panel: cuando la tensión de exploración corresponde a la de centro-banda planteada, la exploración se para (punto luminoso en la pantalla) y el frecuencímetro indica la frecuencia.

1.2.- MEDIDORES DE CAMPO.

Son instrumentos adecuados para garantizar la calidad de sistemas analógicos y digitales tanto por el tipo de medidas como por la precisión con las que la realizan, y constituyen una solución para realizar labores de instalación, certificación y mantenimiento de sistemas de televisión, cable y satélite.

1.2.1.- Medidor de Campo modelo FSM/LA.

El medidor de campo modelo FSM/LA (figura 1.2), está constituido por una antena de medida regulable en longitud, un detector de voltaje y un indicador de diodos LED.

Las entradas son: Un conector IEC (para antena de medida), un conector BNC y un conector para el carga-baterías.
Los mandos son: un interruptor de encendido y regulador de sensibilidad fina, con sensibilidad x1 y x10.

Los indicadores son: LED de encendido (intermitente cuando el voltaje de la batería desciende debajo de +7.5 V) y 10 LED para indicación de la intensidad de campo.

1.3.- DETECTORES DE VOLTAJE/CORRIENTE.

Se utilizan para detectar la presencia de voltaje o de corriente en instalaciones de corriente alterna, en conductores sin blindaje, tales como líneas de transmisión, líneas de distribución, estaciones, subestaciones y otras.
1.3.1.- Detector de Voltaje/Corriente modelo VI/LA.

El detector de voltaje/corriente modelo VI/LA (figura 1.3), está constituido por una sonda de corriente, una sonda de voltaje, un detector y un indicador de diodos LED.

Figura 1.3

Las entradas son: un conector para el cargo-baterías.

Los mandos son: un interruptor de encendido y regulador de sensibilidad, y un medidor de corriente (I) o de voltaje (V).

Los indicadores son: LED de encendido (intermitente cuando el voltaje de la batería desciende debajo de +7.5 V) y 10 LED para indicación del nivel de corriente o voltaje.

1.4.- PUENTE REFLECTOMETRICO.

Reflectómetro: Instrumento que sirve para la medición de la relación de magnitudes de la onda reflejada y la magnitud correspondiente de la onda incidente en un medio de transmisión.
El Puente Reflectométrico modelo P258/75 Ω de la marca UNAOHM está constituido por la entrada marcada "INPUT", la salida marcada "OUT SCOPE", un conector marcado "Zn" y un conector marcado "Zx".

En la figura 1.4 se muestra el Puente Reflectométrico y las distintas cargas que se utilizarán en el desarrollo de este proyecto.

1.4.1- Aplicación del Reflectómetro.

Con el cable de 40 cm. de impedancia de 75 Ω, se conecta el generador en la entrada del reflectómetro marcado "INPUT" (figura 1.5). La salida, marcada "OUT SCOPE", se conecta a un multímetro, también se puede conectar en la entrada vertical de un osciloscopio de 100 mV/div.
Se conecta una resistencia de terminación de 75 Ω con el puente marcado "Zn", dejando vacío el conector marcado "Zx".

Al encender el generador, el frecuencímetro indica la frecuencia de centro-banda, es decir 701.5 MHz; recuerde que este valor puede reobtenerse pulsando simultáneamente los dos pulsadores UP y DOWN.

Se gira completamente el potenciómetro OUT LEVEL en el sentido de las agujas del reloj y se pone el conmutador HIGH/LOW en posición HIGH. La modulación no es utilizada y por lo tanto se desconecta.

El voltaje indicado por el voltímetro es de alrededor de algunos centenares de mV, de todos modos depende de la respuesta en frecuencia de la resistencia de terminación y del detector interno al reflectómetro.

Se utiliza el potenciómetro OUT LEVEL para ajustar el voltaje de salida, en este caso se ajustó para tener una lectura de 300 mV que es un valor conocido.

Al variar la frecuencia: a 469.5 MHz el voltaje detectado es superior (aprox. 360 mV, es decir +1.6 dB), mientras que a 853.5 MHz el voltaje detectado es inferior (aprox. 290 mV, es decir -0.3 dB). Teóricamente la medida tendría que ser constante, pero las causas de esta diferencia, son las pérdidas introducidas por el cable, también si es corto, y por los conectores; la variación total puede considerarse aceptable de todos modos.

Se regresa a la frecuencia centro-banda pulsando las teclas UP y DOWN, utilizando el voltímetro, se lleva el índice a fondo escala obrando en el nivel de salida del generador; en este caso utilizaremos el valor de 300 mV.

Al insertar la otra terminación de 75 Ω en la toma marcada con "Zx", mediante el cable de 40 cm., la salida desciende a 80 mV. En teoría tendría que ser cero ya que el puente está balanceado, pero este valor se obtiene debido a las pérdidas del cable. Variando la frecuencia, la salida resulta
constante, ya que el comportamiento de las impedancias Z_n y Z_t es idéntico en las distintas frecuencias.

Al insertar como Z_t la resistencia de 50 Ω, la SWR es 75/50 = 1.5. El coeficiente de reflexión, es decir la razón entre voltaje reflejado y voltaje directo, resulta:

$$ RHO = \frac{SWR - 1}{SWR + 1} = \frac{1.5 - 1}{1.5 + 1} = \frac{0.5}{2.5} = 0.2, $$

por lo tanto el voltaje medido, que es proporcional al coeficiente de reflexión, es $0.2 \times 300 = 60$ mV. En el voltímetro se mide un valor de 50 mV que es levemente inferior, ya que el diodo detector no es lineal y la no linealidad se acentúa al disminuir el voltaje aplicado.

Al introducir como Z_x la resistencia de 100 Ω, el resultado es similar: la SWR es 100/75 = 1.33. El coeficiente de reflexión es:

$$ RHO = \frac{SWR - 1}{SWR + 1} = \frac{1.33 - 1}{1.33 + 1} = \frac{0.33}{2.33} = 0.14, $$

por lo tanto el voltaje medido es $0.14 \times 300 = 42$ mV. En el voltímetro se mide un valor de 35 mV que es levemente inferior al medido en el caso anterior.

Se observa que el reflectómetro no está en condiciones de determinar si la impedancia incógnita es inferior o superior a la impedancia de referencia, puede indicar solamente la razón.

El dato más importante es que mientras menor sea la lectura, mejor será la adaptación de impedancia. En el uso práctico conocer exactamente los valores altos de la SWR (superiores a 10) no es indispensable, ya que se trata siempre de obtener la buena adaptación y no interesa saber "cuánto" es mala una adaptación más allá de un cierto límite. Las adaptaciones con la SWR inferior a 1.5 son buenas, ya que la potencia transferida es superior al 95% de la disponible.
1.5.- LÍNEA RANURADA.

Línea de transmisión de una cierta longitud (por ejemplo de una guía de ondas) en sus paredes en las que se tiene una ranura longitudinal no radiante a través de la cual una sonda puede ser insertada para propósito de medición.

1.5.1.- Aplicación de la Línea Ranurada modelo SL/LA.

La línea ranurada modelo SL/LA (figura 1.6), es un tramo de línea coaxial con una ranura delgada recabada en el conductor exterior.

![Figura 1.6](image)

A través de esta ranura es posible introducir una sonda en la zona entre los dos conductores que componen el cable coaxial para ver el comportamiento de los campos electromagnéticos en el interior de la línea.

Con la línea ranurada se miden directamente voltaje y corriente en las distintas secciones de una línea coaxial, ya que a través de la línea ranurada se accede al campo eléctrico y magnético interpuesto entre los dos conductores que constituyen la línea coaxial.

La presencia de ondas estacionarias determina una variabilidad de los valores de voltaje y corriente a lo largo de la línea, mientras que en ausencia de onda reflejada, es decir en presencia de una carga adaptada (o de una línea infinitamente larga), voltaje y corriente permanecen invariados en cada sección.
Normalmente el efecto de la variación del voltaje y de la corriente a lo largo de una línea coaxial, no es posible evaluarlo sino variando la frecuencia; esto determina una variación de la longitud de onda y por lo tanto el punto de medida se encuentra a una distancia eléctrica (es decir, expresada en relación a la longitud de onda) variable con respecto a la posición de la extremidad de la línea.

Al contrario, con la línea ranurada se puede obrar con frecuencia fija, por lo tanto ver realmente el comportamiento del voltaje y de la corriente a lo largo de la línea.

Si la sonda está constituida por un pequeño elemento rectilíneo perpendicular a los dos conductores, en ella se obtendrá un voltaje de radiofrecuencia proporcional al valor del campo eléctrico en el punto de introducción y por lo tanto al voltaje en el conductor central.

Si la sonda está constituida por un pequeño bucle paralelo al conductor central, en ella se inducirá una corriente proporcional al valor del campo magnético en el punto de introducción y por lo tanto a la corriente en el conductor central.

Si dichas sondas están conectadas a un diodo detector, se obtiene un voltaje continuo que puede medirse con un milivoltímetro cualquiera; de todos modos una primera medida de voltaje de alta frecuencia puede efectuarse conectando el medidor de campo al conector BNC de la sonda, ya que la señal de radiofrecuencia sale directamente del conector BNC.

Ya que la línea está realizada con dieléctrico de aire, el factor de velocidad prácticamente es uno, es decir, la longitud de onda en el espacio y la longitud en la línea coinciden. Esto obviamente en una primera aproximación, ya que habrá que tener en cuenta que están presentes los conectores de entrada y de salida, que tienen una impedancia no perfectamente adaptada y están realizados con dieléctricos, por lo tanto con factor de velocidad inferior a uno.
Por esta razón un circuito abierto nunca es realmente tal, ya que en realidad está constituido por una resistencia (elevada, debida a las pérdidas del dieléctrico) y por una capacidad parasita; además, la línea presenta en el conector una pequeña desadaptación que podría evitarse sólo utilizando conectores de tipo especial, tal y como sucede en campo profesional y a frecuencias más elevadas.

Por lo tanto es más fácil realizar en la realidad, sobre todo con frecuencias superiores a 100 MHz, una línea cerrada en cortocircuito que una línea abierta: tendremos que tener en cuenta esto en algunos casos.
CAPITULO 2.-MEDICIONES EN LINEAS DE TRANSMISION.

2.1.- INTRODUCCION A LINEAS DE TRANSMISION.

2.1.1.-Línea de transmisión.

Es un par de conductores que permiten la transferencia de una señal desde una fuente hacia una carga, y cuyo comportamiento es complejo y depende de la frecuencia, del medio y de la distancia. Una línea de transmisión puede ser tan corta como unas cuantas pulgadas o puede extenderse por varios miles de kilómetros. Las líneas de transmisión se pueden utilizar para propagar cd o ca de baja frecuencia (como energía eléctrica de 60 ciclos y señales de audio); también se pueden utilizar para propagar frecuencias muy altas (como señales de frecuencias de radio e intermedias).

Las líneas de transmisión pueden clasificarse como balanceadas o desbalanceadas. Con líneas balanceadas de dos cables, ambos conductores llevan una corriente; uno lleva la señal y el otro es el regreso. Este tipo de transmisión se llama transmisión de señal diferencial o balanceada. La señal que se propaga a lo largo del cable se mide como la diferencia potencial entre los dos cables.

Con una línea de transmisión desbalanceada, un cable se encuentra en el potencial de tierra, mientras que el otro cable se encuentra en el potencial de la señal. Este tipo de transmisión se llama transmisión de señal desbalanceada o de terminación sencilla. Con la transmisión de señal desbalanceada, el cable de tierra también puede ser la referencia a otros cables que llevan señales. Si éste es el caso, el cable a tierra debe ir en donde va cualquiera de los cables de señal. A veces esto crea un problema porque una longitud de cable tiene resistencia, inductancia, y capacitancia, por lo tanto, puede existir una pequeña diferencia de potencial, entre cualquiera de los dos puntos, en el cable de tierra. Un cable coaxial estándar de dos conductores es una línea
desbalanceada, pues el segundo cable es la cubierta y generalmente se conecta a tierra.

2.1.2.- Modelo básico de una línea de transmisión.

Las características de una línea de transmisión se determinan por sus propiedades eléctricas, como la conductancia de los cables y la constante dieléctrica del aislante, y sus propiedades físicas, como el diámetro del cable y los espacios del conductor. Estas propiedades, a su vez, determinan las constantes eléctricas primarias: resistencia de cd en serie (R), inductancia en serie (L), capacitancia de derivación (C), y conductancia de derivación (G). La resistencia y la inductancia ocurren a lo largo de la línea, mientras que entre los dos conductores ocurren la capacitancia y la conductancia.

Las constantes primarias se distribuyen de manera uniforme a lo largo de la línea y por lo tanto se les llama comúnmente parámetros distribuidos. Los parámetros distribuidos se agrupan por una longitud unitaria dada, para formar un modelo eléctrico artificial de la línea.

En la figura 2.1 se muestra un circuito equivalente por unidad de longitud para una línea de transmisión terminada en una carga Z, que es igual a Z_0.

![Figura 2.1](image)
2.1.3.- Parámetros de una línea de transmisión.

Los parámetros de una línea de transmisión se determinan por sus propiedades eléctricas, como la conductancia de los cables y la constante dieléctrica del aislante, y sus propiedades físicas, como el diámetro del cable y los espacios del conductor.

Estos parámetros son:

- Resistencia de cd en serie (R): resistencia de los conductores, ausente solo si los conductores fuesen perfectos.

- Inductancia en serie (L): flujo magnético producido por unidad de corriente I.

- Capacitancia de derivación (C): cociente de la carga eléctrica Q en cada conductor por unidad de diferencia de potencial o voltaje V.

- Conductancia de derivación (G): resistencia de pérdida del dieléctrico, ausente solo si los aislantes fuesen perfectos.

Los parámetros R, L, C y G, se expresan en unidades de longitud y se pueden calcular en base a la frecuencia basándose en la teoría electromagnética.

De los parámetros R, L, C y G se determinan la impedancia característica y la constante de propagación.

Impedancia característica (Z_0).- La impedancia característica (Z_0), de una línea de transmisión es definida como la impedancia que se ve desde una línea infinitamente larga o la impedancia que se ve desde el largo finito de una línea que se termina en una carga totalmente resistiva igual a la impedancia característica de la línea. La impedancia característica (que a veces se le llama resistencia a descarga) es una cantidad compleja que se expresa en Ohms y que idealmente es independiente de la longitud de la línea.
Para una máxima transferencia de potencia, desde la fuente a la carga (o sea, sin energía reflejada), una línea de transmisión debe terminarse en una carga puramente resistiva igual a la impedancia característica de la línea.

Constante de propagación.- La constante de propagación (a veces llamada el coeficiente de propagación) se utiliza para expresar la atenuación (pérdida de la señal) y el desplazamiento de fase por unidad de longitud de una línea de transmisión. Conforme se propaga una onda, a lo largo de la línea de transmisión, su amplitud se reduce con la distancia viajada. La constante de propagación se utiliza para determinar la reducción en voltaje o corriente en la distancia conforme una onda electromagnética transversal se propaga a lo largo de la línea de transmisión.

2.2.- MEDICION DE LA ATENUACION EN UNA LINEA DE TRANSMISION DEL TIPO COAXIAL.

2.2.1.- Línea de transmisión coaxial.

Los conductores coaxiales se utilizan para aplicaciones de alta frecuencia, para reducir las pérdidas y para aislar las trayectorias de transmisión. El cable coaxial básico consiste de un conductor central rodeado por un conductor exterior concéntrico (distancia uniforme del centro). A frecuencias de operación relativamente altas, el conductor coaxial externo proporciona una excelente protección contra la interferencia externa.

Esencialmente, hay dos tipos de cables coaxiales: líneas rígidas llenas de aire y líneas sólidas flexibles. Ambos tipos de cables coaxiales son relativamente inmunes a la radiación externa, ellos en sí irradian muy poca, y pueden operar a frecuencias más altas que sus contrapartes de cables paralelos. La desventaja de las líneas de transmisión coaxial es que tienen que utilizarse en el modo desbalanceado.

En este caso utilizaremos los cables coaxiales sólidos flexibles ya que tienen menores pérdidas y son más fáciles de construir, de instalar, y de dar
mantenimiento; mientras que los cables coaxiales rígidos llenos de aire son relativamente caros de fabricar, y el aislante de aire tiene que estar relativamente libre de humedad para minimizar las pérdidas.

El conductor externo del cable coaxial sólido flexible está trenzado, es flexible y coaxial al conductor central. El material aislante es un material de polietileno sólido no conductor que proporciona soporte, así como aislamiento eléctrico entre el conductor interno y el externo. El conductor interno es un cable de cobre sólido flexible.

2.2.2.- Medida de atenuación de la línea coaxial.

En la sección 1.4.1 se efectuó la medida del voltaje de salida del generador al variar la frecuencia y se observó la variación del voltaje medido con el RHO-TECTOR en circuito abierto.

Con el cable de 40 cm., se conecta el generador a la entrada del reflectómetro marcado "INPUT", la salida marcada "OUT SCOPE", se conecta en la entrada vertical de un milivoltímetro. Una resistencia de terminación de 75 Ω, se conecta con el puente marcado "Zn", dejando vacío el conector marcado "Zx" (figura 2.2). Se regula la amplitud del generador para medir un voltaje $V_i = 300$ mV

Figura 2.2
Al sustituir el cable de 40 cm. con el de 20 m. (figura 2.3), el voltaje detectado V_{out} es inferior al V_i. Por lo tanto la pérdida a 701.5 MHz en Decibeles es:

$$20 \log \frac{V_i}{V_{out}} = 20 \log \frac{300}{125} = 7.6 \text{ dB}$$

Al variar solamente la frecuencia, la pérdida disminuirá al descender la frecuencia, mientras que aumentará en el caso opuesto. Con la frecuencia más baja, es decir a 469.5 MHz, el voltaje de salida es de 180 mV, entonces se tiene una pérdida de 4.43 dB; mientras que con la frecuencia más alta, es decir a 853.5 MHz, el voltaje de salida es de 80 mV, por lo tanto se tiene una pérdida de 11.48 dB.

Sumando los valores ya determinados anteriormente (según la sección 1.4.1), es decir 1.6 dB a 469.5 MHz y -0.3 a 853.5 MHz, que son los errores del sistema de medida, se determina la efectiva pérdida del cable. Estos valores son debidos ya sea a las pérdidas por resistencia de los conductores pues el cable es delgado, así como también a las pérdidas en el dieléctrico que es polietileno sólido.

La pérdida del cable de 20 metros es de 6 dB a 469.5 MHz y de 11 dB a 853.5 MHz.
Las pérdidas del cable coaxial son debidas a la pérdida por resistencia de los conductores, a las pérdidas en el dieléctrico y a la pérdida por acoplamiento de los conectores.

2.3.- MEDICIÓN DE SWR (RAZÓN DE ONDA ESTACIONARIA).

2.3.1.- Razón de Onda Estacionaria.

La razón de onda estacionaria (SWR), se define como la razón entre el voltaje máximo y el voltaje mínimo, o de la corriente máxima y la corriente mínima de una onda estacionaria en una línea de transmisión. SWR frecuentemente se llama la razón de onda estacionaria de voltaje (VSWR). Esencialmente la SWR es una medición del desacoplamiento entre la impedancia de carga y la impedancia característica de la línea de transmisión. Cuando corresponde a un máximo se suman los valores de la onda directa y la onda reflejada ya sea de voltaje o de corriente, mientras que cuando corresponde a un mínimo se restan dichos valores. Si la onda reflejada no existe, voltaje y corriente son constantes en toda la línea y su razón de onda estacionaria es igual al valor de impedancia característica \(Z_0 \); por lo tanto la SWR vale 1 (normalmente se escribe “SWR = 1:1”).

La razón de onda estacionaria se puede expresar de la siguiente manera.

\[
SWR = \frac{V_{\text{max}}}{V_{\text{min}}} = \frac{|V_i| + |V_r|}{|V_i| - |V_r|} = \frac{1 + \left(\frac{V_r}{V_i}\right)}{1 - \left(\frac{V_r}{V_i}\right)} = \frac{1 + | \text{RHO} |}{1 - | \text{RHO} |}
\]

donde \(V_i \) es el voltaje directo y \(V_r \) es el voltaje reflejado.

La razón inversa es:

\[
|\text{RHO}| = \left|\frac{V_r}{V_i}\right| = \frac{SWR - 1}{SWR + 1}
\]
Ya que RHO expresa una razón, ésta puede expresarse en decibeles (dB): se llamará entonces $RETURN LOSS$ (pérdida de retorno) ya que mide la cantidad de potencia rechazada por la carga desadaptada:

$$RETURN LOSS = 20 \log \left(\frac{|V_r|}{|V_i|} \right) = 20 \log |RHO|$$

La razón de ondas estacionarias resulta igual a la razón entre la resistencia de la carga y la impedancia de la línea (si $Z > Z_0$) o su recíproco (si $Z < Z_0$), si la carga es meramente resistiva.

2.3.2.- Medición de la Razón de Onda Estacionaria (SWR) utilizando la Línea Ranurada.

En presencia de ondas estacionarias son visibles los máximos y los mínimos del voltaje o de la corriente; la distancia entre un máximo y el mínimo adyacente es igual a un cuarto de la longitud de onda: el factor de velocidad de la línea es igual a 1, ya que el dielectrico es aire.

Se regula en el valor máximo la potencia de salida del generador, sintonizado en la frecuencia de 509.5 MHz. Se conecta la salida del generador en un extremo de la Línea Ranurada con el cable de 75 Ω y de 1 m. de largo. En la extremidad libre de la Línea Ranurada se conecta la terminación de 75 Ω: la línea está por lo tanto cerrada en su impedancia característica. En la salida de la sonda de voltaje de la Línea Ranurada se conecta el medidor de campo mod. FSM/LG y se efectúa la medida evaluando el encendido de los LED.

Si existiera una adaptación perfecta, moviendo el carro a lo largo de la Línea Ranurada, la amplitud de la señal permanecería constante, en este caso se presentan algunas variaciones, pues al principio inicia con un voltaje y disminuye en 26.3 cm., manteniéndose hasta el final de la Línea Ranurada, estas variaciones se deben a la presencia de los conectores o a pequeñas variaciones de la alineación del carro; la variación total del voltaje y de la corriente se considera aceptable.
Al reemplazar la terminación de 75 Ω con la de 50 Ω y medir el voltaje a lo largo de la línea, ésta presenta mínimos y máximos más pronunciados que los del caso anterior.

Al inicio de la Línea Ranurada existe un mínimo, en 14.6 cm. existe un máximo y en 28.3 cm. de la línea hay un mínimo nuevamente, manteniéndose hasta el final de la Línea Ranurada.

La distancia entre máximo y mínimo es efectivamente igual a 1/4 de longitud de onda, es decir:

\[
\lambda = \frac{c \times \frac{1}{4}}{f} = \frac{3 \times 10^8}{509.5 \times 10^6} \times \frac{1}{4} \approx 14.7 \text{ cm}
\]

Al variar la frecuencia y repitiendo las medidas se observa como la distancia entre máximos y mínimos se alarga cuando la frecuencia disminuye y se acorta cuando la frecuencia aumenta.

A una frecuencia de 469.5 MHz la distancia entre máximos y mínimos es de aproximadamente 15.9 cm., mientras que a 853.5 MHz la distancia entre máximos y mínimos es de aproximadamente 8.7 cm.

Al reemplazar la terminación de 50 Ω con la de 100 Ω, en 3 cm. de la línea existe un máximo, en 15.7 cm. hay un mínimo y en 29.8 cm. existe un máximo, manteniéndose hasta el final de la Línea Ranurada.

Se observa que, con la Línea Ranurada, es posible distinguir si la carga es mayor o menor que la impedancia característica de la línea. En efecto, si se conectan 100 Ω, el máximo de voltaje se obtiene a 1/4 de longitud de onda de la carga, mientras que en la carga se obtiene un máximo; conectando 50 Ω, el mínimo de voltaje se encuentra en la carga y en todas las posiciones lejanas un número entero de longitud de onda de éste.

Al conectar la terminación de cortocircuito al final de la Línea Ranurada, existe un máximo en 1.2 cm., en 14.9 cm. existe un mínimo, en 23.9 cm. hay un
máximo y en 36.9 cm. hay un mínimo, manteniéndose hasta el final de la Línea Ranurada.

Cuando la línea está cerrada en cortocircuito, la corriente es máxima en la extremidad de la línea y el voltaje es mínimo. Los máximos de corriente se encuentran en la misma posición que los mínimos de voltaje y la distancia entre ellos depende de la frecuencia que se aplica.

Si se deja la línea abierta, existe un mínimo en 1.2 cm., un máximo en 14.7 cm., un mínimo en 24.5 cm., y un máximo en 36.6 cm., manteniéndose hasta el final de la Línea Ranurada que es en 41.2 cm.

Cuando la línea está en circuito abierto, es decir sin carga al final de la línea, ocurre lo opuesto que con la línea cerrada en cortocircuito, pues el voltaje es máximo al final de la línea y la corriente es mínima.

Un circuito abierto nunca es realmente tal, ya que en realidad está constituido por una resistencia (debida a las pérdidas del dieléctrico) y existe una pequeña desadaptación en el conector de la Línea Ranurada.

Al efectuarse las medidas anteriores utilizando la sonda de corriente en lugar de la de voltaje, máximos y mínimos de corriente corresponden a mínimos y máximos de voltaje respectivamente, teniendo en cuenta que es carga resistiva.

2.4.- MEDICION DE LA LONGITUD DE ONDA.

2.4.1.- Longitud de Onda.

Las oscilaciones de una onda electromagnética son periódicas y repetitivas. La proporción en la que la onda periódica se repite es su frecuencia. La distancia de un ciclo ocurriendo en el espacio se llama longitud de onda y se determina por la siguiente ecuación fundamental:

\[\text{distancia} = \text{velocidad} \times \text{tiempo}. \]
Si el tiempo se sustituye, obtenemos la longitud de un ciclo, que se llama longitud de onda y cuyo símbolo es la letra griega lambda (\(\lambda \))

\[
\lambda = \text{velocidad} \times \text{periodo} = v \times T
\]

Y ya que \(T = \frac{1}{f} \), entonces, \(\lambda = \frac{v}{f} \)

Para la propagación en el espacio libre, \(v = c \); por lo tanto, la longitud de un ciclo es

\[
\lambda = \frac{c}{f} = \frac{3 \times 10^8 \text{ m/s}}{f} \text{ ciclos/s} = \frac{metros}{ciclo}.
\]

2.4.2.- Medición de la Longitud de Onda utilizando la Línea Ranurada.

Si la impedancia de cierre aumenta hasta el valor infinito, la línea se convierte en abierta, mientras que si se reduce hasta el valor de cero, la línea se convierte cerrada en cortocircuito.

Si la línea está cerrada en cortocircuito, la corriente es máxima (y el voltaje es nulo) en la extremidad de la línea, se anula a distancia de un cuarto de onda del cortocircuito para luego ponerse nuevamente en el valor máximo a distancia de media longitud de onda (figura 2.4). El voltaje se comporta en el mismo modo, pero desfasado de un cuarto de onda, de manera de que los máximos de una correspondan a los mínimos de la otra.

En el caso de la línea abierta, esto se repite pero con la diferencia de que es el voltaje el que es máximo en la extremidad de la línea, mientras que la corriente se anula y el comportamiento senoidal se repite con corriente y voltaje intercambiados entre sí (figura 2.5).
El efecto de las pérdidas, es decir, del circuito abierto o del cortocircuito, no perfectos, puede determinar un desfasamiento adicional entre corriente y voltaje, detectable ya que la corriente no se anula completamente en
correspondencia del máximo de voltaje; la correspondencia entre máximos de corriente y mínimos de voltaje puede notarse de todos modos.

Como se vio en la sección 2.3.2, al poner en las extremidades de la Línea Ranurada la terminación de cortocircuito, las posiciones de máximos y mínimos de voltaje (si la frecuencia es de 509.5 MHz) están a una distancia de alrededor de 14.7 cm. entre ellos.

En la figura 2.6 se muestra un máximo de voltaje y en la figura 2.7 un mínimo de voltaje cuando se conecta la terminación de cortocircuito al final de la Línea Ranurada y la frecuencia del generador es de 701.5 MHz.

Figura 2.6

Al utilizar la sonda de corriente, los máximos de corriente están prácticamente en las mismas posiciones de los mínimos de voltaje y viceversa.

Si se coloca el carro en un mínimo de corriente (máximo de voltaje) y se quita la terminación de cortocircuito dejando por lo tanto la línea abierta, el valor en la salida de la sonda de corriente pasa del mínimo al ya medido para los máximos.
Al desplazar el carro para llevar la sonda de voltaje en el mismo punto, el valor detectado es casi cero, indicando que se encuentra en un mínimo de voltaje.

Moviendo el carro, se observa que las posiciones de máximo y de mínimo son iguales a las ya medidas anteriormente, pero intercambiadas entre sí.

2.5.- MEDICION DE COEFICIENTE DE REFLEXION.

2.5.1.- Coeficiente de Reflexión.

El “coeficiente de reflexión” de una carga \(Z \) aplicado a una línea de impedancia característica \(Z_0 \) expresa la razón entre la onda de voltaje reflejado y la onda de voltaje incidente; vale:

\[
RHO = \frac{VR}{VI} = \frac{Z - Z_0}{Z + Z_0} = \frac{Z/Z_0 - 1}{Z/Z_0 + 1} = \frac{1 - Z_0/Z}{1 + Z_0/Z}
\]
y varía de -1 (línea en cortocircuito; \(Z = 0 \)) a +1 (línea abierta; \(Z = \text{infinito} \)), tomando el valor 0 si \(Z = Z_0 \).

Puede verse que el valor del peor caso y máximo para \(\rho \) es 1 \((V_r = V_i) \), y el valor mínimo y condición ideal ocurren, cuando \(\rho = 0 \) \((V_r = 0) \).

La medida del coeficiente de reflexión puede efectuarse en correspondencia de los simples valores de frecuencia o de manera panorámica, utilizando el Sweep en un cierto intervalo de frecuencias.

2.5.2.- Medición del Coeficiente de Reflexión para simples frecuencias.

Se conecta el generador, el RHO-TECTOR, los cables y el multímetro como se muestra en la figura 2.8.

![Diagrama de la medición del coeficiente de reflexión](image)

Figura 2.8

Se predispone el generador en una cierta frecuencia, en este caso en 701.5 MHz, se coloca en \(Z_r \) la terminación de cortocircuito (para que toda la potencia generada sea reflejada) y se regula la amplitud del generador para obtener una lectura de 300 mV en el multímetro. Este voltaje es un valor de referencia correspondiente a una situación de reflexión total que se presenta en la extremidad de la línea.
Al quitar la terminación de cortocircuito y en su lugar se conecta la terminación de 75 Ω, el voltaje que se mide en el multímetro es de 180 mV.

La razón entre este voltaje y el voltaje de referencia correspondiente a la reflexión total (300 mV) es el coeficiente de reflexión de la carga \(Z_c \), conectado a la línea de 75 Ω. El coeficiente de reflexión es:

\[
RHO = \frac{V_r}{V_i} = \frac{180}{300} = 0.6
\]

En teoría, estando en condiciones de perfecta adaptación entre línea y carga \((Zo = Z_c = 75 \, \Omega) \), el coeficiente de reflexión tendría que ser nulo.

Al insertar \(Z_c = 50 \, \Omega \), el voltaje que se mide en el multímetro es de 200 mV, por lo tanto el coeficiente de reflexión aumenta con respecto al caso anterior, pues:

\[
RHO = \frac{V_r}{V_i} = \frac{200}{300} = 0.66
\]

Al insertar la carga \(Z_c = 100 \, \Omega \), el voltaje que se mide es de 210 mV, por lo tanto el coeficiente de reflexión aumenta con respecto al caso en donde \(Z_c = 75 \, \Omega \), pues el coeficiente de reflexión es:

\[
RHO = \frac{V_r}{V_i} = \frac{210}{300} = 0.7
\]

2.5.3.- Medida Panorámica del Coeficiente de Reflexión.

La medida panorámica del coeficiente de reflexión (o de las pérdidas de retorno si el instrumento está calibrado en Decibeles) es muy frecuente en los sistemas de transmisión que involucran líneas, guías de onda y antenas.
Para efectuar este tipo de medida se requiere también un osciloscopio. Se conecta el generador, el RHO-TECTOR, los cables y el osciloscopio según la figura 2.9.

![Diagrama de conexión](image)

Figura 2.9

Se predispone el osciloscopio en modo c.c. y se pone la línea de cero en la extremidad inferior de la pantalla (figura 2.10); se predispone el generador en una cierta frecuencia central (en este caso 701.5 MHz), se inserta en X, la terminación de cortocircuito para que toda la potencia generada se refleje y se regula la amplitud del generador y la escala Y del osciloscopio de manera de obtener un trazo en la extremidad superior de la pantalla, como se muestra en la figura 2.11.

Este trazo, generado por la amplitud de la reflexión total en las distintas frecuencias, será considerado como referencia.

Al quitar la terminación de cortocircuito y en su lugar se conecta la terminación $Z_L = 75 \, \Omega$, el trazo reportado en la pantalla (como se muestra en la figura 2.12) representa el nuevo valor de la potencia reflejada al variar la frecuencia. La razón frecuencia por frecuencia entre los dos voltajes, el acabado de medir y el de referencia, es el coeficiente de reflexión de la carga Z_L conectado en la línea de 75 Ω. En teoría, estando en condiciones de perfecta adaptación entre la línea y la carga ($Z_0 = Z_L = 75 \, \Omega$), el trazo de la
señal reflejada tendría que sobreponerse a la línea de cero, por lo tanto el coeficiente de reflexión tendría que ser nulo.

Al insertar la terminación de 50 Ω en Z_j, la señal reflejada y por consiguiente la de reflexión, aumentan con respecto al caso anterior (véase la figura 2.13).

Al insertar la terminación de 100 Ω en Z_j, la señal reflejada y por consiguiente la de reflexión, aumentan con respecto al caso en donde $Z_j = 75$ Ω y son iguales a las del caso en donde $Z_j = 50$ Ω, (véase la figura 2.14).
Figura 2.11

Figura 2.12
Figura 2.13

Figura 2.14
2.6.- TRANSFORMACION DE IMPEDANCIAS.

La presencia de la onda estacionaria es debida a la reflexión de potencia en el extremo de la línea; si la línea está desadaptada al máximo, es decir está abierta o cerrada en cortocircuito, la reflexión es total.

Una línea suficientemente corta, de manera de poder descuidar las pérdidas, terminada en su impedancia característica, es perfectamente transparente: en cada punto el voltaje y la corriente son constantes, por lo tanto la impedancia medida es constante.

Si en cambio estamos en presencia de ondas estacionarias, voltaje y corriente varían a lo largo de la línea, repitiéndose con longitud de onda reducida con respecto a la de aire, debida a la distinta velocidad de propagación.

Para cada media longitud de onda, el valor del voltaje y de la corriente es constante, también en presencia de ondas estacionarias. Esto significa que, a distancia de un número entero de longitud de onda de la carga, el voltaje y la corriente son las mismas y por lo tanto la impedancia que se medir es la de la carga desadaptada, para cualquier impedancia característica de la línea.

En efecto, si la línea está abierta, a media onda de su fin encontraremos un vientre de voltaje, debido a la suma de la onda directa y la reflejada, mientras que si está en cortocircuito, encontraremos un nodo, es decir voltaje nulo.

Sin embargo, a un cuarto de onda de la final, en una línea en cortocircuito, encontraremos un vientre idéntico al que tendremos a media onda de uno abierto: se puede decir por lo tanto que una línea en cuarto de onda transforma la impedancia.

Ya que tramos de línea de media longitud de onda no transforman la impedancia, habrá que esperarse el mismo comportamiento para una línea de $3/4$ de onda, $5/4$ de onda, etc. Esto es válido si la impedancia característica de la línea es siempre la misma; sin embargo, tendremos un comportamiento
similar, también si el tramo de cuarto de onda es de impedancia característica distinta, es decir una transformación del valor de la impedancia.

En la figura 2.15 se demuestra que la impedancia característica del tramo de cuarto de onda es la razón entre la impedancia característica \(Z_t \) del tramo de cuarto de onda y las impedancias en entrada y en salida.

\[
Z_t^2 = Z_L \times Z_0.
\]

Figura 2.15

Aplicando lo anteriormente expuesto se utiliza el RHO-TECTOR (figura 2.16). Al aplicar 300 mv de la señal, medidos conectando sólo la terminación de 75 \(\Omega \); la longitud de la línea entre generador y RHO-TECTOR no es determinante, por lo tanto se usa el cable de 1 m. (de 75 \(\Omega \)).

Figura 2.16
En el conector Zx se conecta el cable de 50 Ω (en el que se debe conectar el conector BNC hembra-hembra) de 43 cm. de largo aproximadamente, que corresponde aproximadamente a tres medias longitudes de onda entorno a los 700 MHz. Tomar en cuenta que la longitud de onda en el cable depende del factor de velocidad, que en este caso es de aprox. 0.66. La longitud de onda en el cable es calculada multiplicando por 0.66 la longitud de onda en el aire:

\[L_e = 0.66 \times L_a = 0.66 \times \frac{c}{f} \]

\[L_a = \text{Longitud de onda en el aire.} \]
\[L_e = \text{Longitud de onda en el cable.} \]
\[c = \text{Velocidad de la luz} = 3 \times 10^8 \text{m/s}. \]
\[f = \text{Frecuencia de la señal.} \]

Se conecta la terminación de 75 Ω y al variar la frecuencia en torno a los 700 MHz, se obtiene la lectura mínima en el multímetro en 677.5 MHz. Esto significa que, a 677.5 MHz, nos encontramos en condiciones de adaptación también si la línea y la carga tienen impedancias distintas.

Es posible usar un tramo de línea como transformador de impedancia. Se usa el cable de 75 Ω y de 153 cm. de largo aprox. (figura 2.17), correspondiente a 5.25 longitudes de onda (es decir, un múltiplo de \(\lambda/4 \)) en torno a los 680 MHz.

Por lo tanto, a la frecuencia de 680 MHz, conectando en un extremo del cable de 75 Ω una resistencia \(Z_L = 50 \) Ω, la impedancia \(Z_0 \) en el otro extremo vale:

\[Z_0 = \frac{Z_L}{Z_L} = \frac{(75)^2}{50} = \frac{5625}{50} = 112 \ \Omega \]
Si comparamos esta Z_0 con una resistencia de 100 Ω conectada en la puerta Z_n del puente, tendremos una SWR de 1:1.12 en lugar de 2:1 que se obtendría con la impedancia de 50 Ω conectada directamente, es decir sin línea interpuesta.

Para obtener 300 mV de lectura a 685.5 MHz, teniendo conectada como Z_n la terminación de 100 Ω, se deja abierto Z_x y se regula la salida.

Al conectar ahora como Z_x la terminación de 50 Ω, la lectura es en torno a 1/3 del valor anterior, es decir de alrededor de 100 mV, correspondientes a una SWR de 2:1, en este caso se mide un voltaje de 120 mV.

Al conectar la terminación de 50 Ω al final del cable de 153 cm, la lectura es inferior a la anterior, pues el voltaje medido es de 90 mV, por lo tanto es inferior también la SWR. Esto demuestra que la línea de 75 Ω larga un múltiplo impar de $\lambda/4$ y realiza la adaptación de impedancia. La mejor condición de adaptación se obtiene ajustando la frecuencia del generador, es decir haciendo corresponder exactamente el múltiplo de $\lambda/4$ con la longitud de la línea.
CONCLUSIONES.

Se realizó un análisis práctico del comportamiento de una línea de transmisión, en el cual se comprueba que llevando lo teórico a la práctica, los resultados son casi iguales; la variación se debe a las pérdidas del cable, a los conectores o a pequeñas variaciones en la alineación del carro de la Línea Ranurada. Los resultados pueden considerarse aceptables ya que no hay mucha diferencia.

El equipo LINEAS DE TRANSMISION Y ANTENAS modelo LA/EV, permitirá analizar de manera práctica, el comportamiento de una línea de transmisión a distintas frecuencias con diferentes cargas, y se podrán obtener resultados casi iguales a los obtenidos teóricamente.

Como apoyo a la docencia el equipo podrá utilizarse en el curso de Líneas de Transmisión y en otras materias, para realizar cualquier práctica relacionada con una línea de transmisión, lográndose así el objetivo trazado al principio de este proyecto.
BIBLIOGRAFÍA.

1.- Entrenador de Líneas de Transmisión y Antenas modelo LA/EV.
Hydrotechnic.

2.- Sistemas de Comunicaciones Electrónicas.
Wayne Tomasi.
Editorial Prentice-Hall, 1996.

3.- Líneas de Transmisión.
Rodolfo Neri Vela.

4.- Laboratorio de Microondas.

5.- http://members.fortunecity.es/unitec/lineas_definiciones.htm.

6.-http://ific.uv.es/~victoria/TEMA%2010_ppt.pdf.

8.- http://www.coit.es.