Por favor, use este identificador para citar o enlazar este ítem: http://ninive.uaslp.mx/jspui/handle/i/4225
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorTerán-Hernández, Mónica;166548es_MX
dc.contributor.authorRami-Prieto, Rebeca.es_MX
dc.contributor.authorCalderón-Hernández, Jaqueline.es_MX
dc.contributor.authorGarrocho-Rangel, Carlos Felix.es_MX
dc.contributor.authorCampos-Alanis, Juanes_MX
dc.contributor.authorÁvalos-Lozano, José Antonio.es_MX
dc.creatorAguilar-Robledo, Miguel;0000-0002-8318-1083es_MX
dc.date.accessioned2017-09-07T20:19:09Z-
dc.date.available2017-09-07T20:19:09Z-
dc.date.issued29/03/16-
dc.identifier.issn14759276-
dc.identifier.urihttp://ninive.uaslp.mx/jspui/handle/i/4225-
dc.description.abstractBackground: Worldwide, Cervical Cancer (CC) is the fourth most common type of cancer and cause of death in women. It is a significant public health problem, especially in low and middle-income/Gross Domestic Product (GDP) countries. In the past decade, several studies of CC have been published, that identify the main modifiable and non-modifiable CC risk factors for Mexican women. However, there are no studies that attempt to explain the residual spatial variation in CC incidence In Mexico, i.e. spatial variation that cannot be ascribed to known, spatially varying risk factors. Methods: This paper uses a spatial statistical methodology that takes into account spatial variation in socio-economic factors and accessibility to health services, whilst allowing for residual, unexplained spatial variation in risk. To describe residual spatial variations in CC risk, we used generalised linear mixed models (GLMM) with both spatially structured and unstructured random effects, using a Bayesian approach to inference. Results: The highest risk is concentrated in the southeast, where the Matlapa and Aquism�n municipalities register excessive risk, with posterior probabilities greater than 0.8. The lack of coverage of Cervical Cancer-Screening Programme (CCSP) (RR 1.17, 95 % CI 1.12-1.22), Marginalisation Index (RR 1.05, 95 % CI 1.03-1.08), and lack of accessibility to health services (RR 1.01, 95 % CI 1.00-1.03) were significant covariates. Conclusions: There are substantial differences between municipalities, with high-risk areas mainly in low-resource areas lacking accessibility to health services for CC. Our results clearly indicate the presence of spatial patterns, and the relevance of the spatial analysis for public health intervention. Ignoring the spatial variability means to continue a public policy that does not tackle deficiencies in its national CCSP and to keep disadvantaging and disempowering Mexican women in regard to their health care._es_MX
dc.language.isoenges_MX
dc.publisherInternational Journal for Equity in Healthes_MX
dc.publisherBioMed Centrales_MX
dc.relationInvestigadoreses_MX
dc.relationEstudianteses_MX
dc.relation.isformatofVersión publicadaes_MX
dc.relation.ispartofInvestigador perteneciente a la Facultad de Ciencias Sociales y Humanidades de la Universidad Autónoma de San Luis Potosí, México.-
dc.rightsAcceso abiertoes_MX
dc.rights.urihttp://creativecommons.org/about/cc0/es_MX
dc.subjectCervical canceres_MX
dc.subject.other5 CIENCIAS SOCIALESes_MX
dc.subject.other4 HUMANIDADES Y CIENCIAS DE LA CONDUCTAes_MX
dc.titleGeographic variations in cervical cancer risk in San Luis Potosí state, Mexico: A spatial statistical approach_es_MX
dc.typeArtículoes_MX
dc.rights.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0es_MX
Aparece en las colecciones: Artículos Científicos

Ficheros en este ítem:
No hay ficheros asociados a este ítem.


Creative Commons