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ABSTRACT 

Introduction. Diseases caused by helminths and protozoa are highly prevalent in 

the third world , mainly in children. It has been reported that chronic parasite 

infections induce a persistent activation of the immune system that results in 

defective responsiveness of T cells with a decrease in immunocompetence. Since 

regulatory T cells can exert a key effect on immunocompetence, we performed a 

quantitative and functional analysis of different subsets of regulatory T cells in 

children with chronic parasitic infections. 

Patients and Methods: Ninety three native children (6-12 years old ) from a 

tropical community of the municipality of Cd. Valles,San Luis Potosi , México, were 

divided in two groups, with or with out parasite infection (n=S2 , and 41 , 

respectively) according to the coproparasitoscopic examination . Different 

regulatory T cell subsets, and activated T cells were detected in peripheral blood 

mononuclear cells (PBMC) by immunostaining with specific monoclonal antibodies 

and flow cytometry analysis, whereas the suppressive function of CD4+CD2S+ 

Iymphocytes was assessed by a carboxyfluorescein (CFSE) dilution cell 

proliferation assay. 

Results: Levels of CD3+HLA-DR+ T cells were similar in children with and without 

parasitic infection . However, a significantly enhanced number of CD3+C D69+ 

Iymphocytes was detected in children with parasitic infection. Although the levels of 

CD4+CD2Shigh and CD4+Foxp3+ cells tended to be higher in parasitized children , 

no significant differences were detected when compared to those of control group. 

In contrast, the number of CD8+CD28- T suppressor cells (Ts) was significantly 

increased in parasitized children with chronic immune activation (with high levels of 

either CD3+HLA-DR+ or CD3+CD69+ cells) compared to contro l group. In 

addition, enhanced levels of CTLA-4+ Iymphocytes was detected in ce ll s from 

helminth-parasitized children (p<O.OS) . Functional assays showed that parasitized 

children with chronic immune activation had an apparently diminished proliferative 



response of T cells to CD3/CD28 stimulation compared to controls . However, no 

apparent differences were detected in the suppressive function of natural Treg 

cells in the two groups studied 

Conclusion: Parasitized children with chronic immune activation show increased 

levels of Ts cells (CD8+CD28-), and apparently diminished responsiveness of T 

cells . However, they show normal numbers of Treg Iymphocytes (CD4+CD2ShIQh 

and CD4+Foxp3+), with a normal suppressive function of these cells . These data 

suggest that Ts Iymphocytes, but no natural Treg cells seem to have an important 

role in the diminished immunocompetence observed in parasitized children with 

chronic immune activation. 



INTRODUCTION 

Infections by intestinal parasites is a highly prevalent condition in tropical countries 

of the third world , mainly in children from families with low income (1) . Thus, an 

important proportion of children in these countries are infected by Entamoeba 

histolytica, Ascaris lumbricoides, Giardia lamblia , Trichuris trichiura , Hymenolepis 

nana , Necator americanus, Enterobius vermicularis, Strongyloides stercolaris and 

Taenia sp. Deficient sanitary conditions , as a part of the low socioeconomic class 

as well as lack of access to clean water, deficient sewage elimination systems and 

tropical weather have been described as risk factors for parasite infections (2) . 

The immune response against intestinal infection by parasites is mainly mediated 

by Th2 cells (9, 10), with increased synthesis of IgE and IgG4, and eosinophilia (9 , 

10, 37) . It has been shown that this type of response is able to kili extracellular 

parasites in vitro. However, since IgG4 may block the mechanisms mediated by 

IgE it is still unknown whether or not this type of response is beneficial for the host 

in vivo (10) . 

Regulatory T cells (Treg) suppress immune responses, mainly the proliferation and 

cytokine production of CD4+ and CD8+ effector T cell s (18, 21 , 24) . This effect has 

a key role in the maintenance of immune tolerance and prevents the development 

of autoimmune diseases (15, 16, 17). In addition, Treg cells have an important role 

in the modulation of immune response against microbial pathogens, and they are 

clearly involved in the balance between tissue inflammation and the development 

of effector mechanism that kili the pathogen (12 ,13). 

Several subsets of CD4+ and CD8+ T cells with regulatory activity have been 

described (12, 24, 25, 30, 38, 43) . Natural Treg cells represent 5 to 10% of 

peripheral CD4+ T cells and constitutively express the cytotoxic T Iymphocyte 

antigen-4 (CTLA-4) , the glucocorticoid-induced TNF-receptor related gene (GITR) , 

CD25 (a-chain of IL-2 receptor) (22) and the transcription factor Foxp3. The latter 



molecule is a member of the forkhead family of transcription factors that bind to 

DNA and has been demonstrated that has a key role in the differentiation and 

suppressive function of these cells (14, 32) , which synthesize transforming growth 

factor-~ (TGF-~) and IL-10. These cells are anergic when are stimulated in vitro 

through CD3, but proliferate upon addition of exogenous IL-2 (39) . Natural Treg 

cells show a remarkable suppressive effect both in vitro and in vivo on the 

activation and proliferation of naive CD4+ (18, 11) and CD8+ T cells (20, 21) in an 

antigen-non-specific manner, via a mechanism that requires cell-cell contact and 

that is apparently independent of TGF-~ and IL-10 (1 1, 39) . 

It has been shown that the removal of CD4+CD25+ cells enhances the immune 

response against protozoan infections such as Leíshmanía majar. Interestingly, this 

maneuver leads to a complete eradication of parasites from the infection site (8) . 

On the other hand, it has been observed that chronic infections by helminths are 

associated to persistent immune activation, with an unbalanced immune profile (5, 

6) . The peripheral T cells obtained from these infected individuals show a low 

response to parasite antigens with deficient proliferation, and synthesis of Th1 

cytokines (3, 4) . In addition , these patients show high levels of CD4+CTLA-4+ and 

CD4+CD25+ as well as activated (CD3+HLA-DR+) T cells, and enhanced 

synthesis of TGF-~ (29) . These phenomena decreased 6 to 12 months after 

deworming procedure (7) . 

CD8+CD28- suppressor T cells (Ts) are class I MHC-restricted , and also they are 

able to render dendritic antigen presenting cells (APC) tolerogenic, down

regulating thus the immune response. These tolerogenic cells show a diminished 

expression of costimulatory molecules as CD80, and CD86, and an increased 

synthesis of the inhibitory receptors IL T3 and IL T 4 (23). Ts cells seem to have an 

important role in oral tolerance as well as in the regulation of inflammation in gut 

(26-28) . 



In this work, we have explored the status of regulatory T cells in children with 

chronic parasitic infections. We found enhanced levels of CD8+CD28- suppressor 

cells in patients with parasitic infections, with no significant differences in the 

number or function of natural Treg cells compared to control group. These data 

suggest that T suppressor, but apparently not natural Treg cells, could contribute to 

the diminished immunocompetence seen in children with chronic parasitic 

infection. 



MATERIAL ANO METHOOS 

Individuals. Ninety three children from a Tenek indian community (La Subida) of 

the municipality of Ciudad Valles , San Luis Potosi , México were stud ied . They 

were 52 females and 41 males, with a mean age of 8.5 yr (range 6-12) , and were 

divided in two groups, with and without parasite infection, according to the results 

of the coproparasitoscopic examination. No significant differences were found in 

age, height and weight between parasitized and non-parasitized children (Table 1). 

A written infarmed consent was obtained from the parents of all children befare 

entering the study. 

Cells. Peripheral blood mononuclear cells (PBMC) were isolated by Fico ll 

Hypaque density gradient centrifugation (Sigma Chemical Co., St Louis , MO), 

washed two times with phosphate-buffered saline (PBS) and resuspended 1 x1 06 

cells/mL in RPMI 1640 culture medium (Hyclone, Laboratories, Inc, Logan, UT), 

supplemented with 10% fetal bovine serum (GIBCO BRL), 2 mM L-glutamine 

(Sigma), 50 U/mL penicillin and 50 ~g/mL streptomycin (Sigma). In some 

experiments, cells were stimulated with 1 O ~g/mL of the T3b anti-CD3 mAb and 10 

~g/mL of anti-CD28 mAb (BD PharMingen, San Jose, CA) for 72 hs at 3r C and 

5% C02. 

Flow cytometry analysis. Cells were immunostained with the ind icated 

monoclonal antibodies (mAbs) , e.g., anti-CD4-phycoeritrin (PE), and an ant i-CD25-

fluorescein isothiocyanate (FITC), or anti-CD28-PE, and anti-CD8-FITC (Becton

Dickinson, San Jose, CA) , washed, fixed with 1 % p-formaldehyde, and analyzed 

using the Cell Quest software and a FACSCalibur flow cytometer (Becton 

Dickinson). For the detection of intracellular antigens, specific mAbs for CTLA-4 

(BD PharMingen) and Foxp3 (PCH10 clone, eBioscience, San Diego, CA) were 

used. A double-Iabeling procedure was performed, first with an anti -CD4-FITC 

mAb, and then followed by fixation with 4% p-formaldehyde for 10 min at room 

temperature and permeabilization with 0.01 % of saponine in PBS for 5 min on ice. 



Finally, cells were additionally stained with anti-CTLA-4-PE and analyzed by flow 

cytometry. In separate experiments, cells were f ixed, permeabilized (f ixation

permeabilization buffers, eBiocience) and stained with an anti-foxp3-PE mAb, and 

then with an anti-C04-FITC mAb. Results were expressed as the absolute number 

of positive cells/J.lL. 

Cell proliferation assay. To analyze the suppressive function of C04+C025+ T 

Iymphocytes on cell proliferation, we performed a fluorescent label cell part ition 

assay, as described (50, 51) . Briefly, by using a MACS separation column (Miltenyi 

Biotec) , PBMCs were depleted or not of C025+ T cells, and the depleted and non

depleted cells were labeled with 5 J.lM carboxyfluorescein succinimidyl ester 

(CFSE) (Molecular Probes, Invitrogen, OR). Then , cells were washed, and 2x105 

depleted and non-depleted cells were cultured in a flat-bottom, 24-wel l plates 

(Costar) that were pre-coated with 1 OJ.lg/mL anti-C03, and 1 O ~lg/mL anti -C028 (BO 

PharMingen) . After 3 days at 3JOC and 5% C02, cells were harvested and the 

percentage of divided cells was detected by flow cytometry analysis . Data were 

expressed as a percent of inhibition of cell prol iferation accord ing to the following 

formula: % inhibition cell proliferation = 100 (%non-depleted div ided ce ll s/% 

depleted divided cells) . 

Statistical analysis. Statistical analysis was performed using the Graph Pad 

program (Graph Pad software, San Diego, CA). The differences in abso lute 

numbers of regulatory T cells were determined by parametric analys is using the 

student's T test. The association between absolute number of Treg and activated 

cells was determined by using the Pearson correlation analysis . Va lues of p<0.05 

were considered as significant. 



RESULTS 

We first determined the levels of different Iymphocyte subsets in the PBMC from 

parasitized and non-parasitized groups. Although levels of CD8+ and CD3+ T cells 

were similar in these groups, we found a significant enhancement in the levels of 

CD4+ T Iymphocytes in parasitized children (p<0.05, Table 1). In addition, we 

found significant higher levels of activated CD3+CD69+ T cells in parasitized 

children compared to control group (Fig. 1 b). In contrast, similar numbers of 

CD3+HLA-DR+ T cells were found in both groups studied (Fig. 1 b) . Based on 

these results , we considered as children with chronic immune activation those 

children that showed levels of CD69+ or HLA-DR+ T cells aboye of the value of the 

median of the control group. 

Since it has been reported that parasitized individual s with chronic immune 

activation show enhanced levels of CTLA-4+ Iymphocytes and TGF-B secretion 

(27) , we decided to determinate the number of regulatory T cells in our groups of 

study. Flow cytometry analysis revealed that although the number of 

CD4+CD25high and CD4+Foxp3+ cells tended to be higher in parasitized children 

with chronic immune activation, no significant difference were found when 

compared to control group (Figs. 2b,c, and 3a,b) . In contrast, parasitized children 

showed significant higher levels of Ts (CD8+CD28-) Iymphocytes compared to 

non-parasitized children (Fig. 3c) . 

An association analysis between the levels of regulatory cells (both Treg and Ts), 

and the number of activated (both HLA-DR+ and CD69+) Iymphocytes revealed a 

significant correlation of levels of CD4+CD25high or CD4+Foxp3+ Iymphocytes and 

the number activated T cells (r=0.5591 and 0.5992 , respectively , p<O.05 in both 

cases, Fig. 3) . In contrast, no significant correlation between the levels of Ts and 

activated Iymphocytes was found (Fig. 3f, and data not shown) . 



Finally, we detected an enhanced number of CTLA-4+ Iymphocytes in children 

infected with helminths compared to both , controls and children infected with 

protozoa (Fig . 4) . 

In order to assess the immunocompetence of parasitized children , we stimu lated 

their PBMC through CD3 and CD28, and determined their proliferative response. 

Even though these parasitized children tended to show lower levels of div ided cells 

compared to control group, no significant differences were detected (Fig. 5a) . In 

addition , the assays to determine the suppressive function of Treg cells showed 

similar levels of this activity in parasitized and control children (Fig . 5b, c) . Finally , 

we did not detect a significant association, both in parasitized and control children , 

between the percentage of divided cells and the levels of activated Iymphocytes 

(r=O.2732, p=O.1679, data not shown). 



DISCUSSION 

It has been reported that the persistent infections caused by parasites result in a 

chronic immune activation that is associated to a diminished responsiveness of T 

cells, and a defective immunocompetence (7 , 29, 40, 41 , 42) . This condition has 

been associated with an increased number of CTLA-4+ Iymphocytes in peripheral 

blood , and an enhanced secretion of TGF-~ (29) . As expected , the 

immunosuppressive state associated with chronic parasitic infection, may limit the 

success of preventive strategies based on vaccination . In addition , it is very 

feasible that the antigens or factors released by parasites that induce activation of 

immune cells and diminish the immunocompetence may favor the persistence of 

the infectious process. 

In order to further explore the possible mechanisms of immunosuppression 

induced by chronic helminthic/protozoan infection, we decided to assess the status 

of regulatory T cells in children with persistent parasite infection. In this regard , the 

important role of regulatory T cells in different infectious diseases has been clearly 

demonstrated (12, 19, 28) . These data indicate that regulatory T cells exert a key 

effect on the balance between the generation of an effective immune response and 

the prevention of tissue damage by the effector mechanisms of immune system 

(12 , 13). Thus, regulatory T cells are able to inhibit the proliferation of effector and 

náive Iymphocytes as well as to suppress the synthesis of pro-inflammatory 

cytokines. In addition, these regulatory T cells release immunomodulatory 

cytokines , mainly IL-10 and TGF-~ (11 ,39) . It has been also reported that, as 

expected, an excessive function of regulatory T cells may result in the abrogation 

of an immune response and a high risk for infection. Although it has been proposed 

that natural regulatory cells mainly recognize self-antigens, and that thus these 

cells are preferentially involved in the tolerance to these antigens, it has been 

described their participation in infectious diseases (8 , 19, 12 ). In addition , other 

regulatory T Iymphocytes, including CD8+CD28- Ts cells as well as type 1 

regulatory (Tr1) Iymphocytes, and Tr1-like cells may participate in the modulation 



of the immune response , and the inflammatory phenomenon induced by 

helminthes and protozoan (8, 29, 44) . 

Although it has been previously reported that natural regulatory T cells 

(C04+C025hi9h, C04+C025+Foxp3+) are involved in the modulation of the 

immune response against parasites (8 , 7, 29, 31) , our results shown that 

parasitized children with chronic immune activation have normal levels of Treg 

cells, with no apparent abnormalities in the suppressive function of these cells . 

However, these children tended to have higher levels of both C04+C025
high 

and 

C04+Foxp3+ cells in their peripheral blood, and it is feasible that by increasing the 

number of children studied, a significant difference could be reached. A more clear

cut difference was detected in the case of Ts cells , and these data strongly suggest 

that these regulatory Tcells may be involved in the diminished immunocompetence 

observed in parasitized children. In this regard , it has been reported that C08+ T 

suppressor cells play an important role in the control of intestinal mucosa 

inflammation, and that epithelial cells may participate in its induction (28, 33, 34) . 

Likewise, C08+C028- T cells appear to be involved in the pathogenesis of 

pulmonary tuberculosis in adults and infectious mononucleosis in children (35, 36) . 

Unfortunately, the assays that detect the regulatory function of C08+C028-

Iymphocytes (e. gr., induction of expression of IL T3/4 by autologous OCs) requires 

a large number of PBMC, which was not feasible to obtain from the children 

included in our study. Therefore, it will be interesting to assess, through future 

studies, the regulatory function of Ts cells in parasitized children with chronic 

immune activation. 

In contrast with the results reported by Leng, et al (29) , we have found in our study 

that only a fraction of chronic parasitized individuals have evidence of chronic 

immune activation (high levels of C03+HLA-OR+ cell in peripheral blood) . It is 

feasible that these apparent contradictory results may be due to differences in age, 

degree of helminths/protozoan infection, and genetic background. In this regard , 

we have studied native children from a Tenek-Huasteco indian community , which 



must have a different MHC and genetic background than those studied by Leng , et 

al. In any case, it is of interest that a significant proportion of children stud ied by us 

do not show evidence of persistent immune activation and diminished 

immunocompetence, despite chron ic and infection by different 

helminthes/protozoan. We consider of interest to study other indian and mestizo 

Mexican communities in order to assess whether they have a different or similar 

behavior than Tenek children. 

The presence of increased levels of CD3+CD69+ cells in a significant fraction of 

our parasitized children is of interest. Although it very feasible that these cells 

correspond to activated T Iymphocytes, it is also possible that they may exert a 

regulatory function. In this regard , it has been described that, in add ition to its ro le 

as an activation molecule, CD69 may confer regulatory activity to T ce ll s (45, 47 , 

48, 49) . This effect appears to be mainly mediated by TGF-~ (46), and thus it is 

feasible that at least a fraction of the CD3+CD69+ cells detected by us may 

contribute to the diminished immunocompetence observed in some chronic 

parasitized children. 

In summary, our results suggest that the apparently diminished 

immunocompetence observed in some parasitized children is associated with 

enhanced levels of peripheral blood CD8+CD28- Ts cells , and CD3+CD69+ 

Iymphocytes. In contrast, our data suggest that natural regulatory T cells 

(CD4+Foxp3+ and CD4+CD25high
) do not seem to be sign if icantly involved in this 

condition . 
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FIGURE LEGENDS 

Figure 1. Quantitative analysis of activated T cells in peripheral blood from 

parasitized and control children . PBMC were isolated from children with chronic 

helminthic infection (n= 53) and controls (n=29) and immunostained for C03, HLA

oR, and C069, as stated in Materials and Methods. Representative histograms of 

children with high levels of activated cells are shown in a) , and data in b) 

correspond to the arithmetic mean ± SEM. The p value is indicated. 

Figure 2. Quantification of regulatory T cells in peripheral blood from parasitized 

and control children . PBMC were isolated from parasitized children with chronic 

immune activation (high levels of C03+C069+ cells) and controls children , and the 

number of C04+CD25high
, C04+Foxp3+ and C08+C028- cells was determined by 

using specific mAb and flow cytometry analysis, as indicated in Material and 

Methods. Representative histograms are shown in a) and data in b) , c) , and d) 

correspond to the arithmetic mean ± SEM. The p value is indicated. n.s., not 

significant. 

Figure 3. Quantification of regulatory T cells in peripheral blood from parasitized 

and control children. a-c) PBMC were isolated from parasitized children with 

chronic immune activation (high levels of C03+HLA-oR+ cells) and the number of 

C04+C025high
, C04+Foxp3+ and C08+C028- T cells was determined by flow 

cytometry analysis , as indicated in Material and Methods. Data correspond to the 

arithmetic mean and SEM, and the p value is indicated. n.s., non-significant. d-e) 

Correlation between the levels of C03+HLA-oR+ Iymphocytes and the number of 

C04+C025high d) or C04+Foxp3+ cells e) in parasitized children with chronic 

immune activation . 

Figure 4. Levels of express ion of CTLA-4 in peripheral blood Iymphocytes from 

parasitized children . PBMC were isolated from parasitized children and controls , 

and the expression of CTLA-4 was assessed by flow cytometry, as stated in 



Materials and Methods. A representative histogram is shown in (a). Data 

correspond to the arithmetic mean ± SEM, and the p value is indicated. n.s., non

significant. 

Figure 5. Functional analysis of Treg cells in parasitized children and control 

group. a) PBMC from parasitized and non-parasitized ch ildren were stimulated 

through CD3/CD28 for three days, and then cell prol iferat ion was determ ined by a 

CFSE dilution assay and flow cytometry analysis, as described in Material and 

Methods. b) PBMC from parasitized and non-parasitized children were depleted or 

not of CD25+ T cells , and then stimulated through CD3/CD28 for three days. 

Finally, cell proliferation was assessed as in a) . Data correspond to the arithmetic 

mean ± SEM. n.s., non-significant. Representative histograms of non-depleted 

(middle panel) and depleted (right panel) cells cultures are shown in c). 



Table 1. Main data of children included in the study. 

Parasitized 

Weight (Kg) 29+7.96 

Height (m) 1 . 35~0 . 11 

Age (years) 8 . 7~1 . 70 

CD4+ T cells/f..lL 967.5+285 .8 

CD8+ T cells/f..lL 643.6+387.2 

CD3+ T cells/f..lL 1859+635.9 

* p<0.05 

Non- oarasitized 

28+ 8.11 

1.31+0.14 

8 . 5~ 1.72 

760.7+159.1 * 

623.4~201.4 

1571+414.7 
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