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Abstract

We experimentally investigate the crystallization of a uniformly vi
quasi-2D granular dimer gas (I' = 6) as a function of the filling fra
We study the angle dependent radial distribution function and by int:
ing a relative angle distribution, our results show that for a quasi-2D gr:
dimer gas there is no translation of the location of ¢y (critical filling frac
when a monomer system is constrained to dimers.
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Chapter 1

Introduction

1.1 Granular matter

The sics of granular materials deals primarily with macroscopic objects.
I'he physics of granular materials deals primarily witl I hject
The term "macroscopic” means here that the objects making np such mate-
rials must at the very least be visible for the naked eve [1].

Granular materials display a variety of behaviors that are in many ways
different from those of other substances. They cannot be classified as either
solids or liquids. Recently, the unusual behavior of granular systems has led
to a number of theories and to a new era of experimentation on granular
svstems [2].

1.2 Economic Implications and Industrial Prob-
lems

Granular materials occupy a prominent place in our culture. The worlwide
annual production of grains and aggregates of various kinds is gigantic, reach-
ing approximately ten billion metric tons. Coal accounts for about 3.5 billion
tons of total, cements and ordinary construction materials for one billion tons,
to which we can add equal amounts of sand and gravel. The processing ol
granular media and agregates consumes roughly 10 percent of the total en-
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ergy produced by men on this planet. As it turns out, this class of materials
ranks second. immediately behind water, on the scales of priorities of human
activity. As such any advance in understanding the physics of granulars is
bound to have a major economical impact.

The industrial technology used in the treatment of granular materials in-
volves a number of processes. First comes the extraction of ores, sands, and
gravel, which often relies on dredging. Next comes crushing and grinding,
followed by separation. Since raw materials often account for more than
85 percent of the total cost, it is easy to understand why so little effort has
been expended to improve the basic technology which often dates back to the
nineteenth century. Not much has been optimized, despite the fact of meth-
ods of transport (fluidized beds, conveyor beds), storage (silos), and mixing
(e.g..cement trucks) figure in all stages of industrial processing of aggregates.
Problems have received primitive solutions at best. The more specialized
and developed arena of high-value-added materials include the cosmetic and
pharmacentical industries, specialized chemistry and the food industry, which
demands increasingly sophisticated processing technologies [1].

1.3 Objective

In this work our aim is to find the filling fraction' for which a quasi-2D gran-
ular dimer gas crystallizes by experimentally studying a uniformly vibrated
granular gas of dimers using high speed photography.

1.4 Previous Work

The erystallization of two a dimensional granular fluid was studied by Reis
et al. [3] using an experimental apparatus adapted from a geometry intro-
duced by Olafsen and Urbach [4]. Their experimental apparatus consisted of
a quasi-two-dimensional granular fluid of stainless steel spheres that is uni-
formly "heated™ using sinusoidal vertical vibration with a frequency [ = 50H 2

UI'his filling fraction is defined as the ratio of the area ocenpied by the dimers and the
total enclosed area in which the dimers are distributed.
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Figure 1.1: (a) Fluid-to-crystal transition studied by Reis et al. I&i :
ing the critical filling fraction for a monomer gas. (b)Dimer gas-to
transition studied in this thesis.

Also StraBburger et al. [5] had studied experimentally. the m o

T = A(2n/)*/g. where A is the amplitude of vibration and g is the gra
acceleration.
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cluster consisting of a few thousand steel spheres on a horizontally vibrated
plate, they described a transition from randomly arranged and almost inde-
pendent moving particles to a two-dimensional crystal-like structure when
the filling fraction is increased, this transition was quantitatively character-
ized by an order parameter obtained from the pair distribution function of
the spheres.

On this scenario. the question of the effect of excluded volume forces on the
critical filling fraction. in the crystallization transition for a granular dimer
gas remains open. The purpose of this work is to determine experimentally,
such a effect in the critical filling fraction.

In the field of colloids there was a project which is related to this thesis
in which the static structure of quasi-two-dimensional colloidal mixtures
of dumbbells and spheres was studied by Andrés Gareia-Castillo and J.L.
Arauz-Lara [6], using optical microscopy. . The static structural proper-
ties of that system are determined for various concentrations of spheres in
the dilute limit of dumbbells. The dumbbell-sphere pair correlation function
exhibits a strong angular dependence, and also shows that the presence of
dumbbells favors the formation of triangular lattices even at sphere concen-
trations far from close packing.

The experimental dynamics of a granular dimer gas has not been studied,
however a numerical approach has been reported by Costantini et al. [7],
where they studied a two-dimensional gas of inelastic smooth hard dimers
by deriving an algorithm to study the decay of the total kinetic energy, and
of the ratio between the rotational and the translational kinetic energy of
inelastic dimers.



Chapter 2

Experimental setup and
methods

In our study, we have developed an experimental system to generate a vi-
brated quasi-two-dimensional granular dimer gas; the experimental appara-
tus consists of an acrylic cell that is mounted horizontally on a speaker. The
cell is composed by two plates of 29.5 em in diameter which are separated
by 0.37 cm height slabs (1.2 Diameters!), the bottom plate is roughened?.
This roughness was produced by manually engraving a random shape pat-
tern using a hot metallic tip. Inside the cell there is a plastic band which
restraints within a circle the movement of the particles. The type of particles
used for the experiments were dimers made of carbon steel spheres (precision
ball bearings) with a diameter of 3.175 mm, the dimers were glued using
cyano-acrylat based glue.

As the system is nearly 2D, a camera placed above the cell can capture
the horizontal dynamics of any particle in the system® (Fig.2.1). By carefully
leveling the system, the camera and the cell are located in parallel planes.
The particles are illuminated by three light bulbs that are placed perpendic-
ular to the cell, they are positioned in order to achieve a single bright spot on
the top of the spheres, this illumination enables an accurate determination of
the location of the particles’ center location. All experiments were performed
using a frequency of 55 Hz; this particular value produces neither resonances,

Irefering to the particle diameter
2The purpose of the roughness is to endow to the particles with horizontal motion.
3We track the particle trajectories in a (53 x 43)mm?

12
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nor nodes in the system that could lead to an inhomogeneous distribution of
particles in the cell.

Figure 2.1: Experimental set up in which the camera is placed above the
vibrational system.
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2.1 Experimental equipment

The video camera used is a Red Lake Motion Meter that records a video
event in an internal digital memory. and it's able to replay the event at
playback speeds from 1 frame per second (fps) to 1000 fps. The Camera
provides a composite NTSC or PAL video output signal. Its recording rates
are (50 PAL, 60 NTSC), 125, 250, 500, and 1000 fps.The speaker is 38 cm
enclosure type subwoofer (SONY XS-L151P5) with a frequency response of
15 to 2000 Hz. The Function generator is an FG-8002’s EZ. All experiments
were performed with a fixed sinusoidal wave with a frequency of 55 Hz.

2.2 Experimental method

Our experiment consisted of recording several videos of the dimers for each
chosen filling fraction. At each series of experiments, a search (with naked-
eye examination) for broken dimers was performed in order to avoid recording
an experiment with a broken dimer, whenever a broken dimer was detected,
it was replaced with a new one, maintaining the selected filling fraction. The
method of recording a series of experiments consists of the following steps:
after turning on the wave generator the system of vibrating dimers was left
to reach a point of stabilization, for this purpose a time of 45 s was chosen,
afterwards the camera was turned on. Just after the camera recorded the
experiment, the wave generator was turned off, with the solely purpose of
extending the life time of the dimers. The video stored in the internal memory
of the camera is plavedbacked to a speed of 30 fps and subsequently recorded
on a DVD for data analysis. The camera stored the video in an internal
memory, in order to be able to analyze the data, this stored information
is playbacked to a speed of 30 fps and subsequently recorded in a DVD by
connecting the camera to a DVD recorder, once more the wave generator was
turned on, the system was left to stabilize and so forth.
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Data Analysis

Upon completing the recording stage. the frames of the video were extracted
using commercial software!. Each individual frame was analyzed using an
ex professo software? that was developed using IDL programming language,
which extracts the coordinates of the particles’ center. Having the coordi-
nates of the particles it was possible to identify the pair of particles which
corresponded to a single dimer by comparing the average distance between
the trajectories of all pairs of particles, those corresponding to an average
distance of one diameter are the particles which correspond to a particular
dimer.

For the analysis of the results, the center of each dimer is determined just
by computing the coordinates of the particles center (z,1,), (29, 52) that
form each dimer. The (0,0) point of reference corresponds to the bottom
right corner of the frame.

An angle for each dimer is assigned. using the slope of the straight line
that passes trough (ry,y1) and (2, y2) (Fig.3.1).

3.1 Relative angle distribution

Consider the set of angles X, = {#;.6,....6,}, with the angle #, correspond-
5 1

ing to the i-esim dimer at a particular time, next calculate the difference

between all pairs of angles in the set, obtaining in this way a new set

LCLONEDVD2, DGIndex, GordianKnot, OSS Video Decompiler.
“Provided by the IF-UASLP Complex Fluids Lahoratory.

16
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Figure 3.1: Angle that subtends the dimer with the bottom line.

Xy = {A0). Ab,, ... AB,,,}. With the former set, we can create a plot of ;
the distribution of A#, at this point an immediate question arises: What
does the distribution of A# look like for a set of # that follows a rectangular

L
Jﬁ
distribution? to answer this, take a look in the following example. .5..

331 Sl case

First we introduce a schematic representation of the cartesian product of the
set X, with itself (Table3.1). A pair of elements (a,b) are located in the
box;; if a € S, and be S;, with Sy = {d:d e [(k - 1)1, k150]}.

111121314 | 15
211222324 |25
31[{32]33]|34 |35
41 (42143 |44 | 45
51 [ 52 | 53 | 54 | 55

Table 3.1: Schematic representation of the cartesian product of X.

The different pair of clements in the boxes undergo a transformation @
by means of the subtraction of the pair of elements, being the image of this
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the same box under this transformation ¢ will be located in the same inter-
val. Moreover, elements of the boxes located in the same diagonal will fall
under the same interval (Table 3.2).

Now explicitly, we calculate for the first row, to which interval each marked
box goes.

o = {axb:aec[0.36] A be[144,180]} — A, = {c: c€[108,180]}
s = {axb:ae[0,36] A be[108,144]} — Ay = {c: c€[72,144]}
& = {axb:ae[0,36] A be[72,108]} — Ay = {c: c€[36,108]}

» = {axb:ae[0,36] A be[72,108]} — Ay ={c:ce[0,72]}

% = {axb:ae[0,36] A be[72,108]} — A5 ={c:ce[0,36]}

i B RS R S R
A A * | X | ®
A % [ x| % | A
AR W |k [
o 8 L a | B

Table 3.2: Diagonals that correspond under the transformation to the same
interval.

Now it is possible to determine the probability that a pair (a,b) is going
to a particular set under the transformation p. For example take the case
of the interval [0.36], all the pairs of elements that belong to the & marked
boxes, correspond under the transformation ¢, to the desired interval, but
also the ones with a *, however, in the later case, half the time the subtrac-
tion of the pair of elements resides in [36,72], therefore the probability of S5
is (5+5)x = = 5. Using the method described above, one easily encounters
that the probabilities of S5, S5, Sy, and S5 are :;7:) l) _,—‘,, and % respectively.

Thus, the probabilistic distribution of A# for a set of # that obeys a rect-
angular distribution follows a straight line (Fig.3.2).
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Figure 3.2: Histogram of the probability for the cﬁm ets.

3.1.2 nxn case

S
In the previous section the 5 x 5 case was developed; in a similar fashion, ',i
one can divide the [0,180] interval in three or four subintervals and W ?
the method described above to obtain the corresponding probabilities, th
results are summarized in the table (Table 3.3)

case | 1 - a 1 )
5x5|9/52 | 7/5% | 552 | 3/5% | 1/5% |
Ax4 |7/ |5/ 3[4 142 -
3x3|5/3% |33 [1[3Z| - | -

Table 3.3: Different probabilities for the studied cases.

We can conclude that the probability that an angle difference belongs tﬂ
a particular Si follows the following formula: 4
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2m -1

n2

m=1mn-1 .l (3.1)

where n is the number of subintervals in which [0,180] is divided.

A case of interest for our study is the 180 x 180 (Fig.3.3), since, as shown
later, the angle difference distribution for all the studied Glling ractions are
compared to this ideal distribution.

8,012 T T T T T T T T

6.008 - P 1

0,006 TS A

probability

T
i

0.002

ﬂ il 1 1 1 L 1 1
8 26 48 68 88 188 120 148 168 180
angle difference (degrees)

Figure 3.3: Probability function for the 180 x 180 case.

3.2 Experimental resolution of the angle

Like any measurement that is made in an experiment, the angle ¢, that corre-
spond to the i-esim dimer has an uncertainty 4¢,. To give an estimate of 46,
consider the uncertainty dz of the coordinates of the center of the particles.
Let (xy + 02,y +07) and (g £, yo £ d2°) be the coordinates of the particles
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centers that form a particular dimer, then 86, can be found via:

d8; = arctan (1 +0y1) = (92~ Op) - arctan 22
(z1 - 621) — (22 + d2) zy - T3

Equation 3.2 can be readily found considering the maximum change i
slope of the straigh line that passes through the particles’ centers, abt.
the corresponding angle and calculating the difference of this angle t
angle calculated using (r1,41), (x2,y2).

Equation 3.2 can be further simplified, choosing one particle to be in
point of reference (0,0), that is:

> +0yp +0
06, = arctan LS. | . .wa.rct;aal.n-yl :
Tj= 6171 - 51:2 Iy

Using the fact that in the experiments 6z = 0.012 (z represents any distance 3
along with the positions of the particles’ centers (0,0) and (D cos#, D sin
we have that:

0#; = arctan 1.046 - arctanf | (34)

where the fact that dy; = dy» and dx; = dry was used.

Therefore the resolution of the angle depends upon the maximum of the
equation 3.4, which is approximately 1.1° as shown in Fig.3.4.

An example of this limited angle resolution is shown in Fig.3.5 where the
angle difference distribution was constructed using the 180 x 180 case. Here
the uncertainty in the angle is a deterministic factor for the central angles
(35-100°), leading to a oscillation in the distribution. For 0° and 180° |, the
relative angle oscillations are due to limited pixel resolution of the camera.

3The equivalence of 10 em in pixels was always measured, and the ruler has an uncer- g
tainty of 1 mm E
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o6
1.0/
0.8
0.6
04
02/

: . . : B P 0
50 100 150

Figure 3.4: Estimated error for a measured angle

3.3 Angular dependence of distance between
dimers

Consider two dimers that are in contact, the center of three of its constituents
form an equilateral triangle. The distance(d) between the center of the dimers
can be obtain in terms of the angle difference #, to accomplish this, draw a
triangle as in Fig.3.6 | since the dimers are in contact h = D where D is the
diameter of the particles.

Applying the law of cosines:

o
—

d*=(z+r)+y*-2(z+r)ycost . (3.

Using trigonometry, r = Y3 cos b, y = %2 cot #, then substituting in 3.5

[ V3
d-= 1+§hm9. (3.6)
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Figure 3.5: In this figure an experimental distribution of m
shown, the oscillation near the relative angles of 0°, 90° and 180°
the corresponding low experimental resolution of those angles.

The statistics of the experiments, the angle dependence radial di
tion functions has a limited resolution, they will be shown using i
of 3 degrees, thus the measured distance between dimers will be a resi
averaging the distance given by equation in the corresponding interval:

Z(i+1)
%ﬁ“‘ V1+V3/2sind0  i=0,1,..,29 . @n -
'éa!

The numerical values of equation 3.7 were calculated using Mathematica m
results are shown in Fig. 3.7
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Figure 3.6: Triangle relating d to #

3.4 Angle dependant radial distribution func-
tion

Since the radial distribution function g(r) 1s defined as the ratio of the prob-
ahility of finding a particle in a given subvolume dV, at r and the probability
of finding a particle in dV if the particles were uniformly distributed [8], an
angle dependant radial distribution function g(r, A#) is proposed as follow-

ing:
nag = (](.’ .'_\H).VAU 3 (;H)

where nag is the number of pairs of dimers in (r, 7+0r) which angle difference
is Afl, Nap is the number of pairs of dimers in (0,7 + dr).
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Results

As pointed out in the introduction, the main aim was to investigate the crys-
tallization of a dimer gas as a function of the filling fraction. The very first
approach was to focus on the angle dependant radial distribution function
(g(r, AB)Nrp). however a meticulous analysis lead us to discover that within
the angle difference distribution was the key factor that enabled us to choose
a suitable order parameter which made evident the crystallization.

Eight filling fractions were selected to cover the entire spectrum from high to
low packed systems: 0.7583, 0.7198, 0.6785, 0.6045, 0.5637, 0.4822, 0.4058,
0.3465.

In this chapter the angle dependant radial distribution functions are shown
for the most representative filling fractions, then we compare the angle de-
pendence of distance between dimers that was found experimentally to the
one found theoretically and finally the crystallization graph is presented.

4.1 Angle dependant radial distribution func-
tion

The angle dependant radial distribution function g(r, A#!) is shown in two

different views for the 0.3465 (Fig. 4.3 and 4.4), 0.6045 (Fig. 4.5 and 4.6),

0.7198 (Fig. 4.7 and 4.8). According to our analysis there is no substantial
change for the g(r, A?) from 0.35 to 0.6045, these g(r, Af)) are characterized

26
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by a noisy structure. At 0.6045 a definite structure starts to arise as seen in
(Fig. 4.5). The highest packing experiments that we performed are for 0.7198
and 0.7283 filling fractions, in these an hexagonal-close-packed-like is the
ubiquitous structure. The limit for the experiment is when we are no longer
able to identify a unique pair for each particle composing a dimer!, actually
at 0.7583 this double assigment is present when false-distances less than one
diameter appeared. By analazing the highest points in g(r, A#) for each 46
in the 0.7198 filling fractions. it is shown in Fig.4.1 that definite maximus
appeared in [0,3] and [60,63] degrees, these relative angles are characteristic
of an hexagonal-close-packed(hep) structure,

Imax(rAO)
[42]
T
+
1

0 10 20 30 40 50 60 70 80 90
A© (deg)

Figure 4.1: Cross section for g(r, Af) for ¢ = 0.7198.

'A 2D hexagonal-close-packed structure posses a filling fraction of 0.917, the closer one
gets to this number the harder is to identify the pairs of particles for each dimer.
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4.2 Experimental angular dependence of dis-
tance between dimers

At this point we compare the theorical and experimental distances between
dimers. Fig. 4.2 was constructed using the values of r in g(r, A#) for which
there 18 a maximum for each Af. The discrepance at the high filling fraction
could be dne to the restriction of larger angle differences in an hexagonal-
close-packed like structure, that is, since the most common first neighbor
relative angles in an hep structure are 0 and 60 degrees.

2 T T T T = T T
“ideal_distance” +
18 | X "N x il
; X b i *
18 | # R
x b
17 + .
x » oW oM X
X »
o 16 X W W 9
® X X »
1 1.5 F 2 " ’
|
0 XX X * #
< 1 4 [ xX X » o= 1
x ¥ ¥ - 2 g
1.3 = X X X XK X % M . s B
* ¥ . F
1.2 X X * X . 4 > -
X X % ¥ M 4 T
+
L s 1
x % ¥ T
e L I 1 L L | L
0 0.2 0.4 0.6 0.8 1 12 1.4 1.8
AB (rad)

Figure 4.2: Comparison between theorical and experimental distances be-
tween dimers.

4.3 Crystallization of a quasi-two-dimensional
granular dimer gas
Since we know the form of the random angle difference distribution, and for

cach selected filling fraction we have a particular angle difference distribution,
we can compare each one of them by dividing the random distribution and
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2.
r (diameters) - 0

Figure 4.3: g(r. A#) for a filling fraction of 0.3465.

the angle difference (Fig. 4.9). this plot gives us a clue about which should
be the selected order parameter, notice that the most packed filling fractions
peaked at 120 and 60, thus we defined the order parameter as the sum of
the relative probabilities of 120 and 60 degrees for each filling fraction. This
parameter clearly shows that a transition occurs in ¢ = 0.7198 (Fig. 4.11).

A really interesting result is that we found that the transition occurs at
the same filling fraction reported by Reis et al. [3], recall as shown in Fig.
1.1 that their reported filling fraction is 0.719, just the same as ours even
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0.6
0.5
0.4
0.3
0.2
0.1

2
r (diameters)

Figure 4.4: g(r, A#) for a filling fraction of 0.3465.

though we studied dimers. This result surprising at first, is not that strange,
if we consider the fact that in order to form a hexagon with dimers at least
we need 4 (Fig.4.10), in this case each possible hexagonal structure posses an
extra particle that at not packed filling fractions induces spacing, therefore
breaking the formation of larger hexagonal-like clusters. This sitnation will
not happen when we choose a combination of dimers and trimers [or instance
where a perfect hexagon is possible and readily accessible to low packed
systems. This results shows that at least for granular matter there is no
translation of the location of ¢; when a monomer system is constrained to
dimers.
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Figure 4.5: g(r, A#) for a filling fraction of 0.6045.
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2.5

-1
r (diameters)

Figure 4.6: g(r, A#) for a filling fraction of 0.6045.
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Figure 4.7: g(r, Af) for a filling fraction of 0.7198.



CHAPTER 4. RESULTS

Q2NN

2.
r (diameters)

Figure 4.8: g(r. Af) for a filling fraction of 0.7198.

34
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Figure 4.9: Relative probability for several filling fractions

Figure 4.10: Hexagon formed by 4 dimers.
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Chapter 5

Summary and Conclusions

We created an experiment for studying a quasi-2D granular dimer gas, we per-
formed a relative angle difference analysis and we obtained angle dependant
radial distribution functions for the 0.7583, 0.7198, 0.6785, 0.6045, 0.5637,
0.4822, 0.4058. 0.3465 filling fractions.

We showed that for a quasi-2D granular dimer gas there is no translation
of the location of ¢, (critical filling fraction) when a monomer system 18 con-
strained to dimers.

5.1 Conclusions

We conclude that the probability that a relative angle belongs to a particular
S follows the following formula:

2m -1

~ m=n,n-1,..,1 (5.1)
n?

where n is the number of subintervals in which [0.180] is divided.

A mniformaly vibrated (I' = 6) quasi-2D granular dimer gas crystallizes when
reaches a critical filling fraction of ¢; = 0.7198 + 0.0001 1.

'Ao; was obtained by calculating the standard error of the mean

37



CHAPTER 5. SUMMARY AND CONCLUSIONS 38

5.2 Future Work

As mentioned earlier, the limitation for our experiment is when we are no
longer able to identify a pair of particles for each dimer for large filling frac-
tions, thus a defiant problem is to improve the software used*in this thesis
and with that extend the experimental points in Fig.4.11 as closest to 0.917
as possible,

An extensive analysis on the angle dependant radial distribution functions
obtained, must be performed in order to identifv a corresponding microstrie-
ture for each filling fraction.

With this work, we have established the bases for studying quasi-2D granular
dimer gas, the experimental set-up will be useful for researching on combi-
nations of monomers, dimers, trimers and so on.



Appendix A

System homogeneity

To measure the homogeneity of our vibrational system (Speaker + Cell), we
divide the area of a photo in 12 subareas, we calculate the normal density of
particles in each area for a sample of 16000 frames (¢ = 0.4822) and finally we
compare that density to the density of an ideal homogeneous system in which
each area posses a normal density of 1/12. Our results are summarized in
Table A.1. where it is shown that there is a uniform distribution of particles
in all areas but the one located in the right upper corner, this variation must
be due to the inherent improvised nature of such a experimental system.

1.01 [ 1.00 [ 1.03 [ 1.15
0.98 [ 1.02 [ 0.96 | 1.01
0.95 | 0.95 [ 0.98 | 0.96

Table A.1: Average normal density of particles for the Speaker + Cell system.
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