

UNIVERSIDAD AUTÓNOMA DE SAN LUIS POTOSÍ

FACULTAD DE CIENCIAS QUÍMICAS, INGENIERÍA Y MEDICINA

PROGRAMA MULTIDISCIPLINARIO DE POSGRADO EN CIENCIAS AMBIENTALES

TESIS QUE PARA OBTENER EL GRADO DE

DOCTORADO EN CIENCIAS AMBIENTALES

ESTIMACIÓN DE LAS EMISIONES Y MODELADO DEL TRANSPORTE DE METANO EN LA ATMÓSFERA GENERADO POR LA QUEMA DE CAÑA DE AZÚCAR EN MÉXICO

PRESENTA:

M.C. DAVID ENRIQUE FLORES JIMÉNEZ

DIRECTOR DE TESIS:

DR. MARCOS ALGARA SILLER

CODIRECTOR DE TESIS:

DR. JOSÉ NOEL CARBAJAL PÉREZ

ASESORES:

DR. ALFREDO ÁVILA GALARZA

DR. GREGORIO ÁLVAREZ FUENTES

SAN LUIS POTOSÍ, S.L.P., FEBRERO DE 2016

CRÉDITOS INSTITUCIONALES

PROYECTO REALIZADO EN:

FACULTAD DE INGENIERÍA – ÁREA DE CIENCIAS DE LA TIERRA

CON FINANCIAMIENTO DE:

CONSEJO NACIONAL DE CIENCIA Y TECNOLOGÍA (CONACYT)

A TRAVÉS DEL PROYECTO DENOMINADO:

ESTIMACIÓN DE LAS EMISIONES Y MODELADO DEL TRANSPORTE DE METANO EN LA ATMÓSFERA GENERADO POR LA QUEMA DE CAÑA DE AZÚCAR EN **M**ÉXICO

AGRADEZCO A CONACYT EL OTORGAMIENTO DE LA BECA-TESIS

Becario No. 331859

EL DOCTORADO EN CIENCIAS AMBIENTALES RECIBE APOYO ATRAVÉS DEL PROGRAMA NACIONAL DE POSGRADOS DE CALIDAD (PNPC)

M.C. DAVID ENRIQUE FLORES JIMÉNEZ

Descargo

La información en el presente trabajo de investigación debe ser usada de manera integral. El autor de la tesis y su director no se hacen responsables del uso que terceras personas puedan hacer de los contenidos de este documento.

AGRADECIMIENTOS

En primer lugar quiero agradecer a Dios por todas sus enseñanzas, pruebas y bendiciones a lo largo de este camino.

Gracias a mi esposa Adriana por todo su amor, fortaleza y apoyo. También quiero agradecer a mi hijo Santiago por toda su alegría y energía.

Quiero agradecer a mi mamá, papá y a mis hermanos, porque desde la distancia y cuando tenemos oportunidad de vernos siempre me apoyan y aconsejan.

Agradezco todo el cariño y apoyo recibido por parte de mis suegros, la Señora Teresa y el Señor Silverio, y de mi cuñado David, porque he aprendido mucho de ellos.

Durante estos cuatro años de doctorado he tenido la fortuna de trabajar con personas con una gran capacidad y que admiro sinceramente.

Gracias a mi director de tesis y amigo, el Dr. Marcos Algara Siller, estoy seguro de que nos esperan nuevos retos que afrontar juntos. Esto fue solo el comienzo.

Tuve la fortuna de aprender mucho del Dr. Noel Carbajal, le agradezco su paciencia al momento de explicarme los conceptos sobre la Física de la Atmósfera y el modelado atmosférico. Tengo muchas ganas de seguir aprendiendo de usted y de conservar su amistad.

Le agradezco al Dr. Alfredo Ávila su apoyo incondicional desde la maestría. De verdad valoro sus consejos sobre el orden que deben llevar las cosas y sobre todo valoro su amistad.

Gracias al Dr. Gregorio Álvarez. Nos conocimos también desde la maestría y ahora se presenta la oportunidad de seguir colaborando.

Noé Aguilar, gracias por apoyarme incondicionalmente desde la elaboración de mi primer artículo. Eres un buen amigo.

Agradezco al Dr. Cristóbal Aldama de la UASLP, por su apoyo durante la elaboración del artículo; y al Dr. Agustín García de la UNAM, por enseñarme estrategias de programación aplicables a la parte química del modelo WRF.

Finalmente debo agradecer a Cecilia Barrera, Juan Carlos, Gissela, Carlos, Sierra, Dante y Erika de Casa Viva; a Priscila y Claudia Ortega, mis amigos desde que Ilegué a San Luis; a Flor, Pablo, Francisco y Marichuy del IPICYT.

Gracias por su apoyo a todas las personas que trabajan en la Agenda Ambiental, especialmente a Laura, Lorena, Gaby, Maricela y Araceli.

Contenido

Introduce	ción	1
1.	Estudio de los gases de efecto invernadero por actividades agropecuarias y su dispersión en la atmósfera	6
	1.1 Cambio climático y efecto invernadero	6
	1.2 Emisiones de gases de efecto invernadero por fuentes naturales y antropogénicas y sus concentraciones	10
	1.2.1 Ciclos biogeoquímicos	13
	1.2.2 Actividades agropecuarias y emisiones de CH ₄ y N ₂ O	18
	1.2.3 Quema de caña de azúcar en el mundo	24
	 1.2.4 Efectos del cambio climático en la productividad de la agroindustria azucarera. 	29
	1.2.5 Afectaciones a la salud por quema de caña de azúcar	31
	1.2.6 El inventario de emisiones y sus principales componentes	33
	1.3 Leyes y normas para para regular los gases de efecto invernadero	34
	1.3.1 Normatividad orientada a las emisiones de CH ₄ y N ₂ O generados por las actividades agrícolas y pecuarias	37
	1.4 Modelos para el estudio de la atmósfera	39
	1.4.1 Modelo numérico WRF	42
2.	Caso de estudio: factores que determinan la biomasa de caña disponible para su quema en México	47
	2.1 Aspectos a considerar en la quema de caña de azúcar	53

	2.1.1 El rol de los ingenios azucareros en la quema de biomasa	59
3.	Influencia de la quema de caña de azúcar sobre la liberación de Carbono y Nitrógeno bajo condiciones de sequía y evapotranspiración en una zona de abastecimiento cañero en México	67
4.	Metodologías para estimar las emisiones de gases de efecto invernadero por quema de caña de azúcar y su dispersión en la atmósfera	101
	4.1 Metodología de emisiones del Panel Intergubernamental sobre cambio climático (PICC)	106
	4.2 Metodología de emisiones de Seiler y Crutzen	109
	4.3 Metodología para modelar el transporte y dispersión de CH ₄ en la atmósfera	112
	4.3.1 Validación del modelado	120
5.	Estimación de las emisiones de metano en México durante la quema de caña de azúcar y escenarios de su dispersión en la atmósfera	126
6.	Discusión general de los resultados obtenidos	165
	6.1 Emisiones de dióxido de carbono, metano y óxido nitroso	165
	6.2 Modelado de metano en las zonas de estudio	169
7.	Conclusiones y recomendaciones	175
Biblio	ografía	178
Anexo	os	196
	A. Fundamentos físicos, matemáticos y espaciales del modelo WRF	196
	B. Coordenadas geográficas y hectáreas consideradas por cada polígono en las zonas de abasto cañero de México para el cálculo de emisiones con la metodología de Seiler y Crutzen	203

- C. Instalación del modelo Weather Research and Forecasting 230 Model (WRF)
- D. Requerimientos de programación para la generación de **234** archivos preliminares de emisiones

Índice de figuras

Figura 1.	Balance de energía del planeta Tierra			
Figura 2.	Tendencia de las emisiones de GEI (1990-2010)			
Figura 3.	Flujo de nutrientes entre distintos componentes (compartimientos, reservorios o fuentes) de un ecosistema; las flechas indican transferencias o flujos.			
Figura 4.	Ciclo del carbono dividido en sus procesos aerobios y anaerobios.			
Figura 5.	Procesos bacterianos implicados en el ciclo del nitrógeno. Las anchuras de las flecha representan aproximadamente las tasas relativas de los procesos.			
Figura 6.	Esquema de los procesos de nitrificación y desnitrificación.	18		
Figura 7.	Subdivisiones del contenido ruminal. 2			
Figura 8.	a) Laguna anaeróbica y b) pastizal.			
Figura 9.	Quema de caña de azúcar en la Huasteca Potosina.			
Figura 10.	Etapas fenológicas del cultivo de caña de azúcar.			
Figura 11.	Rendimiento de campo de países productores de caña.			
Figura 12.	Superficie industrializada (hectáreas).			
Figura 13.	Producción de caña de azúcar.			
Figura 14.	Producción de azúcar en México durante el periodo de cosecha 2010/2011.			
Figura 15.	Factores de producción de caña de azúcar.			
Figura 16	Morfología básica de la caña de azúcar.			
Figura 17.	Parámetros que influyen en las emisiones de GEI durante la quema de caña. *Metodología PICC (1996, 2010), **Metodología de Seiler y Crutzen (1980) actualizada por Levine (2003) y ***Combinación de ambas metodologías.			
Figura 18.	Curva de madurez de la variedad CP 72-2086.	56		

- Figura 19.Indicadores de campo y distribución de la superficie61industrializada, ciclo comercial 2009/10).
- Figura 20.Indicadores de eficiencia en campo y fábrica, según grupo63de Ingenio.
- Figura 21.National distribution of sugarcane production. Sugarcane73fields shown in the central picture and sugar mills shown
in the East zone and in the West zone pictures (author's
own production).73
- Figura 22.Study area. Meteorological stations as black dots (author's73own production).
- Figura 23.Aptitude levels for sugarcane for the period 1990-201081based on production levels given in t/ha. The correlation
coefficient between the harvested area and the production
per hectare is -0.1 (author's own production).
- Figura 24.Comparison between DSI (drought severity index) and
PET (potential evapotranspiration) for the 1990-2010
period. The correlation coefficient between both
parameters is 0.6 (author's own production).83
- Figura 25. Annual averages for C (a) and N (b) release during 85 sugarcane crop burning and precipitation (P) minus potential evapotranspiration (PET) (P-PET), which is the potential rainfall availability (PRA) (author's own production).
- Figura 26. Carbon (a) and nitrogen (b) releases. Calculated according 87 to Intergovernmental Panel on Climate Change and Mexico's own (*) reference data respectively (author's own production).
- Figura 27. Esquema general de la relación entre el cálculo de las 101 emisiones de GEI y el modelado con el WRF.
- Figura 28. Orden de las estimaciones a realizar para obtener el total de C y N liberados por la quema de caña de azúcar. Las frases en color representan los parámetros que son utilizados en los pasos previos para el siguiente cálculo. Los números entre paréntesis indican los valores estándar asignados para la región de estudio

Figura 29.	Árbol de decisiones aplicable a las emisiones de CH4 y N2O procedentes de la quema de residuos agrícolas.	107
Figura 30.	Esquema de funcionamiento del WPS.	113
Figura 31.	Archivos de salida del WPS que sirven como condiciones iniciales en el WRF, donde se ejecutarán programas que permitirán hacer el modelado.	116
Figura 32.	Esquema de los procesos involucrados en la modelación del transporte y dispersión del CH4 (X=Número de dominio de estudio).	120
Figura 33.	Fires generated in a cane Mexican cities due to the start of harvest period (a) and high temperatures (b).	128
Figura 34.	Cane states with their respective sugarcane supply zones.	130
Figura 35.	Number of sugarcane supply zones by state.	131
Figura 36.	Areas of study, to the east of Mexico country in San Luis Potosí State (a), to the west in Jalisco State (b) and to the south in Tabasco State (c). The source emissions are marked with red dots.	140
Figura 37.	Total methane emissions of sugarcane generated by burning in Mexican States.	141
Figura 38.	Vegetation burned (\blacksquare)and released carbon (\blacktriangle) (A), (C) and (E) . CH ₄ emissions (B), (D) and (F) in every harvest period (\bullet).The numbers in the horizontal axis represent a sugarcane supply zone and are ordered according to Figure 3 and Table 26.	142
Figura 39.	Comparison of measured and calculated wind speed and wind direction at three different stations and places: San Luis Potosí (a1 and a2), Tabasco (b1 and b2) and Jalisco (c1 and c2).	146
Figura 40.	Comparison of measured and calculated temperature at three different stations and places: San Luis Potosí (a), Tabasco (b) and Jalisco (c).	148
Figura 41.	Comparison of measured and calculated relative humidity at three different stations and places: San Luis Potosí (a), Tabasco (b) and Jalisco (c).	149

- Figura 42 Satellite images, wind dynamics and methane 151 concentrations according to dispersion showed for San Luis Potosí (a), (b) and (c); Tabasco (d), (e) and (f); and Jalisco (g), (h) and (i).
- Figura 43 Vertical cross-section of CH₄ concentrations and Z-Winds 153 for sugarcane zones at the same time of satellite images for San Luis Potosí State (a) and (b); Tabasco State (c) and (d); and Jalisco State (e) and (f) respectively.
- Figura 44. Methane concentrations (a), (b) and (c); temperature (d), 154 (e) and (f); and relative humidity (g), (h) and (i) for sugarcane areas in San Luis Potosí at 06:00 hrs, 13:50 hrs and 18:00 hrs respectively.
- Figura 45. Methane concentrations (a), (b) and (c); temperature (d), 155 (e) and (f); and relative humidity (g), (h) and (i) for sugarcane areas in Tabasco at 07:00 hrs, 12:00 hrs and 18:00 hrs respectively.
- Figura 46. Methane concentrations (a), (b) and (c); temperature (d), **156** (e) and (f); and relative humidity (g), (h) and (i) for sugarcane areas in Tabasco at 07:00 hrs, 12:00 hrs and 18:00 hrs respectively.
- Figura 47. Emisiones de CO₂ obtenidas a partir de Seiler y Crutzen 167
 (■) y el IPCC (▲): (a), (b) y (c). Emisiones de CH₄ calculado con metodologías de Seiler y Crutzen (●) y el IPCC (♦): (d), (e) y (f).

Índice de tablas

Energía absorbida, reflejada y dispersada en el planeta Tierra		
Principales bandas de absorción para la radiación infrarroja	9	
Fuentes emisoras de gases de efecto invernadero	12	
Actividades agrícolas y ganaderas generadoras de CH4 y N2O	19	
Estimación global anual de la cantidad de biomasa quemada y del carbono liberado a la atmósfera.	25	
Producción y consumo de azúcar a nivel mundial	26	
Biomasa adquirida en cada etapa fenológica de la caña de azúcar		
Normas Oficiales Mexicanas de algunas actividades agropecuarias relacionadas con las emisiones de CH4 y N2O a la atmósfera	39	
Niveles de exposición del metano	39	
Escalas a las cuales se puede estudiar la atmósfera	40	
Datos globales asimilables por el WRF	44	
Porcentaje de superficie sembrada por especie de caña por estado productor	52	
Pasos a considerar en la plantación de riego y de temporal para la siembra de caña de azúcar en la Huasteca Potosina, San Luis Potosí		
Indicadores de eficiencia en campo y fábrica, según grupo de Ingenio.	63	
Edaphological and weather conditions for sugarcane production (aptitude levels)	76	
	Energía absorbida, reflejada y dispersada en el planeta Tierra Principales bandas de absorción para la radiación infrarroja Fuentes emisoras de gases de efecto invernadero Actividades agrícolas y ganaderas generadoras de CH4 y N2O Estimación global anual de la cantidad de biomasa quemada y del carbono liberado a la atmósfera. Producción y consumo de azúcar a nivel mundial Biomasa adquirida en cada etapa fenológica de la caña de azúcar Normas Oficiales Mexicanas de algunas actividades agropecuarias relacionadas con las emisiones de CH4 y N2O a la atmósfera Niveles de exposición del metano Escalas a las cuales se puede estudiar la atmósfera Datos globales asimilables por el WRF Porcentaje de superficie sembrada por especie de caña por estado productor Pasos a considerar en la plantación de riego y de temporal para la siembra de caña de azúcar en la Huasteca Potosina, San Luis Potosí Indicadores de eficiencia en campo y fábrica, según grupo de Ingenio. Edaphological and weather conditions for sugarcane production (aptitude levels)	

Tabla 16.	Drought severity index levels	79	
Tabla 17.	Reference values from Intergovernmental Panel on Climate Change manuals for carbon and nitrogen releases during the sugarcane burning process	80	
Tabla 18.	Cañaverales por estado en México	104	
Tabla 19.	Relaciones de emisión estándar aplicados en la quema de residuos agrícolas para distintos gases.		
Tabla 20.	Relaciones de conversión para distintos gases generados por la quema de residuos agrícolas.	108	
Tabla 21.	Área cosechada que se quema durante el periodo de la zafra por zona de abasto cañero. La numeración mostrada representa cada zona de abasto cañero en el mismo orden de la Tabla 18.	110	
Tabla 22.	Tipos de variables contenidas en los archivos GRIB1 y GRIB2	114	
Tabla 23.	Datos utilizados para inicializar el WRF contenidos en Vtable.GFS	114	
Tabla 24.	Secciones contenidas en el archivo namelist.wps	116	
Tabla 25.	Secciones contenidas en el archivo namelist.input	117	
Tabla 26.	Methane exposure level and effects.	129	
Tabla 27.	Classification of sugarcane supply zones, ordered according to Figure 2 (For example, the first 22 are located in Veracruz State).	131	
Tabla 28.	Reference values used in the emissions methodology.	134	
Tabla 29.	Source emissions considered in the WRF. The sugarcane supplies zones are classified as follow: 1) For San Luis Potosi State AP is Alianza Popular, PA is Plan de Ayala, PS is Plan de San Luis, SMN is San Miguel del Naranjo; 2) For Jalisco State, JMM is José María Morelos, MO is Melchor Ocampo; and for Tabasco State, PBJ is Pte.	137	

Benito Juárez, SR is Santa Rosalía and AT is Azsuremex Tenosique.

- Tabla 30.Comparison of methane emissions generated by141sugarcane burning in different countries.
- Tabla 31.Interval methane concentrations for every cane State152analyzed
- Tabla 32.Resultados estadísticos de la RECM y BIAS obtenidos en
cada zona de modelada, comparados con un estudio a la
misma resolución en Singapur.172

Introducción

La Tierra es el tercer planeta más cercano al Sol y factores como su movimiento de traslación, la inclinación de su eje de rotación y la cantidad de radiación solar que incide en él (Ahrens 2009) definen las condiciones iniciales bajo las cuales se encontrarán todos los reservorios del planeta (agua, suelo y aire).

Los componentes de la biósfera no actúan de manera aislada sino más bien se relacionan entre sí de formas muy complejas (Smith et al., 2001), dando pie a la presencia de vida en la Tierra. Éstos favorecen entre otras cosas, la generación de gases que tienen la capacidad de regular de manera natural, la temperatura global de la Tierra, conocidos como Gases de Efecto Invernadero (GEI).

El cambio de uso de suelo por parte del ser humano marcó el comienzo en la modificación del planeta y se relaciona con el proceso de transición del tipo de vida nómada (caza de animales y recolección de frutas) al sedimentario (domesticación de plantas y animales) en el año 8000 a.C. (McKenzie, 2007).

La Revolución Industrial (comenzando en el periodo de 1750-1780) se presentó como un largo proceso que involucró a todo el planeta y favoreció de manera sustancial el incremento en las emisiones de contaminantes atmosféricos GEI debido a las innovaciones tecnológicas y al uso intensivo de nuevas formas de energía (Chávez, 2004).

Si bien, a nivel mundial, los estudios sobre Cambio Climático comenzaron a principios del siglo XIX, no fue sino hasta 1979 que se mostraron evidencias de la alteración del clima por causas humanas (1ra Conferencia sobre el clima, realizada en Ginebra, Suiza).

El clima propicio para la vida en una región de la Tierra depende en gran medida del fenómeno conocido como "efecto invernadero", que se define como "la absorción de radiación infrarroja por el vapor de agua y gases de efecto invernadero (GEI) presentes en la atmósfera", los cuales contribuyen de manera natural en el mantenimiento de una temperatura media terrestre de 15°C (Ahrens, 2009).

El efecto invernadero se ha exacerbado debido a las actividades antropogénicas favoreciendo el incremento en las concentraciones de GEI en la atmósfera (PICC, 2001). El Panel Intergubernamental sobre Cambio Climático (PICC) menciona que por acuerdo internacional aprobado en el protocolo de Kyoto en 1997 los GEI necesarios de controlar por su potencial de calentamiento son: Dióxido de Carbono (CO₂), Metano (CH₄), Óxido Nitroso (N₂O), Hidrofluorocarbonos (HFC's), Perfluorocarbonos (PFC's) y Hexafluoruro de Azufre (SF₆) (PICC, 2000; ONU, 1998).

Las actividades agrícolas y pecuarias contribuyen con las emisiones de CH₄ y N₂O, cuya aportación global corresponde a un 20% del efecto invernadero desde la época preindustrial (Scheele et al., 2006) y su potencial de calentamiento global es 21 y 310 veces mayor que el Dióxido de Carbono (CO₂), respectivamente.

Las emisiones de GEI han sido registradas por los países pertenecientes al Anexo I y No-Anexo (entre ellos México) (INECC, 2010b), como parte del compromiso firmado en el Protocolo de Kyoto (1997) y ratificado ante la Convención Marco de las Naciones Unidas sobre Cambio Climático (CMNUCC) (UNFCCC, 1992).

La dinámica que los gases y partículas que se presentan en la atmósfera dependen de parámetros meteorológicos como por ejemplo la velocidad y la dirección del viento, radiación solar, presión, precipitación y temperatura, entre otros. Los modelos atmosféricos actuales favorecen la incorporación de dichas variables y de otros aspectos como la orografía, emisiones, fuentes emisoras y reacciones químicas entre otros.

El objetivo general de esta investigación es investigar las emisiones de metano generadas por la quema de caña de azúcar en México así como su transporte y dispersión en la atmósfera para identificar el papel que juega dicha actividad agrícola en el contexto del cambio climático.

El artículo 1 de la CMNUCC define el Cambio Climático como "el cambio de clima atribuido directa o indirectamente a la actividad humana que altera la composición

de la atmósfera del planeta y que se suma a la variabilidad natural del clima observada durante periodos de tiempo comparables (UNFCCC, 1992).

La postura de este proyecto de investigación es que la contribución al cambio de clima que es atribuido a la actividad humana no sólo altera la composición de la atmósfera, sino también modifica a los demás reservorios (agua y suelo) de la biósfera, y como éstos no están aislados entre sí, entonces en conjunto siguen provocando variaciones en el clima.

Las actividades agropecuarias, como el manejo de desechos del ganado o el cultivo de la caña de azúcar, han sido un claro ejemplo de cómo se relaciona el suelo y la atmósfera para contribuir en la variabilidad del clima. Por ejemplo, los ciclos biogeoquímicos del carbono (C) y nitrógeno (N) juegan un papel muy importante en la interacción entre ambos reservorios; y el CH₄ y N₂O, dos GEI, son subproductos de estos (Figuervelo, et al., 2001; Smith et al., 2001).

Los parámetros mencionados no son los únicos que juegan un papel importante en el estudio de las actividades agrícolas y pecuarias, ya que su desarrollo histórico en México involucra la relación entre factores científicos, políticos, económicos y sociales (Bassols, 1996; Martínez, 1983; Fernández, 2003). Las actividades agrícolas en el cambio climático deben abordarse desde una perspectiva multidisciplinaria que concluya en la creación de políticas públicas.

El estudio comienza dando las bases conceptuales sobre los gases de efecto invernadero (GEI), sus emisiones y concentraciones en la atmósfera y su papel ante el cambio climático. En el mismo marco teórico se habla sobre los distintos tipos de fuentes emisoras. En este punto se diferencia entre los procesos naturales que los generan (ciclos biogeoquímicos) y los antropogénicos (particularmente enfocado al cultivo de la caña de azúcar).

En el apartado legislativo se habla sobre la normativa de prevención y control de las emisiones de gases de efecto invernadero a escala internacional y nacional así como de todos los aspectos reguladores que buscan tanto mitigarlas en la atmósfera desde una perspectiva global hasta llegar al caso regional. En la sección de este trabajo correspondiente al transporte y dispersión de gases en la atmósfera se presenta un panorama general sobre los tipos de modelaciones atmosféricas que existen y de los elementos meteorológicos, geográficos y espaciales que se deben de tomar en cuenta para su estudio; finalmente se termina describiendo las características del modelo Weather Research and Forecasting Model (WRF), que es la herramienta fundamental utilizada para investigar el comportamiento del metano en la atmósfera, así como sus concentraciones.

En el planteamiento del caso de estudio se presentan los elementos generales involucrados en la quema de caña de azúcar en México, haciendo énfasis en el papel que desempeñan los nutrientes (particularmente carbono y nitrógeno) durante este proceso, las principales especies de caña y las técnicas estándares de cultivo de caña tanto para el caso de cultivo de riego como para el caso de cultivo de temporal. En este apartado se concluye presentando el papel que desempeñan los ingenios azucareros en la quema de biomasa, buscando integrar los aspectos generales legislativos, económicos y técnicos involucrados en este proceso.

La primera ronda de resultados que se muestran, parte de un estudio realizado en el estado de San Luis Potosí sobre el rol que juegan diversos parámetros climáticos como la sequía, la evapotranspiración y la precipitación en la pérdida de nutrientes, particularmente el Carbono y Nitrógeno durante el periodo de quema de caña de azúcar.

Consecuentemente, se muestran a detalle las metodologías del IPCC y de Seiler y Crutzen, las cuales fueron utilizadas para obtener las emisiones nacionales de metano (con ambas) y óxido nitroso (sólo con la primera). También se explican los diversos pasos que se llevan a cabo para modelar el transporte de metano en la atmósfera y cuantificar sus concentraciones en diversas zonas cañeras de México.

En el siguiente apartado se muestran los resultados correspondientes a las concentraciones de metano obtenidas en tres zonas de abasto cañero del país a partir de las emisiones estimadas con la metodología de Seiler y Crutzen. La validación del modelo se lleva a cabo comparando los resultados obtenidos con

reportes del Servicio Meteorológico Nacional y otras investigaciones en donde se implementaron métodos estadísticos similares al de este trabajo.

En la discusión general sobre los resultados obtenidos se enfatiza la importancia de las emisiones obtenidas cuando son analizadas en toneladas de CO₂ equivalente de acuerdo a su potencial de calentamiento. También se discuten las condiciones meteorológicas (velocidad y dirección de vientos, humedad relativa y temperatura) en que se llevó a cabo la dispersión de metano en las zonas cañeras de estudio así como sus concentraciones en la atmósfera.

Como se verá más adelante, los elementos que caracterizan las zonas de estudio (sobre todo área cosechada y rendimiento en producción) muestran aspectos que se han repetido en el país desde los años sesenta, por tal razón este estudio permite identificar el papel que juega la quema de caña de azúcar en México en el contexto del cambio climático. Finalmente se presentan conclusiones y recomendaciones generales de esta investigación.

1. Estudio de los gases de efecto invernadero por actividades agropecuarias y su dispersión en la atmósfera

El cambio climático es un tema de gran trascendencia en la actualidad debido a las repercusiones que ha presentado sobre el ambiente natural y antropogénico mediante la presencia de fenómenos como la sequía meteorológica, huracanes, inundaciones y pobreza entre otros. Algunas veces hay confusión entre dicho concepto y el de calentamiento global, siendo que de hecho el segundo puede repercutir en el primero tal y como se explicará a continuación.

1.1 Cambio climático y efecto Invernadero

Mientras que la meteorología permite estudiar las condiciones o el estado de la atmósfera en cualquier tiempo y lugar involucrando parámetros como temperatura, humedad relativa y nubosidad, la climatología analiza las condiciones promedio de dichos parámetros a escala regional o global y en intervalos de tiempo que abarcan varios años (Ahrens, 2009). Magaña (2004) menciona que este último concepto debe considerar las interacciones que se presentan "con el mar y el continente en diversas escalas de tiempo y espacio".

El Cambio Climático depende de los reservorios que tiene el planeta Tierra (agua, suelo y atmósfera), conectados entre sí y por los cuales entra y sale constantemente energía. En ellos existe un balance de lo que es recibido por el Sol, lo contenido en dichos reservorios y lo emitido por éstos (Lazaridis, 2011).

La cantidad de energía que incide en el Planeta es de 342 W/m², ésta es distribuida considerando lo que es reflejado de regreso al espacio (reflección); lo absorbido por gases y nubes presentes en la atmósfera (absorción); lo dispersado y posteriormente absorbido por el suelo; y finalmente lo que es reflejado por la superficie para posteriormente ser dispersado al espacio (Sportisse, 2010) (Tabla 1).

Tipo de flujo de energía	Energía (W/m²)
Reflejada de regreso al espacio por nubes y aerosoles (alrededor del 22%)	77
Absorbida por gases y nubes (alrededor del 20%)	67
Dispersada y posteriormente absorbida por la superficie (alrededor del 49%)	168
Reflejada por la superficie y posteriormente dispersada al espacio (alrededor del 9%)	30

Tabla 1. Energía absorbida, reflejada y dispersada en el planeta Tierra (Sportisse, 2010).

La temperatura promedio de algún lugar en específico puede variar año con año y la temperatura promedio global solo varía ligeramente de un año al siguiente. Ésto significa que a escala planetaria una gran cantidad de energía es reflejada al espacio tanto por la atmósfera como por la superficie terrestre (Tabla 1).

Existe un balance similar de energía entre la atmósfera y el suelo, por lo que cada año la superficie de la Tierra regresa a la atmósfera la misma cantidad de energía que absorbió y si esto no ocurriera habría un incremento de la temperatura media global del suelo (Figura 1) (Ahrens, 2009).

Para mantener a largo plazo el balance de energía entre el planeta Tierra (considerando todos los tipos de flujos de energía) y el espacio exterior es necesario que lo emitido al planeta (radiación de onda corta) sea igual a lo reemitido al espacio (radiación infrarroja o de onda larga). Cualquier fenómeno originado por causas naturales o antropogénicas que altere dicho equilibrio entre la radiación recibida, la re-emitida y su distribución en la Tierra es conocido como "variación del forzamiento radiativo de la Tierra" y provocará cambios en el clima (Magaña, 2004).

Figura 1. Balance de energía del planeta Tierra (Sportisse, 2010).

Los GEI presentes en la atmósfera juegan un papel muy importante en el balance de energía del planeta a través del fenómeno conocido como "efecto invernadero", el cual consiste en la absorción de radiación infrarroja por dichos gases y el vapor de agua (Ahrens, 2010) (Figura 1). Estos contribuyen de manera natural en el mantenimiento de una temperatura media global (15 °C) favorable para la vida.

El incremento en las concentraciones de dichos gases alteraría el balance de energía, favoreciendo positivamente el forzamiento radiativo, el aumento de la temperatura media del planeta y por ende el calentamiento global. Existen evidencias de que dicha temperatura ha incrementado; por ejemplo, Lazaridis (2011), en el periodo de 1950-2010, reporta una desviación de hasta 0.6 °C. Garduño (2004) explica que antes de la época industrial y durante 420 mil años el CO₂ tenía una concentración constante de casi 280 partes por millón volumétrica (ppmv), sin embargo en el siglo XIX aumentó a 370 ppmv (PICC, 2001).

El potencial de calentamiento global es una medida de cuanta energía puede atrapar un gas de efecto invernadero y se calcula considerando el calor o energía que puede absorber el GEI de interés con respecto al calor que puede atrapar la misma masa de un gas de referencia (comúnmente es el CO₂ debido a que es el de mayor concentración en el planeta y tiene un periodo de vida de aproximadamente 100 años).

Los dos gases de efecto invernadero que tienen las más altas concentraciones después del CO₂ son el metano (CH₄) y el óxido nitroso (N₂O), cuyo periodo de vida es de 12 y 114 años respectivamente, y cuyo potencial de calentamiento global es de alrededor de 21 y 310 veces mayor que el del dióxido de carbono respectivamente, también en un periodo de 100 años (Sportisse, 2010; UNFCCC, 2014a).

En el espectro electromagnético, las bandas de absorción de radiación por parte de los GEI y el vapor de agua se encuentran en el infrarrojo, que es un tipo de onda larga. Entre mayor sea dicha longitud de onda, más energía será absorbida, por esa razón el vapor de agua al tener un rango en el infrarrojo de 5.3 a 6.9 micrómetros (μ m) es el que absorbe la mayor radiación de este tipo, seguido del CH₄ y el N₂O (Tabla 2) (Sportisse, 2010).

Tabla 2. Principales bandas de absorción para la radiación infrarroja (Sportisse, 2010)		
Especie Rango de banda (longitud de onda) en el infrarrojo (
CO ₂	4.1 a 4.8	
H ₂ O (vapor de agua)	5.3 a 6.9	
CH ₄	6 a 10	
N ₂ O	4.4 a 4.8	

1.2 Emisiones de gases de efecto invernadero por fuentes naturales y antropogénicas y sus concentraciones

Una fuente emisora es toda actividad, proceso u operación de tipo natural o antropogénico susceptible de emitir contaminantes al aire (SGA, 2011). De acuerdo a la SEMARNAT (Secretaría del Medio Ambiente y Recursos Naturales) y al INECC (Instituto Nacional de Ecología y Cambio Climático) las fuentes de emisión se clasifican en fuentes puntuales, de área, móviles y naturales (SEMARNAT, INE, 2005), donde las tres primeras se ocupan para caracterizar actividades antropogénicas.

En México las fuentes puntuales son definidas en el artículo 6 de la Ley General del Equilibrio Ecológico y Protección al Ambiente (LGEEPA) como "...toda instalación establecida en un solo lugar que tenga como finalidad desarrollar operaciones o procesos industriales, comerciales, de servicios o que generen o puedan generar emisiones contaminantes a la atmósfera" (p. ej. industrias petroquímicas, cementeras, automotrices entre otras) (SEMARNAT, INE, 2005).

Las fuentes de área por su parte "...son una sucesión de fuentes puntuales que de manera individual se encuentran muy dispersas entre sí como para ser incluidas en un inventario, pero que al ser consideradas en conjunto representan un porcentaje importante de emisiones" (p.ej. las tortillerías, lavanderías entre otras). Los automóviles, barcos y aviones entre otros son considerados como fuentes móviles (SEMARNAT, INE, 2005).

Las fuentes naturales de emisión son aquellas que emiten gases y partículas a la atmósfera que no provienen de actividades humanas y se clasifican en: 1) biogénicas, cuyas emisiones incluyen a los compuestos orgánicos volátiles (COV) producidas por bosques y cultivos, así como las emisiones de óxidos de nitrógeno (NO_x) provenientes del suelo; y 2) geogénicas, las cuales son de origen geológico; es decir, volcanes, géiseres, manantiales de aguas sulfurosas y filtraciones de aceite que suelen encontrarse en ambientes marinos (INECC, 2003).

El GEI más abundante en la atmósfera es el vapor de agua (H₂O). El incremento o decremento en sus concentraciones depende de su retroalimentación en los distintos tipos de climas del planeta a través del ciclo hidrológico y no directamente de la industrialización, de hecho, todavía no es claro su papel dentro del fenómeno del efecto invernadero (NOAA, 2014).

Las emisiones de CO₂ provienen principalmente de la quema de combustibles fósiles y la producción de cemento, además han alcanzado concentraciones de un 142% por encima de lo que había en el periodo preindustrial favoreciendo positivamente el forzamiento radiativo (OMM, 2014) (Tabla 1).

El CH₄ y el N₂O han aumentado sus concentraciones en un 253% y 121%, respectivamente, desde la época preindustrial y sus emisiones provienen de fuentes naturales estrechamente ligadas a procesos aeróbicos y anaeróbicos respectivamente como se discutirá más adelante. Sus emisiones antropogénicas provienen principalmente de actividades económicas primarias y de procesos de combustión (OMM, 2014; NOAA, 2014) (Tabla 3).

Las unidades en que se cuantifican las concentraciones de CO_2 , CH_4 y N_2O en la atmósfera es partes por millón (ppm) y partes por billón (ppb). Su aumento a nivel mundial en el periodo 1985-2013, fue de: a) 340 ppm a 400 ppm para el CO_2 ; b) 1650 ppb a 1830 ppb para el CH_4 ; y c) 304 ppb a 325 ppb para el N_2O (OMM, 2014).

El Panel Intergubernamental sobre Cambio Climático (PICC) menciona que las categorías o sectores que emiten GEI a la atmósfera son: 1) Energía; 2) Procesos Industriales; 3) Solventes; 4) Agricultura (incluye ganadería y agricultura); 5) Desechos; y 6) Cambio de uso de suelo y silvicultura. A partir 1996 el PICC elaboró una serie de guías metodológicas para que cada país documentase sus emisiones mediante un Inventario Nacional de Emisiones de Gases de Efecto Invernadero (INEGEI) de acuerdo a su disponibilidad de información (PICC, 1996; PICC, 2000).

Gas de efecto invernadero	Fuentes naturales	Fuentes antropogénicas
Vapor de agua (H ₂ O)	Ciclo hidrológico	Procesos de evaporación dentro de una industria (Ej. Planta hidroeléctrica)
Dióxido de carbono (CO ₂)	Biósfera terrestre y océano. Procesos aeróbicos (Ej. Erupción volcánica)	Procesos de combustión en carbón, petróleo, gas natural, madera y cambio de uso de suelo
Metano (CH4)	Procesos anaeróbicos naturales dentro del ciclo del carbono (Ej. Humedales y termitas).	Quema de residuos agrícolas. Cultivo de arroz. Procesos digestivos anaeróbicos en rumiantes.
Óxido nitroso (N ₂ O)	Subproducto dentro del ciclo del nitrógeno en suelo y agua.	Uso de fertilizantes nitrogenados. Quema de residuos agrícolas
Clorofluorocarbonos (CFC's)	No tiene fuente natural de emisión.	Aerosoles, sistemas de aire acondicionado y de refrigeración

Tabla 3. Fuentes emisoras de gases de efecto invernadero (NOAA, 2014; OMM 2014).

De acuerdo al Protocolo de Kyoto, los países pertenecientes al Anexo I deben reducir sus emisiones de GEI un 5.2% con respecto a las emisiones de 1990 (año base). Los países que no pertenecen a dicho Anexo, es decir "No Anexo I" (donde México está incluido), no están comprometidos a disminuir sus emisiones pero mandan periódicamente sus inventarios a la Convención Marco de las Naciones Unidas sobre Cambio Climático (CMNUCC) para monitorear su tendencia de emisión y revisar sus procesos metodológicos (UNFCCC, 2014b).

En el periodo de 1990-2012 las emisiones de los sectores de energía, procesos industriales, agricultura, desechos y uso de tierra y cambio de uso de suelo, disminuyeron considerablemente (Figura 2). Analizando únicamente el rango de 2011-2012, las emisiones de GEI generadas por el sector agrícola aumentaron un 0.1% (UNFCCC, 2014c).

En la región de América Latina y el Caribe, los principales países emisores de GEI son Brasil (el 32%), México (el 19%) y Argentina (el 13%) (UNFCCC, 2005). México ha calculado sus emisiones para las categorías mencionadas dentro del rango

1990-2010, donde la categoría de Energía contribuyó en el último año mencionado con el 67.3% de las emisiones totales de GEI, seguida de la Agricultura con un 12.3% y de los Procesos Industriales con un 8.2% (PICC, 1996; PICC, 2000).

La tendencia en dicho periodo de tiempo ha sido positiva debido a que mientras en 1990 se tenían poco más de 500, 000 Gg de CO₂ eq., en el 2010 se presentó un valor total superior a los 700, 000 Gg de CO₂ eq. (Figura 2) (INECC, 2010a).

Figura 2. Tendencia de las emisiones de GEI (1990-2010) (INECC, 2010).

El CH₄ y N₂O son subproductos de los ciclos naturales del carbono (C) y el nitrógeno (N) (Smith et al., 2001) y mientras las actividades agrícolas y pecuarias remplacen las condiciones naturales de la biósfera habrá una afectación directa en el proceso natural de estos ciclos lo cual acelerará la generación de dichos GEI. Por tal razón resulta importante comprender estos fenómenos tal y como se verá en las siguientes secciones.

1.2.1 Ciclos biogeoquímicos

Los gases que se localizan en mayor cantidad cerca de la superficie terrestre son: 1) el nitrógeno (N₂), con un 78%; y 2) el oxígeno (O₂), con alrededor del 21%. También se encuentran de manera natural pero en menor cantidad el argón (0.93%), neón (0.0018%), helio (0.0005%), hidrógeno (0.00006%) y xenón (0.00009%) (Ahrens, 2009).

En la superficie terrestre existe un balance entre la entrada y salida de gases mediante un proceso conocido como ciclo biogeoquímico, el cual se define como "...el flujo de nutrientes desde los componentes no vivos hasta los vivos, y luego vuelven a los componentes no vivos del ecosistema, siguiendo una vía más o menos cíclica". Los dos tipos básicos de ciclos biogeoquímicos son: 1) los gaseosos, donde los reservorios principales de nutrientes se localizan en la atmósfera y los océanos; y 2) los sedimentarios, cuyo principal reservorio es el suelo (Smith, 2001).

En una representación generalizada de un ciclo biogeoquímico sobre un ecosistema terrestre en donde la fuente inicial de nutrientes es la atmósfera (Figura 3), "...éstos se mueven hacia las plantas verdes (productores primarios); aquí los herbívoros (consumidores) se comen las plantas. Hay flujos que van desde los productores primarios y de los consumidores al reservorio de la materia orgánica muerta. En este lugar, los descomponedores que se alimentan de dicha materia orgánica muerta, transfiriéndola al reservorio del suelo. El enlace siguiente va del suelo hasta los productores primarios, los cuales se alimentan de los nutrientes del suelo. Finalmente, hay un flujo desde la materia orgánica muerta hacia la atmósfera. Este flujo representa una liberación de gases durante la descomposición" (Smith, 2001).

Figura 3. Flujo de nutrientes entre distintos componentes (compartimientos, reservorios o fuentes) de un ecosistema; las flechas indican transferencias o flujos (Smith et al., 2001).

Uno de los principales nutrientes que se transfiere entre los reservorios mencionados es el carbono (C). Su fuente fundamental es el dióxido de carbono (CO₂), el cual se encuentra en los organismos vivos, depósitos fósiles y disueltos en agua. Inicialmente éste es tomado del aire y agua por las plantas (organismos productores primarios) durante el proceso de fotosíntesis. Posteriormente, el carbono fluye a través de los herbívoros y carnívoros (ambos consumidores primarios y secundarios, respectivamente) en ese orden.

Tanto productores como consumidores liberan el CO₂ a la atmósfera mediante la respiración (Figura 2). El carbono pasa finalmente de los tejidos de animales y plantas al reservorio de la materia orgánica muerta. En este punto, el proceso de descomposición (mediante la presencia de hongos y bacterias) puede ser: 1) aeróbico, donde en presencia de oxígeno se libera nuevamente CO₂ a la atmósfera; o 2) anaeróbico, el cual favorece la generación de metano (CH₄) mediante la descomposición de vegetales (Figura 4) (Figuervelo, et al., 2001; Smith et al., 2001).

Figura 4. Ciclo del carbono divido en sus procesos aerobios y anaerobios (Vitoria, 2002).

Un ejemplo claro de la formación de metano dentro del ciclo del carbono son los humedales, cuyos suelos al estar inundados de agua, funcionan como sumideros de C debido a la baja descomposición de materia orgánica por procesos de oxidación (ausencia de O₂) y a la presencia de una gran cantidad de plantas (que consumen CO₂), por ende, se presenta procesos anaeróbicos que favorecen la formación de CH₄ (Hernández, 2010).

Por otro lado, el nitrógeno es otro de los gases que al fluir por los distintos reservorios, proporciona nutrientes para los productores (primarios) y consumidores (primarios y secundarios). Este elemento se encuentra principalmente en estado gaseoso (N₂). En estas condiciones no es aprovechable para la mayoría de los seres vivos, por lo que debe encontrarse en formas más reactivas para ser aprovechado por éstos y es precisamente este proceso de transformación el que involucra a su ciclo (Smith et al., 2001).

Inicialmente el nitrógeno pasa por un proceso de fijación, el cual ocurre de dos maneras:

- Fijación por acción química de alta energía, en donde la radiación solar, las estelas de los meteoritos y los relámpagos proporcionan la energía necesaria para combinarlo con el oxígeno (O₂) y agua (H₂O) generando amoniaco (NH₃) y nitratos (NH₄ y NO₃), los cuales son llevados a la superficie terrestre con el agua de lluvia; y
- 2) Fijación biológica, llevado a cabo por la intervención de bacterias fijadoras de nitrógeno (asociadas con leguminosas y no leguminosas), por bacterias de vida libre aeróbicas (*Azotobacter*) y por cianobacterias (algas verdeazuladas) o en condiciones anaeróbicas (p.ej. mediante la bacteria *Clostridium pasteurianum*). Los átomos de nitrógeno gaseoso se combinan con hidrógeno para formar dos moléculas de amoniaco (NH₃) (Figura 3) (Smith et al., 2001).

Así mismo, la materia orgánica muerta libera nitrógeno en forma de amoniaco mediante un proceso conocido como amonificación, el cual es el punto de partida para las demás etapas del ciclo del nitrógeno (Figura 3). El nitrógeno pasa por un proceso biológico conocido como nitrificación (en condiciones aeróbicas) mediante el cual el amoniaco es oxidado por bacterias nitrificantes a nitratos y nitritos produciendo energía (Figura 3).

Finalmente estos pueden transformase en nitrógeno gaseoso (N₂) mediante un proceso de desnitrificación (en condiciones anaeróbicas) en donde se ven implicadas distintas especies de bacterias del género *Pseudomonas* y el *Thiobacillus denitrificans* (Figura 5) (Smith et al., 2001).

El óxido nitroso (N₂O) es un subproducto de los procesos de nitrificación y desnitrificación en ambientes aerobios y anaerobios respectivamente, puesto que en el primero el O₂ presente puede reaccionar con el N; y en el segundo caso se debe a la ausencia o pérdida de oxígeno (Figura 6) (Figuervelo et al., 2001).

Figura 5. Procesos bacterianos implicados en el ciclo del nitrógeno. Las anchuras de las flechas representan aproximadamente las tasas relativas de los procesos (Smith et al., 2001).

Figura 6. Esquema de los procesos de nitrificación y desnitrificación (Figuervelo et al., 2001).

Las aguas residuales, tanto en condiciones naturales (como los ríos estancados) como antropogénicas (agua acumulada en alcantarillas o letrinas), pueden ser fuentes emisoras de CH₄ y N₂O dependiendo del proceso que se presente, ya sea por degradación anaeróbica o por la descomposición de compuestos nitrogenados (PICC, 2006).

1.2.2 Actividades agropecuarias y emisiones de CH₄ y N₂O

La agricultura y la ganadería forman parte del complejo proceso que se lleva a cabo en la industria alimentaria alrededor del mundo. De hecho, el sistema agroalimentario industrial es responsable del 44% al 57% de todas las emisiones globales de GEI (GRAIN, 2011). En el periodo 2010-2011 la contribución por continente de emisiones de gases de efecto invernadero fue: 1) América 25%; 2) África 15%; 3) Europa 12%; y 4) Asia 44% (FAO, 2014). En la tabla siguiente se presentan las actividades agrícolas y ganaderas que de acuerdo con el Panel Intergubernamental de Cambio Climático (PICC) son generadoras de CH₄ y N₂O para la categoría de agricultura (que considera tanto actividades ganaderas como agrícolas) (PICC, 1996; PICC, 2000):

Actividad	Emisión de CH₄	Emisión de N₂O
Fermentación entérica	Х	
Manejo de estiércol	Х	Х
Suelos agrícolas		Х
Quema de residuos agrícolas	Х	Х
Quema de sabanas	Х	Х
Arroz – cultivos anegados	x	

 Tabla 4. Actividades agrícolas y ganaderas generadoras de CH₄ y N₂O (PICC, 2000).

La fermentación entérica contribuye con el 40% de las emisiones agrícolas de GEI en el mundo (FAO, 2014), es un proceso anaeróbico (en ausencia de oxígeno) que ocurre principalmente en el sistema digestivo de rumiantes (específicamente en el rumen y tracto digestivo posterior) donde los carbohidratos estructurales como la celulosa y hemicelulosa de los forrajes son digeridos por bacterias celulolíticas, entre ellas, las bacterias metanogénicas.

Los principales productos de este proceso digestivo son los ácidos grasos volátiles de cadena corta (acetato, propionato y butirato), lactato (C₃H₆O₃) y metano (CH₄) (Carmona et al., 2005; PICC, 1996).

En la zona digestiva del rumen (Figura 5) se identifican 4 secciones: 1) cúpula de gas, donde se acumulan los gases; 2) zona sólida, en la que se ubica el forraje y comienzan los procesos fermentativos y la producción de gas; 3) una fangosa o

semilíquida donde se toma el contenido para ser rumiado (procesamiento digestivo); y 4) zona líquida, en la cual el contenido se encuentra triturado y humectado, listo para pasar a otra sección del estómago (Relling y Mattioli, 2003).

En su sistema digestivo el 87% del CH₄ es producido en el rumen, mientras que el 13% en el tracto digestivo. Básicamente el 98% del total de dicho gas es expirado a través de la boca (eructos) y orificios nasales (Carmona et al., 2005).

Las condiciones más importantes que influyen en la cantidad de CH₄ emitido por los rumiantes dependen de la calidad del alimento ingerido y de las condiciones climáticas. Por ejemplo, los forrajes utilizados para alimentar el ganado en zonas tropicales generan mayores emisiones de dicho gas en comparación con los utilizados en zonas templadas (Carmona et al., 2005).

Figura 7. Subdivisiones del contenido ruminal. En la parte superior se acumula el CH₄ (Cunningham, 2004).

Por otro lado, dependiendo del tipo de manejo que se le dé al estiércol se pueden emitir a la atmósfera CH₄ y N₂O. Donde el primero es generado debido a que los residuos orgánicos en ausencia de oxígeno (procesos anaeróbico) se degradan a CO₂, CH₄, pequeñas cantidades de dihidrógeno (H₂) y sulfuro de hidrógeno (H₂S) (González-Ávalos y Ruiz Suárez, 2001). Los sistemas de manejo de estiércol tratados por el PICC respecto a las emisiones de N₂O consideran los procedimientos de tipo líquido y sólido, éstos son:

- 1) Lagunas anaeróbicas (Figura 8a), las cuales reducen la contaminación por bacterias y nutrientes al atrapar los desechos;
- Sistemas de tipo líquido, en donde el estiércol es manejado con rascadores, sistemas de flujo y desagües de flujo por gravedad o a través de rejillas para almacenamiento;
- Abonado diario, en el que se utilizan los residuos de origen animal para mejorar la disponibilidad de nutrimentos en el suelo;
- 4) Almacenamiento sólido y parcelas secas, que consisten en utilizar material de cama (excremento y vegetales fibrosos) para secar el estiércol; y
- 5) Praderas y pastizales (Figura 8b), que son tierras utilizadas para el pastoreo de ganado en donde el estiércol es simplemente regado (Field et al., 2001; PICC, 1996; SAGARPA, s.f.).

Figura 8. a) Laguna anaeróbica y b) pastizal (Field et al., 2001).

En trabajos previos realizados en el Centro de Investigación Aplicada al Cambio Climático – Casa Viva se elaboró el Inventario de Gases de Efecto Invernadero en la categoría de Agricultura para el estado de San Luis Potosí y se obtuvo que tanto la fermentación entérica como el manejo de estiércol contribuyeron con el 86% de las emisiones agrícolas totales de CH₄ en el año 2010. La Huasteca Potosina es la región que más influyó con emisiones de 400,000 t de CO₂ eq., duplicando los valores de las regiones Altiplano, Media y Centro (SIIA, 2013; Algara et al., 2013).
El PICC considera al sistema de manejo de praderas y pastizales (Figura 8b) dentro de la categoría de suelos agrícolas debido a que éste se encuentra relacionado con el pastoreo de animales, ya que sus desechos son depositados en suelos con potencial agrícola (PICC, 1996). En esta misma categoría el N₂O puede generarse por emisiones directas (donde dicho gas se volatiliza desde la superficie) procedentes propiamente de: 1) los suelos agrícolas; y de 2) los suelos dedicados a la producción animal.

Este GEI se puede generar también por emisiones indirectas (en donde el N₂O se produce por reacciones químicas en la atmósfera, a partir de otros compuestos nitrogenados) originaria de las cantidades de nitrógeno (N) contenido en los fertilizantes utilizados para la agricultura (p.ej. urea o superfosfato) (PICC, 1996), de la lixiviación de suelos y de la deposición de amonio (NH₃) y monóxidos de nitrógeno (NO_x) (PICC, 1996).

La quema de residuos agrícolas, que incluye a la quema de caña de azúcar, es otra actividad en la que se emiten a la atmósfera monóxido de carbono (CO), monóxidos de nitrógeno (NO_x) y N₂O. Algunos desperdicios son quemados para producir energía, por lo que éstos no son tomados en cuenta en esta investigación (PICC, 1996).

Durante la quema de sabanas (zona herbácea-arbustiva principalmente) se generan los mismos gases que fueron mencionados y además monóxido de carbono (CO) (PICC, 1996). La presencia de oxígeno en los procesos de combustión de ambas subcategorías (quema de residuos y quema de sabanas) es responsable de la generación de CO₂ y H₂O. (OpenCourseWare, 2015). La energía liberada favorece que una fracción del carbono liberado que no se oxida reaccione con el hidrógeno en su forma gaseosa para producir CH₄.

Figura 9. Quema de caña de azúcar en la Huasteca Potosina (Zafranet, 2015).

En el Inventario de Emisiones realizado en San Luis Potosí se obtuvo por ejemplo que para el 2010 la cantidad anual total de C liberado por quema de caña de azúcar (119, 460 t) es hasta 10 veces mayor que el de otros cultivos como la avena (26, 000 t), cebada (3, 210 t), maíz (30, 000 t) y frijol (32, 000 t), debido a la cantidad de biomasa disponible para su quema (Algara et al., 2013).

Los cultivos anegados de arroz son una fuente emisora de CH₄. Éste se lleva a cabo en suelos saturados de agua con poca aireación (escasa cantidad de oxígeno) en donde hay bacterias metanógenas encargadas del proceso de descomposición. En el estado de San Luis Potosí no hay este tipo de siembra desde 1990 por lo que dicha subcategoría no se consideró para la elaboración del inventario de emisiones (Algara et al., 2013; Cavazos, 2012; PICC, 1996).

Existen diversas estrategias para estimar las emisiones a la atmósfera de contaminantes atmosféricos y gases de efecto invernadero generados por la quema de residuos agrícolas. Éstos van desde el uso de ecuaciones hasta la implementación de imágenes satelitales para detectar puntos de calor relacionados con incendios forestales (Al-Saadi et al., 2007).

Los métodos empíricos más utilizados en esta fuente emisora son del PICC (2000); y Seiler y Crutzen (1980) actualizado por Levine (2003); debido a su viabilidad para ser comparables con resultados obtenidos en otros estados o países y a los parámetros involucrados en sus respectivos cálculos.

Sobre la estimación de las emisiones de CH₄ y N₂O con la metodología del PICC se debe comenzar aclarando que ésta no trata la quema de residuos agrícolas como una fuente neta de CO₂ porque el PICC (1996) asume que el C liberado a la atmósfera es reabsorbido durante el siguiente periodo de siembra; mientras que la metodología de Seiler y Crutzen (1980) permite calcular prácticamente cualquier compuesto de carbono a partir del CO₂ (Capítulo 4).

En México se ha utilizado la metodología del PICC como herramienta dentro de la "Actualización del Inventario Nacional de Gases de Efecto Invernadero 1990-2010, para el sector agricultura" (INECC, 2010). Sin embargo, recientemente se ocupó la metodología de Seiler y Crutzen (1980) actualizada por Levine (2003) para el cálculo de las emisiones por incendios forestales en distintos tipos de uso de suelo a nivel nacional (incluido el agrícola) (Bautista et al., 2014).

1.2.3 Quema de caña de azúcar en el mundo

La quema de biomasa se refiere a la combustión completa o incompleta de vegetación viva o muerta por causas naturales o antropogénicas y se presenta principalmente en las sabanas tropicales, bosques templados y boreales, en la preparación de tierras agrícolas y después de cosechar (Levine, 2003) (Tabla 5).

La quema de residuos por cuestiones agrícolas se lleva a cabo alrededor del mundo emitiendo a la atmósfera diversos especies de contaminantes, tales como material particulado (PM, por sus siglas en inglés), óxido nitroso (N₂O), monóxido de carbono (CO), metano (CH₄) y otros hidrocarburos (Hao y Ward, 1993).

Fuente de la quema	Biomasa quemada (Tg [*] de materia seca/año)	Carbono liberado (Tg* de materia seca/año)	Proporción del total de carbono liberado (%)
Sabanas	3690	1660	42.1
Desechos agrícolas	2020	910	23.1
Bosques tropicales	1260	570	14.5
Madera para combustible	1430	640	16.2
Bosques templados y boreales	280	130	3.3
Carbono	21	30	1.0
Total global	8700	3940	100

Tabla 5. Estimación global anual de la cantidad de biomasa quemada y del carbono liberado a la atmósfera. Adaptación a partir de Andreae (1991) en "Environmental Science and Technology" (1995).

*1 Tg =1×10¹² g.

La quema de biomasa a partir de los desechos agrícolas ocupa el segundo lugar a nivel mundial (Tabla 5). Diversos estudios muestran que el continente Americano ha ocupado el segundo lugar respecto a su quema con valores que oscilan entre los 1360 Tg/año (Hao et al., 1990) hasta 1510 Tg/año (van der Werf et al.,2003) de materia seca. Sus emisiones de C incrementaron de 2002 a 2010 un 35% (1.9 Pg C/año a 2.5 Pg C/año) (1Pg=1×10¹⁵ g) en dicho continente (Randerson et al., 2012).

Uno de los cultivos que contribuye en el aumento de la quema de residuos agrícolas es la caña de azúcar (*Saccharum officinarum*). Éste cultivo se siembra en más de 100 países alrededor del mundo (FAO, 2015a) donde en primer lugar de producción se encuentra Brasil seguido de la India y China, mientras que México está en sexto lugar. Dicho cultivo tiene una gran importancia económica y alimentaria gracias a la

variedad de productos que se generan a partir de ésta, tales como azúcar (Tabla 7), piloncillo, alcohol y alimento para ganado entre otros.

Tabla 6. Producción y consumo de azúcar a nivel mundial (FAO, 2015b)						
	Producción		Cons	sumo		
	2006/07	2007/08	2006/07	2007/08		
		Millones de tone	ladas, valor bruto			
Mundo						
Países en desarrollo	164.5	169.1	153.5	157.0		
Países desarrollados	124.3	128.5	104.5	107.6		
Asia	40.3	40.5	48.9	49.5		
África	10.5	10.6	15.2	15.6		
América Latina y el Caribe	52.6	52.7	27.1	27.9		
América del Norte	7.8	7.9	10.7	10.9		
Europa	24.1	23.9	30.6	80.8		
Oceanía	5.4	5.5	1.6	1.6		

La producción de azúcar y otros derivados de la caña dependen del buen rendimiento de la planta, reflejado en su cantidad de sacarosa y biomasa (específicamente el tallo de la planta) (Aguilar-Rivera, 2009).

Los mecanismos de cosecha en la mayoría de los países que la siembran involucran su quema (antes del corte) y requema (después del corte) para eliminar la maleza y ahuyentar animales e insectos del área a cosechar. Ésta planta bien desarrollada favorece la economía y alimentación de una región aunque también puede contener en el total de su biomasa (tallo y hojas) una gran cantidad de residuos que al quemarse emita a la atmósfera diversos contaminantes y GEI.

La cantidad de biomasa que puede llegar a adquirir una planta de caña depende principalmente de su capacidad para capturar la radiación solar y/o su eficiencia en el proceso de fotosíntesis. Así mismo, en cada etapa de crecimiento hay factores meteorológicos y edafológicos que favorecen o perjudican el desarrollo de la caña. En la etapa llamada "Crecimiento rápido e incremento del rendimiento" es cuando la planta adquiere mayor cantidad de biomasa (Tabla 7 y Figura 9) (Aguilar-Rivera, 2009).

Figura 10. Etapas fenológicas del cultivo de caña de azúcar (Benvenutti, 2005; FAO, 2006).

Etapas fenológicas del cultivo de la caña de azúcar	Periodo de duración	Tipo de biomasa adquirida
Establecimiento (germinación y emergencia)	30 a 50 días	Tallos plantados
Crecimiento vegetativo, amacollado o ahijamiento,	50 a 70 días	Ramificación subterránea múltiple de tallos y hojas (a

\mathbf{I} and \mathbf{I} . Divinasa auguninga en caga elaba renovulca de la cana de azucar (Auguna) - (Nera, 2003)	Tabla 7. Biomasa add	quirida en cada etar	pa fenológica de la c	aña de azúcar (Ac	uilar-Rivera, 2009)
---	----------------------	----------------------	-----------------------	-------------------	---------------------

Etapas fenológicas del cultivo de la caña de azúcar	Periodo de duración	Tipo de biomasa adquirida
elongación del tallo y cierre de la plantación		partir de las articulaciones nodales del tallo primario)
Crecimiento rápido e incremento del rendimiento (180-220 días)	180 a 122 días	Aumento de biomasa y del número de tallos por área (se define el tamaño real de la caña y su rendimiento)
Maduración y sazonado	60 a 140 días	Se incrementa la cantidad de sacarosa.

El rendimiento por hectárea de la caña de azúcar (dado en toneladas/hectárea) permite dar una idea de los países que más queman dicho cultivo alrededor del mundo ya que hay una mayor cantidad de biomasa disponible durante la cosecha. Como ejemplo, en el 2009 países como Brasil, Australia y Estados Unidos tuvieron un rendimiento que oscilaba entre 65 t/ha a 88 t/ha, mientras que en países como México y la India fue de 48t/ha a 65t/ha (FAOSTAT, 2009).

1.2.4 Efectos del cambio climático en la productividad de la agroindustria azucarera

Como se mencionó anteriormente, el cambio climático no es un fenómeno aislado y depende de la interacción de los reservorios de la biósfera. La producción de la caña de azúcar requiere sobre todo de la interacción entre la atmósfera y el suelo para la incorporación de nutrientes a este último mediante los ciclos del nitrógeno y el carbono (ver sección 1.2.1).

La cosecha de la caña puede llevarse a cabo utilizando técnicas de quema o en verde. En ambos casos existe la posibilidad de reutilizar las hojas para recuperar los niveles de carbono en el suelo. Cuando esto no se lleva a cabo, el carbono perdido no se recobra y decrecerá un 10% cada nuevo ciclo de siembra de la caña hasta que se alcance un nuevo equilibrio que representará una cantidad menor de nutrientes con respecto al valor actual (Egeskog y Gustafsson, 2007).

La pérdida C y N durante la quema de caña está directamente relacionado con la cantidad de CH₄ y N₂O que puede ser emitido a la atmósfera (PICC, 1996; 2000). La Convención Marco de las Naciones Unidas sobre Cambio Climático (CMNUCC) menciona en su artículo 2° que la estabilización en las concentraciones de GEI en la atmósfera debe alcanzar un nivel tal que permita a los ecosistemas adaptarse al cambio climático, asegurar la producción de alimentos y permitir que el desarrollo económico prosiga de manera sostenible (Sanhueza, 2013).

México es el sexto productor de azúcar en el mundo y sus principales exportaciones son hacia Estados Unidos. Cuando hay un incremento en la demanda de dicho cultivo es necesario investigar cual es el rendimiento de campo y la capacidad que tenga cada Ingenio (Industria donde se procesa la caña) para transformar dicho cultivo en un producto económicamente atractivo. En las regiones cañeras de México el rendimiento en su producción está relacionado con la cantidad de biomasa a quemar y las emisiones de GEI a la atmósfera (Aguilar-Rivera, 2013; PICC, 2000; 1996) De acuerdo a la Secretaría de Economía (SE, 2012) las regiones cañeras necesitan tener un buen rendimiento de campo y eficiencia en fábrica para obtener los productos derivados de la caña a un ritmo competitivo. Consecuencias del cambio climático como los eventos de sequía (tanto su duración como su intensidad) se caracterizan por un déficit de precipitación que conlleva a un estrés hídrico de las plantas afectando su óptimo desarrollo (Brunini et al., 2010).

La variabilidad del clima también depende de la exacerbación del efecto invernadero provocado por los GEI. Este fenómeno es benéfico o perjudicial dependiendo del tipo de cultivo. Las plantas tipo C4 como el maíz, el sorgo y la caña de azúcar se ven favorecidas por el incremento en las concentraciones de CO₂, ya que esta situación favorece el aumento de producción de dichas plantas (p. ej. En Brasil favorece en un 10% el crecimiento de su tallo) y esto conlleva a un aumento en la cantidad de biomasa disponible (Reilly, 2013).

La caña de azúcar se cultiva en regiones que podrían considerarse más expuestas a condiciones de sequía y precipitaciones extremas. En los periodos de 1991-1999 y 2000-2011 se tienen registros del incremento en la producción de caña para la mayoría de los países que se dedican a dicho cultivo, sin embargo existen sus excepciones (MECAS, 2013).

Australia por ejemplo mostró una disminución en su producción debido a fenómenos meteorológicos extremos. Se ha investigado que en Sudáfrica la sequía es responsable de la pérdida de productividad. En el periodo 2010/2011 Colombia sufrió lluvias torrenciales por el fenómeno de La Niña contribuyendo en un descenso en su producción de hasta un 20% (MECAS, 2013).

La agroindustria azucarera ha llegado a representar el 0.5% del Producto Interno Bruto en México (Cortés, 2006); aún sufre de una inestable recuperación agrícola. Por ejemplo, en el periodo 1990-2012 se observó que mientras la superficie cosechada aumentaba, el rendimiento de campo por hectárea disminuía y esto se debió tanto a los eventos de sequía mencionados para otros países como a plagas, enfermedades y aprovechamiento de una misma planta para la siguiente siembra (resoca) (Aguilar-Rivera, 2014).

Los efectos del cambio climático sobre la agroindustria de la caña de azúcar no solo se reflejan en su relación con parámetros meteorológicos o edafológicos, sino que también involucra a diversos actores que deben tomar decisiones sobre cuál es el mejor camino a seguir para reducir la diversa gama de afectaciones al cultivo. Una de estas decisiones en la incorporación de variedades de caña por región es que sean resistentes a las plagas, que se deshojen solas para que no sea necesario quemarlas y utilizarlas como biocombustibles (Aguilar-Rivera, 2014).

1.2.5 Afectaciones a la salud por quema de caña de azúcar

El cultivo, cosecha y procesamiento de la caña de azúcar dependen de la interrelación entre el suelo, agua y aire. Por tal razón cualquiera de estos tres reservorios de la biósfera puede ser contaminado por algún agente nocivo para la salud de las personas (Basanta et al., 2016).

Los ríos pueden ser contaminados con aguas residuales generadas durante el procesamiento de caña para producir azúcar; los suelos pueden ser afectados por la generación de residuos durante la producción de materia prima derivada de la caña; y el aire puede ser afectado por las emisiones de contaminantes atmosféricos (Aguilar-Rivera, 2013).

Anteriormente se mencionó que el CH₄ generado durante la quema de caña es un gas de efecto invernadero que puede contribuir en la variabilidad del clima. Tanto la metodología del IPCC (1996; 2000) como la de Seiler y Crutzen (1988) permiten estimar las emisiones de otros gases que acompañan al metano durante sus emisiones, por tal razón, dicho GEI puede servir como indicador de que se están generando otros contaminantes atmosféricos de manera simultánea.

Las cenizas que son generadas durante la quema de caña, ocurren porque la temperatura que adquieren las masas de aire que se ubican cerca del suelo y de la planta quemada se eleva para posteriormente dispersase en un rango de 50 km a la redonda (Vilaboa, 2013), aunque también pueden tener mayores rangos de cobertura (regional y global) (Quintero y Moncada, 2008)

Tanto la Agencia de Protección Ambiental de los Estados Unidos (EPA, por sus siglas en inglés) y la Secretaría de Salud junto con la SEMARNAT han definido a al "contaminante criterio" como aquel que de acuerdo a bases científicas, tiene la capacidad de provocar afectaciones en la salud de las personas (INECC, 2013).

Los tipos de contaminantes atmosféricos generados durante la quema de caña son dióxido de carbono (CO₂), monóxido de carbono (CO), dióxido de azufre (SO₂), óxidos nitrosos (NO_x), dioxinas (CCA, 2014) y carbono negro entre otros; también se emiten partículas de polvo como las que tienen un diámetro de 10 μ m (un micrómetro equivale a 1×10⁻⁶ metros) (PM10), o de 2.5 μ m (PM2.5) (UNEP, 2014; Vilaboa y Barroso, 2013; Mugica, 2012).

Otro grupo de contaminantes generados por la quema de residuos agrícolas, particularmente de caña, es el smog fotoquímico, cuyo gas principal es el ozono troposférico (O₃). Éste puede incrementar sus niveles de concentración en la atmósfera y afectar la salud de las personas siempre y cuando se presenten las condiciones meteorológicos adecuadas (Quintero y Moncada, 2018), por ejemplo, que los vientos estén en calma y la radiación solar favorezca las reacciones químicas para su formación durante periodos largos de tiempo (más de tres horas).

Tanto en una zona agrícola como urbana las concentraciones de los contaminantes pueden incrementar al grado de estar por encima de los valores permitidos por las Normas Oficiales Mexicanas. En México el incremento de la producción de caña implica un aumento en las prácticas de quema y por ende de las emisiones de GEI y contaminantes atmosféricos.

Las enfermedades que se pueden adquirir por estar expuesto a estos gases y partículas contaminantes son de carácter respiratorio (partículas, dioxinas, carbono

negro y dióxido de azufre), irritación en los ojos (CO₂) e intoxicación en la sangre (CO) entre otros (Vilaboa y Barroso, 2013; INECC, 2013; Mugica 2012). El O₃ perjudica los pulmones y agudiza el asma, las alergias y el enfisema (CCA, 2014; Quintero y Moncada, 2008)

1.2.6 El inventario de emisiones y sus principales componentes

Los inventarios de emisiones son herramientas importantes para llevar a cabo políticas ambientales. En general la estimación de las emisiones sigue guías establecidas por un país en específico (Winiwarter, 2007). De acuerdo al INE (actualmente INECC) y la SEMARNAT (2005) "... un inventario de emisiones se usa para identificar fuentes que están sujetas a posibles medidas de control, para medir la efectividad de los programas de control y predecir futuros niveles de calidad del aire a través de modelados".

Existen diversas metodologías para calcular las emisiones de gases contaminantes y GEI. Con respecto a éstos últimos la más utilizada es la propuesta por el PICC, que establece técnicas para que cada país elabore su Inventario Nacional de Emisiones de GEI y sean comparables entre sí (INEGEI) (PICC, 1996; 2000). Otro método es el de Seiler y Crutzen (1980) actualizado por Levine (2003), el cual sirve para calcular las emisiones de material particulado y compuestos de carbono que se genera durante los incendios forestales en distintos tipos de uso de suelo.

En la mayoría de las metodologías solo existe un nivel de cálculo que se usa dependiendo de la disponibilidad de información por parte del usuario. El PICC establece dos tipos de metodología para calcular las emisiones de GEI: 1) Tier 1 (nivel 1), se refiere al uso de los factores de emisión propuestos por dicha institución; y 2) Tier 2 (nivel 2), que propone diversos pasos a seguir para que cada país calcule sus propios factores de emisión en base a datos más específicos (PICC, 2000).

Cuando la serie de tiempo de años a analizar abarca más de uno entonces es necesario definir un año base con el cual se pueda determinar un punto de comparación entre resultados previos o posteriores. Independientemente de la metodología seleccionada, las emisiones incorporadas a los inventarios se determinan considerando: 1) el tipo de fuente de emisión (véase sección I.2); 2) el factor de emisión, calculado en base a procesos industriales específicos o con respecto a censos; y 3) el dato de actividad propio del caso de estudio (PICC, 2000; INE, SEMARNAT, 2009).

1.3 Leyes y normas para regular los gases de efecto invernadero

En la legislación internacional y nacional se sabe que los contaminantes criterios son aquellos cuyas afectaciones a la salud se han comprobado científicamente y por ende sus concentraciones en la atmósfera deben ser reguladas en periodos de ocho, 24 horas y un año a escala local. En el tema de los GEI, las regulaciones que se han impuesto desde 1997 a partir del Protocolo de Kyoto se basaban en reducir las emisiones de dichos gases para aminorar la exacerbación del efecto invernadero a escala global (UNFCCC, 1992).

El Parlamento Europeo y su Consejo son las instituciones que más avances han tenido en materia de legislación de las emisiones de GEI publicando en junio de 2009 en el Diario Oficial de la Unión Europea (EU) una serie de disposiciones a las cuales se tienen que sujetar los países pertenecientes a ésta. Principalmente se tiene el compromiso de reducir sus emisiones de GEI en un 30% para el año 2020 con miras a subyugarlas entre un 60% y 80% con respecto a 1990 (año base dentro del Protocolo de Kyoto) (Diario Oficial de la Unión Europea, 2009).

En Estados Unidos de Norteamérica la Agencia de Protección Ambiental (EPA, por sus siglas en inglés) en base a la Ley de Aire Limpio (Clean Air Act) tiene la facultad de proponer regulaciones a las emisiones de GEI, sin embargo pueden o no ser aceptadas en el Congreso de dicho país. A partir del 2009 la EPA solicita los datos de emisiones de GEI de carros y camiones, sin embargo no propone valores específicos de emisiones ni de concentraciones límite en la atmósfera, sino más bien propone recomendaciones sobre las posibles soluciones a aplicar directamente en la fuente emisora (Richardson et al., 2009). Todos sus documentos sobre GEI van enfocados a generar propuestas o recomendaciones de regulación a las fuentes emisoras, y no han podido pasar al nivel de Norma Oficial, Ley o Reglamento (EPA, 2011).

La decisión más reciente aprobada en su Congreso fue en el año 2014 y hace referencia a que "los gases de efecto invernadero no pueden ser tratados como contaminantes atmosféricos cuando se trata de determinar si una fuente de emisión es una fuente importante requerida para obtener un permiso de Prevención de Deterioro Significante (PSD, por sus siglas en inglés) que se enfoca en la protección a la salud, la calidad del aire y el crecimiento económico, pero sin regular con valores específicos el aumento de las emisiones de dichas fuentes" (EPA, 2014; 2015).

En México, el 6 de junio de 2012 se publicó la Ley General de Cambio Climático (LGCC), la cual, "...otorga facultades a las entidades federativas y los municipios en la elaboración y aplicación de políticas públicas para la adaptación al cambio climático y la mitigación de las emisiones de gases y compuestos de efecto invernadero" (DOF, 2015a). Sin embargo, ¿cuál es la cantidad de emisiones de GEI que van a mitigar? si no se sabe aún que porcentaje de éstas concentraciones es aceptable que esté en la atmósfera para preservar la vida sin exacerbar el fenómeno de efecto invernadero a escala local o regional.

Con la LGCC se promueve la elaboración de políticas y acciones de mitigación de emisiones considerando la reducción de éstas: 1) en la generación y uso de energía; 2) en el sector transporte; 3) mediante la captura de carbono en el sector agricultura, bosques y otros usos del suelo y preservación de los ecosistemas y biodiversidad; 4) en el sector residuos; 5) en el sector de procesos industriales; y 6) mediante la educación y cambios de patrones de conducta, consumo y producción(DOF, 2015a).

Tanto a nivel nacional como estatal se están llevando acciones para mitigar dichas emisiones, adaptar los sistemas naturales o humanos al cambio climático, elaborar los inventarios de emisiones de GEI y construir escenarios del Cambio Climático, todo esto a través del Instituto Nacional de Ecología y Cambio Climático (INECC), en donde se encuentra la Coordinación del Programa de Cambio Climático que guía a los estados para que elaboren sus propios Planes Estatales de Acción ante el Cambio Climático (PEACC, 2012).

Un ejemplo de legislación en esta materia a nivel nacional se dio en el Diario Oficial (2010) donde se publicó el "Suplemento del Programa Nacional de Normalización" en el que se estableció que uno de los temas nuevos a tratar sería *"el control de las emisiones de gases de efecto invernadero (CO₂) y la eficiencia energética aplicable a vehículos automotores nuevos de peso bruto vehicular de hasta 3, 857 kilogramos".*

En la Gaceta Oficial del Distrito Federal (2011) se publicó un decreto por el cual se expide la Ley de Mitigación y Adaptación al Cambio Climático y Desarrollo Sustentable para dicha entidad, cuyo objetivo es *"el establecimiento de políticas públicas que permitan propiciar la mitigación de Gases de Efecto Invernadero, la adaptación al Cambio Climático, así como el coadyuvar al desarrollo sustentable".*

En el estado de San Luis Potosí se han incorporado a la Ley Ambiental los conceptos referentes a los GEI, además se ha asignado a la Secretaría de Ecología y Gestión Ambiental (SEGAM) "...la formulación e instrumentación de las políticas estatales para la prevención y mitigación de emisión de los gases de efecto invernadero; la adaptación de los efectos de cambio climático; y la promoción de desarrollo de programas y estrategias estatales de acción climática" (Instituto de Investigaciones Legislativas, 2012).

1.3.1 Normatividad orientada a las emisiones de CH₄ y N₂O generados por las actividades agrícolas y ganaderas

Tanto a escala internacional como nacional no existen normas oficiales en las que se relacionen las actividades agrícolas y ganaderas con valores límite de las emisiones o concentraciones de metano y óxido nitroso a la atmósfera, ya que como se mencionó anteriormente los estatutos establecidos para regular dichas emisiones tienen un objetivo global (véase por ejemplo Protocolo de Kyoto).

Las medidas que están tomando los países pertenecientes al Anexo 1 y No-Anexo a través de sus instituciones tienen que ver en parte con estudios acerca de cómo normar dichas emisiones en sus respectivos países tal y como se mencionó el caso de la Unión Europea (Diario Oficial de la Unión Europea, 2009).

Un ejemplo de estos esfuerzos se refleja en la Norma para Sistemas Sostenibles de Producción Agrícola creada por la Red de Agricultura Sostenible (RAS), ubicada en San José, Costa Rica, la cual no es obligatoria para fines de auditoría pero varios países del mundo la han aplicado (entre ellos México). Ésta abarca los siguientes temas: 1) Sistema integrado de manejo de ganado; 2) Manejo sostenible de pasturas y tierras de pastoreo; 3) Bienestar animal; 4) Reducción de la Huella de Carbono; y 5) Requisitos ambientales adicionales para fincas ganaderas.

En lo referente a la Reducción de la Huella de Carbono, dicha Norma establece que *"la digestibilidad del alimento y el forraje debe mejorarse y las prácticas de alimentación deben cambiarse para reducir las emisiones de metano de la fermentación entérica del ganado"* (RAS, 2010). Así mismo, Pinos et al. (2012) hacen un estudio de las distintas normas establecidas en varios países del continente americano para manejar el estiércol y de cómo éstas contribuyen a regular también las emisiones de GEI a la atmósfera generada por dicha actividad.

La Ley General de Cambio Climático (LGCC) establece disposiciones generales para la reducción de emisiones y captura de carbono (artículo 34) en el sector agrícola para generar propuestas de mitigación y adaptación (Diario Oficial, 2012). El Reglamento de dicha ley (RLGCC, 2014) establece que se reportarán las emisiones de los GEI que enlista, donde incluye al CH₄ y N₂O generados durante la quema de caña de azúcar.

La biomasa disponible para la quema de caña es considerada como resíduo sólido, por lo que la Ley General de Equilibrio Ecológico y Protección al Ambiente (LGEEPA) menciona en su artículo 101 que se debe buscar el cambio progresivo de la quema a otras actividades que no impliquen la afectación de los ecosistemas (LGEEPA, 2012). La LGCC (2016) también establece también en el artículo 34 que se debe "incentivar la reducción gradual de la quema de caña de azúcar". Su artículo 64 menciona que se deben buscar estrategias de mitigación de emisiones generadas por el proceso de quema de residuos.

Cada estado de la República Mexicana cuenta con Leyes Ambientales que establecen regulaciones sobre la quema de residuos sólidos, sin embargo aún no se cuantifica cuanto se permite emitir de GEI, ya que sus afectaciones no son a la salud sino a la variabilidad del clima.

La Ley Ambiental del Estado de San Luis Potosí (LASLP, 2015) en su artículo 74 menciona que se deben establecer medidas para evitar la quema de cualquier tipo de resíduo. En su artículo 81 indica que los agricultores deben elaborar planes de prevención de contingencia ambiental el cual deberán presentar antes de realizar una quema a cielo abierto.

Algunas otras normas relacionadas con las actividades agrícolas o ganaderas, pero que no involucran directamente las emisiones de CH₄ y N₂O se muestran en la tabla 8.

La Administración de Seguridad y Salud de los Estados Unidos de Norteamérica (OSHA, por sus siglas en inglés) propone valores límite de las concentraciones de metano que pueden afectar la salud de las personas (Tabla 9). Por ejemplo, a concentraciones de 5000 partes por millón volumétrica (ppmv) una persona puede sufrir asfixia debido a la capacidad que tiene dicho GEI de desplazar al oxígeno. Los estudios que realiza esta organización se aplican en la industria (Alberta, 2015).

Norma	Descripción
NOM-015-SEMARNAT/SAGARPA- 2007	Establece las especificaciones técnicas de métodos de uso del fuego en los terrenos forestales y en los terrenos de uso agropecuario.
NOM-021-RECNAT-2000	Establece las especificaciones de fertilidad, salinidad, y clasificación de suelos, estudio, muestreo y análisis.
NMX-Y-033-1986	Establece las especificaciones de calidad que debe cumplir el sulfato de amonio para uso agrícola, ya sea como fertilizante o como ingrediente de fórmulas fertilizantes.

Tabla 8. Normas Oficiales Mexicanas de algunas actividades agropecuarias relacionadas con las emisiones de CH₄ y N₂O a la atmósfera (DOF, 1986; 2002; 2009).

Tabla 9. Niveles de exposición del metano (OSHA, 2015a).								
Nivel de exposición (ppm)	Representatividad en el ambiente (%)	Nivel de exposición (equivalente en ppmv)	Efecto o síntoma					
1000	0.1	10	Máximo recomendable para los trabajadores en un periodo de 8 horas					
50 000 a 15 000	5 a 15	500 a 1500	Potencialmente explosivo					
500 000	50	5000	Asfixia					

El Departamento OSHA también propone valores límite para el óxido nitroso, donde el valor umbral límite es de 50 ppm cuyo periodo de exposición recomendado es de 8 horas, mientras que el valor límite recomendado es de 25 ppm (OSHA, 2015).

1.4 Modelos para el estudio de la atmósfera

Un modelo es una representación de la realidad y sus resultados sirven como herramienta para la toma de decisiones en la industria o el gobierno y para realizar investigación en la academia. Éstos se pueden utilizar en temas como desarrollo de estrategias de control; evaluación del impacto ambiental; análisis de tendencias de calidad del aire; y en la selección del sitio apropiado para colocar estaciones de monitoreo entre otros (Torres, 1991).

En el estudio de la atmósfera se busca que la información generada a partir de éstos sea por un lado estable, ya que la atmósfera puede presentar comportamientos muy variables, y por otro lado que también sea confiable, es decir, que al momento de ser validados muestren un buen grado de certidumbre.

Un factor importante a considerar para escoger un modelo es la escala espacial a la cual se desea modelar. Por ejemplo, los modelos de circulación general (MCG), que sirven para hacer proyecciones del clima futuro, utilizan la escala global y los que regionalizan el área de estudio ocupan la mesoescala (Tabla 7).

Escala	Alcance de la resolución de la escala de movimiento de la atmósfera (km)			
Escala molecular	<< 2 mm			
Microescala	2 mm – 2 km			
Mesoescala	2 km - 2000 km			
Escala sinóptica	500 km – 10 000 km			
Escala global	> 10 000 km			

 Tabla 10. Escalas a las cuales se puede estudiar la atmósfera (Jacobson, 2005)

La atmósfera se encuentra estratificada en varias capas cuyas características físicas y químicas son muy diversas. Debido a que el 95% de las masas de aire se localizan en la capa más baja conocida como tropósfera (abarcando entre 8 km y 20 km sobre el nivel del mar) es por ello que los fenómenos meteorológicos que afectan positiva o negativamente a los seres vivos ocurren aquí y por ende la mayoría de los modelos conocidos se ocupan de analizar los procesos que ocurren en esta zona (Ahrens, 2009; Strauss et al., 2011).

Los modelos que sirven para estudiar el comportamiento de partículas y gases en la atmósfera se clasifican en 1) empíricos, que se basan en análisis estadísticos realizados con datos históricos medidos; 2) semiempíricos, los cuales utilizan principios científicos, pero se basan en parámetros obtenidos estadísticamente; y 3) numéricos, obtenidos a partir de principios físicos y químicos (p.ej. fenómenos de transporte, difusión, conservación de masa, etc.) (Torres, 1991).

Los modelos estadísticos (empíricos) se ocupan principalmente cuando no se tiene un amplio conocimiento de los procesos físicos y químicos (Ortolano, 1984) y requieren grandes cantidades de información meteorológica histórica, además, si van a ser ocupados para estudiar la calidad del aire también requieren valores sobre las emisiones de contaminantes. En principio solo se ocupan en las localidades que dieron origen a esas bases de datos.

Si se tiene un amplio conocimiento del modelo utilizado, entonces los resultados obtenidos se pueden extrapolar a otros sitios de estudio (Ruiz, 2002). Algunos ejemplos de estos modelos son: Climate Predictable Tool (CPT) y Statistical Downscaling Model, los cuales han sido utilizados en México para construir escenarios del clima (Magaña, 2007)

Los modelos numéricos se ocupan por ejemplo cuando se tienen fuentes múltiples de emisión de contaminantes que pueden reaccionar químicamente en la atmósfera, además de que necesitan una gran capacidad de procesamiento computacional (Ortolano, 1984) y conocimiento de las leyes físicas y químicas que rigen su comportamiento (Szeto, 2002).

Ejemplos de estos modelos son: Mesoescale Model Fifth Generation (MM5) utilizado para analizar únicamente condiciones meteorológicas a escala regional o global; y el CMAQ, creado por la Agencia de Protección Ambiental de los Estados Unidos (EPA, por sus siglas en inglés) (UCAR, 2015; CMAS, 2015).

Los modelos conocidos como dinámicos son de tipo numérico y se basan en ecuaciones físicas para investigar el transporte y dispersión de contaminantes

atmosféricos bajo la influencia de parámetros meteorológicos, cubierta vegetal, topografía, tipo de fuente de emisión entre otros.

Algunos de los modelos más utilizados son el AERMOD (Air Modelling Dispersion) View, HYSPLIT (Hybrid Single Particle Lagrangian Integrated Trajectory Model), MCCM (Multiscale Climatic Chemistry Model) y WRF (Weather Research and Forecasting Model) entre otros (Flores, 2011; Bautista, 2009; Pineda et al., 2005).

El Servicio Meteorológico Nacional ha incorporado modelos como el MM5 (desde el año 2000) para hacer predicciones del clima en periodos no mayores a 72 horas. Así mismo, el modelo *Multiscale Climate Chemistry Model* (MCCM) ha sido utilizado para estudiar la calidad del aire en el Centro de México por investigadores del Centro de Ciencias de la Atmósfera de la UNAM (García et al., 2000; Lobato et al., 2003).

Actualmente en el estado de San Luis Potosí, el Instituto Potosino de Investigación Científica y Tecnológica (IPICyT) ha utilizado modelos de tipo dinámico como el MM5 para estudiar la variación de distintos parámetros meteorológicos tomando en cuenta la topografía y la cubierta vegetal del estado (Gómez, 2004; Pineda, 2005), así como para estudiar los incendios forestales (Carbajal et al., 2015).

En los modelos numéricos mencionados no solo se incorporan parámetros meteorológicos y de emisión de contaminantes, sino que actualmente también se consideran variables relacionadas con el tipo de suelo, cobertura vegetal, topografía y volúmenes de agua entre otros, ya que, como se mencionó anteriormente, los procesos en la atmósfera están ligados a lo que ocurre en los reservorios del suelo y agua.

1.4.1 Modelo numérico WRF

El modelo MM5 (Mesoescale Model of fifth generation) fue desarrollado por la Universidad del estado de Pennsylvania y el Centro Nacional para el estudio de la

Atmósfera (NCAR por sus siglas en inglés) a partir de los 70's, presentando su última versión a inicio del año 2000.

El modelo conocido como "Weather Research and Forecasting Model" (WRF, por sus siglas en inglés) es su versión actualizada, en donde también colaboraron otras instituciones tanto gubernamentales y académicas como: 1) the National Oceanic and Atmospheric Administration (NOAA); 2) the National Centers for Environmental Prediction (NCEP); 3) the University of Oklahoma; 4) the Air Force Weather Agency (AFWA); 5) the Naval Research Laboratory; y 6) the Federal Aviation Administarion (FAA), (Dudhia et al., 2003; Skamarock, 2005).

El modelo WRF está conformado por una serie de algoritmos de libre acceso, por lo que desde su creación ha mostrado la flexibilidad para ser modificado por la comunidad científica de acuerdo a los intereses de cada investigador. Actualmente es utilizado para realizar estudios que van desde fenómenos hidrológicos (WRF-HYDRO, 2015) y atmosféricos (WRF, 2015), hasta espaciales (planetWRF, 2015).

El modelo atmosférico se clasifica en dos tipos de uso, o bien, dos soluciones dinámicas, las cuales son: 1) ARW core (Advanced Research WRF), el cual se aplica a investigación meteorológica y predicción numérica del clima; y 2) NMM (Nonhydrostatic Mesoescale Model), para analizar específicamente fenómenos a mesoescala (ARW, 2015; NMM, 2015).

En este proyecto de investigación se utiliza la primera opción que será descrita a detalle en las siguientes secciones. Los datos globales de entrada a este modelo están administrados por el Sistema Global de Análisis del Centro Nacional para la Predicción Ambiental (NCEP, por sus siglas en inglés), que contiene los siguientes tipos de datos: 1) Sistema de Asimilación Global de Datos Finales (FNL, por sus siglas en inglés); 2) Sistema Global de Predicción (GFS, por sus siglas en inglés); y 3) Predicción Ensamble (ENS, por sus siglas en inglés) (Tabla 11) (Iredell, 2002).

Tipos de datos	Características	Periodos de observación o cálculo de datos
FNL	Es la columna vertebral del sistema NCEP. Utilizados principalmente para modelar casos reales con el WRF.	Colectan observaciones por al menos 6 horas pasadas sinópticas (Tabla 7) y hacen un análisis global y pronósticos de 3, 6 y 9 horas cuatro veces al día, por tal razón para el 1er caso se tienen datos de las 00:00 hrs, 06:00hrs, 12:00 hrs y 18:00 hrs.
GFS	Los datos comienzan a ser colectados con la misma resolución que los FNL pero conforme avanza el tiempo los datos de pronóstico pierden resolución	Colectan observaciones por 2 horas y 45 minutos sinópticos pasados y hace pronósticos de 16 días a partir de cuatro tiempos sinópticos por día llamados 0000 UTC, 0600 UTC, 1200 UTC y 1800 UTC
ENS	Inicia con la misma resolución con la que terminan los datos GFS, sin embargo, esta va disminuyendo durante el pronóstico.	Consta de 22 pronósticos adicionales a los 16 días del GFS: 11 a las 0000 UDT (Universal Decimal Time) y 1200 UDT

Tabla 11. Datos globales asimilables por el WRF (Iredell, 2002).

Debido a la flexibilidad y complejidad del modelo WRF, también ha sido adaptado para considerar emisiones de diversas especies contaminantes y sus reacciones químicas en la atmósfera, abarcando temas como deposición seca considerando el tipo de suelo y vegetación; y emisiones biogeoquímicas para una gran variedad de mecanismos químicos (WRF/Chem, 2013).

Un caso de estudio fue el realizado en la ciudad de Mendoza, Argentina, en el que lograron incorporar al modelo la orografía del sitio, los tipos de suelo y los datos de emisión de contaminantes globales. Esto favoreció una representación más realista de las plumas de dispersión de los contaminantes antropogénicos ahí generados (Fernández et al., 2010). Enn el Centro Mario Molina para el estudio de la Energía y el Ambiente se modificaron algunos mecanismos químicos del modelo para estudiar las concentraciones de aerosol orgánico en la ciudad de México (Li et al., 2011).

La factibilidad de usar el WRF para estudiar los GEI radica en que los mecanismos químicos disponibles y las matrices de especies químicas también pueden ser

adaptados para incorporarlos. Algunos de estos procesos son los siguientes: 1) Modelo Regional de Deposición Ácida de Segunda Generación (RADM2, por sus siglas en inglés (Stockwell et al., 1990); 2) Mecanismo Químico Regional Atmosférico (RACM, por sus siglas en inglés) (Stockwell et al., 1997); y 3) Modelo Orgánico Aerodinámico para Europa/Modelo Orgánico Secundario de Aerosol (MADE/SORGAM, por sus siglas en inglés) (Ackermann et al., 1998) entre otros.

Para incorporar los datos de emisión y fuentes emisoras (puntuales y de área) al modelo WRF, en el 2005 se creó un Inventario Nacional de Emisiones (NEI, por sus siglas en inglés) que contenía información para Canadá, Estados Unidos de Norteamérica y el norte de México y se ha actualizado hasta el 2011.

También se construyó un programa que contiene las emisiones de todo el mundo considerando una gran cantidad de bases de datos, el cual recibe el nombre de "prep_chem_sources" ((WRF/Chem, 2013; 2014). Ambas herramientas se han utilizado debido a la flexibilidad que tienen los algoritmos para ser modificados y adaptados a las necesidades de los investigadores.

La solución dinámica ARW (Advanced Research WRF) es la que se utiliza en este proyecto de investigación e integra los módulos físicos, químicos y espaciales necesarios para su correcto funcionamiento (ARW, 2015). Los grandes grupos que contienen la información detallada que usará son:

- El solucionador ARW, que contiene las ecuaciones, variables de pronóstico, coordenadas verticales, malla horizontal, tiempo de integración y condiciones de frontera (laterales, límite y de profundidad) entre otros;
- El Modelo Físico, que está conformado por condiciones microfísicas, parametrización de las nubes cúmulus, superficie física, capas físicas de frontera planetaria y radiación sobre la atmósfera;

- 3) WRF-Chem, que considera la ecuación de conservación del transporte que es consistente con las condiciones meteorológicas, la deposición seca acoplada a los tipos de suelo y vegetación y emisiones biogénicas entre otros; y
- 4) El Marco del Software WRF, que contiene programas de interface con el usuario, soporta múltiples modelaciones dinámicas y es portable en diversos sistemas operativos entre otros (Skamarock et al., 2008). En el Anexo A se describen a detalle los fundamentos físicos, matemáticos y espaciales del modelo.

2. Caso de estudio: factores que determinan la cantidad de biomasa de caña disponible para su quema en México

México es uno de los principales productores de sacarosa en el mundo a través de la agroindustria de la caña de azúcar. En el 2011 contribuyó por ejemplo con el 3.6% de su producción global (FAOSTAT, 2011). Su competitividad en el extranjero depende de los precios de importación, principalmente de Estados Unidos y la Unión Europea (ISO, 2005). Cuando ambas partes (vendedor y comprador) presentan un excedente en su producción es necesario contar con mecanismos para diversificar el uso de la caña (biocombustibles, alcohol y etanol entre otros) (PNAC, 2014)

El país presentó esta situación en el ciclo de la zafra 2012/2013, donde se cosechó una superficie 10.9% mayor que en el periodo anterior (PNAC, 2014) y por ende se quemó una mayor área durante la zafra. México presenta una tendencia de crecimiento en su superficie cosechada (Figura 12) pero en los ciclos anteriores al mencionado esto no se reflejó de manera proporcional en un incremento de la producción (Figura 13) debido a factores edafológicos y climáticos (ver capítulo 4).

Figura 12. Superficie industrializada (hectáreas) (PNAC, 2014).

La agroindustria Mexicana de la caña de azúcar se desarrolla en 227 municipios de 15 entidades federativas (PNAC, 2014). En dichos lugares se practica la quema durante la cosecha. Esta práctica se aplica en Veracruz para un rango entre 88% y 94% de la caña cosechada, en el estado de Jalisco va de un 93% a un 97% y en

San Luis Potosí entre un 80% y 85% (Unión Nacional de Cañeros, 2014). Los estados mencionados son los mayores productores de dicho cultivo (Figura 14).

Figura 13. Producción de caña de azúcar (PNAC, 2014).

La cantidad de biomasa contenida en el cultivo de la caña depende de 1) su desarrollo y éste obedece a factores geográficos, edafológicos y meteorológicos que se interrelacionan en cada etapa de su crecimiento (Epiphanio et al., 1996); y 2) de la especie sembrada, donde las dos variedades que abarcan un mayor porcentaje de superficie en el país son la MEX 69-290 y la CP 72-2086. Su biomasa disponible a quemar representa entre el 28% y 30% del total de la planta (Tabla 12) y consiste de la punta, cogollo (zona apical o macolla) hojas y tlazole (paja) (Figura 16).

El desarrollo de la caña depende de factores de interrelación como por ejemplo la eficiencia en el proceso de fotosíntesis (proceso fisiológico afectado) con la cantidad de radiación solar que incida sobre las hojas de la planta (acción directa). Ésta a su vez depende de la ubicación geográfica del cultivo (latitud y altitud) (acción indirecta) (Figura 15).

Figura 14. Producción de azúcar en México durante el periodo de cosecha 2010/2011 (CONADESUCA, 2011).

Figura 15. Factores de producción de caña de azúcar (Epiphanio et al., 1996).

Estado	MEX 69-290	CP 72-2086	MEX 79-431	MEX 68-P-23	CO 987	ZMEX 55-32	MY 55-14	MEX 57-473	SP 70-1284	RD 75-11	CP 44-101	OTRAS
Sinaloa	4.1	68.5	0.0	0.4	0.0	0.5	0.0	0.2	0.3	5.4	6.1	14.4
Nayarit	24.2	2.8	1.7	1.0	0.2	0.1	1.9	9.2	0.2	0.3	0.3	58.2
Jalisco	18.9	33.4	3.0	2.2	0.1	0.2	0.4	10. 5	0.2	0.7	0.1	30.3
Colima	50.9	15.0	1.9	22.2	0.0	0.0	0.1	0.3	0.1	0.8	0.1	8.5
Michoacán	22.1	2.4	15.2	0.7	0.3	10. 4	12.5	3.6	0.1	0.1	0.5	32.2
Oaxaca	45.0	19.8	3.4	0.7	2.2	0.0	0.1	0.2	0.6	4.3	2.7	21.1
Chiapas	41.2	27.5	3.9	1.2	1.7	0.3	1.1	5.5	3.8	1.7	7.8	4.5
Tamaulipas	1.0	65.2	2.6	1.9	0.2	0.5	0.1	0.2	2.4	0.5	1.8	23.7
San Luis Potosí	0.8	18.1	7.3	11.0	5.4	15. 3	2.6	2.9	7.1	5.0	2.6	22.0
Veracruz	45.0	24.2	5.0	4.8	2.0	0.2	0.1	0.4	0.4	3.3	2.0	12.3
Puebla	7.8	9.0	1.3	0.8	0.1	0.3	28.9	25. 9	0.7	0.0	0.7	24.4
Morelos	4.4	21.6	5.2	0.2	0.1	0.1	19.9	3.7	0.9	0.0	8.0	36.0
Tabasco	21.1	13.0	10.9	27.1	0.2	0.7	0.1	0.8	3.1	7.5	0.3	15.2
Campeche	6.7	0.1	2.1	3.7	9.2	0.0	0.2	6.3	0.3	21.2	0.1	49.9
Quintana Roo	50.5	39.0	0.1	0.9	0.1	0.2	0.0	0.1	0.1	4.2	0.4	4.4

Tabla 12. Porcentaje de superficie sembrada por especie de caña por estado productor (referencia).

MEX.- Mexicana; CP.- Canal point, Florida; SP.- Sau Paulo (cruzada en Camamu, Bahía); CO.- Coimbatore, India; RD.- República Dominicana.

Figura 16. Morfología básica de la caña de azúcar (CENICAÑA, 2010).

2.1 Aspectos involucrados en la quema de caña

La quema de caña de azúcar trae consigo diversas consecuencias relacionadas con la variación del clima, la pérdida de nutrientes del suelo y las emisiones de contaminantes atmosféricos y gases de efecto invernadero a la atmósfera. La cantidad liberada o generada de los elementos mencionados depende de que tan eficiente haya sido el proceso de combustión.

Los factores esenciales en la quema de la caña son la biomasa (combustible) y el elemento que produce el fuego (comburente) que en el caso de los incendios controlados en campo es el oxígeno (O₂). El beneficio directo de este proceso es que los cortadores puedan realizar a salvo su trabajo, pero el rendimiento por hectárea de este cultivo (producción) se ve afectado porque se tiende a deshidratarlo y además reduce la generación de materia orgánica en el suelo (Vilaboa y Barroso, 2013).

La caña de azúcar requiere más de 1500 mm de agua para tener un buen desarrollo. Eventos como la sequía meteorológica, que consiste en el déficit de precipitación para una región determinada comparado con sus valores medios (Algara-Siller y Contreras-Servín, 2009), favorece el incremento en el estrés hídrico de los cultivos ubicados en regiones como la Huasteca Potosina, donde menos del 50% de la superficie dispone de esta cantidad de agua. Ésta favorecería la obtención de rendimientos mayores a 80 t/ha (Aguilar-Rivera et al., 2015).

La eficiencia en el proceso de combustión depende en gran medida de la cantidad de humedad en la biomasa a quemar (donde gran parte proviene de la precipitación), y mediante experimentos de quema de caña en laboratorio se demuestra que con menor cantidad de agua en el cultivo, el proceso de combustión es mejor (França *et al.* 2012).

Este proceso de ignición favorece una mayor volatilidad de nutrientes indispensables como el carbono y el nitrógeno (Flores-Jiménez et al., 2016), que son esenciales en los ciclos naturales de estos elementos y además son precursores de la generación de los GEI conocidos como metano (CH₄) y óxido nitroso (N₂O) (PICC, 2000; 1996).

El PICC (1996, 2000), Seiler y Crutzen (1980) y Levine (2003) mencionan una gran variedad de parámetros involucrados en las emisiones de GEI generado por quema de residuos agrícolas. Éstos se pueden agrupar en tres módulos: 1) análisis de la biomasa; 2) edafología; y 3) superficie (Figura 17). Aguilar-Rivera et al., (2015) y Flores-Jiménez et al., (2016) incorporan un cuarto módulo relacionado con parámetros climáticos tales como precipitación, potencial hídrico, sequía y evapotranspiración.

Figura 17. Parámetros que influyen en las emisiones de GEI durante la quema de caña. *Metodología PICC (1996, 2000), **Metodología de Seiler y Crutzen (1980) actualizada por Levine (2003) y ***Combinación de ambas metodologías.

La cantidad de biomasa a quemar durante la cosecha de la caña también depende:

- Del ciclo de siembra utilizado, es decir, si es la primera plantación (plantilla), la segunda (soca) o la tercera (resoca), además, de acuerdo al artículo 52 de la Ley de Desarrollo Sustentable de Caña de Azúcar, cada uno de estos ciclos debe realizarse durante un cierto periodo de tiempo acordado entre el abastecedor de caña y el ingenio azucarero (LDSCA, 2005); y
- 2) De la especie involucrada en estos procesos, por ejemplo, uno de los tipos de caña que tiene el mayor porcentaje de superficie sembrada en el país, la CP 72-2086 (Tabla 8), contiene distintas cantidades de sacarosa y de biomasa dependiendo de si fue plantilla, soca o resoca (Figura 18) (SIPOVE, 2010). Actualmente en el país se siembra el 55% de la superficie cañera con variedades extranjeras, mientras que el 45% con variedades Mexicanas (MEX) (CIDCA, 2015).

Figura 18. Curva de madurez de la variedad CP 72-2086 (Gilbert, 2008).

El uso de fertilizantes también favorece un incremento en la cantidad de nutrientes que pueden volatilizarse por la quema de caña. Metodologías para el cálculo de emisiones como la del Panel Intergubernamental sobre Cambio Climático (PICC, 1996, 2000) lo separan de la categoría de "Quema por residuos agrícolas" y lo colocan en "Emisiones por suelos".

La cantidad de nutrientes a incorporar en la siembra y etapas de crecimiento de la caña depende del tipo de suelo, el ciclo del cultivo y la variedad empleada (Palma-López et al., 2002). Una mala fertilización en el cultivo limita en un 17.2% su desarrollo, lo que afecta directamente en las cantidades óptimas de sacarosa y biomasa que pueda obtener un su etapa de madurez (Aguilar-Rivera, 2009).

Los procesos de la siembra de caña son otro factor que influye en la cantidad de biomasa que puede adquirir dicho cultivo. En ésta se toman en cuenta los tipos de plantación, si el cultivo es de riego y/o temporal y el ciclo del cultivo (plantilla, soca y resoca). En San Luis Potosí por ejemplo, el Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP, 2015a; 2015b) menciona que se debe atender a) la preparación del terreno; b) las variedades a sembrar; c) las labores culturales; d) el manejo del agua; e) la fertilización: f) el control de plagas y enfermedades; g) el periodo y método de cosecha; y h) rendimiento esperado (Tabla 13).

Tabla 13. Pasos a considerar en la plantación de riego y de temporal para la siembra de caña deazúcar en la Huasteca Potosina, San Luis Potosí (INIFAP, 2015a; 2015b).

c	Elementos a considerar en la siembra	Cultivo de riego (plantilla, soca y resoca) (INIFAP, 2015a)	Cultivo de temporal (plantilla, soca y resoca) (INIFAP, 2015b)
a)	Preparación del terreno	Chapoleo ¹ , subsoleo ² , primer y segundo barbecho ³ , rastreo de dos pasos ⁴ , nivelación o empareje del terreno ⁵ , surcado ⁶ , limpia de canales ⁷ , construcción de regaderas ⁸ , cabecereo de surcos ⁹ y siembra.	Primer y segundo barbecho ³ , rastreo ⁴ y surcado ⁶ .
b)	Variedades recomendadas ¹⁰	CP 72-2086, MEX 69-290, MEX 57-473, MEX 68 P-23, RD 75-11	MEX 79-431, CO-997, MEX- 68-P-23, MEX 68-1345, Z MEX 55-32
c)	Labores culturales	Control de maleza, junta y quema de paja, rebote o destroncone ¹¹ , subsuelo, pasos de cultivadora, aplicación de herbicidas, limpias cosecha.	Ciclo plantilla: Limpias, pasos de cultivadora y aplicación de herbicida y control de maleza. Ciclo soca y resoca: Junta y quema de paja, rebote ¹¹ , subsuelo, pasos de cultivadora y control de maleza.
d)	Manejo del agua	Método de uso consuntivo de cultivo ¹² , riego para ciclo plantilla y para ciclo soca respectivamente.	Se usa para preparar la mezcla del herbicida a utilizar (para plantilla).
e)	Fertilización	La combinación Nitrógeno-Fósforo- Potasio (N-P-K) depende de cada Ingenio Azucarero. Para Alianza Popular: 1) 100-40-60, 2) 100-60-60, 3) 120-60-60 y 4) 160-80-100. Par Ingenio Plan de Ayala: 28-14-14. Para Ingenio Plan de San Luis: 20-10-10 a 500 kg/ha (plantilla) y 600 kg/ha (soca). Sulfato de amonio (300 kg/ha) para suelos con pH alto.	Para Plantilla: Se recomienda la fórmula 20-10-10 (N-P-K) a razón de 20 kg/ha y se puede aplicar en dos partes, la primera al momento de la siembra con 300 kg/ha y la restante al primer cultivo; Para soca y resoca: Se proponen tres tipos de combinaciones N-P-K a razón de 500 kg/ha: 17-17-17, 28- 14-14 y 20-10-10.
f)	Control de plagas y enfermedades	PLAGAS: Barrenadores del tallo ¹³ (<i>Diatrea spp. y Eoreuma spp.</i>), Mosca pinta o salivazo ¹⁴ (<i>Aenolamia spp.</i>) y Roedores ¹⁵ ; ENFERMEDADES: Carbón de la caña ¹⁶ , Roya o herrumbre ¹⁷ y Escaldadura de la hoja ¹⁸ .	PLAGAS: Barrenadores del tallo ¹³ (<i>Diatrea spp. y</i> <i>Eoreuma spp.</i>), Mosca pinta o salivazo ¹⁴ (<i>Aenolamia spp.</i>) y Roedores ¹⁵ ; ENFERMEDADES: Carbón

Elementos a considerar en la siembra		Cultivo de riego (plantilla, soca y resoca) (INIFAP, 2015a)	Cultivo de temporal (plantilla, soca y resoca) (INIFAP, 2015b)		
			de la caña ¹⁶ , Roya o herrumbre ¹⁷ y Escaldadura de la hoja ¹⁸ .		
g)	Periodo y método de cosecha	La cosecha inicia en el mes de noviembre y concluye en el mes de mayo del año siguiente. Dependiendo del tipo de terreno la cosecha puede ser manual, mecanizada o ambas.	La fecha de inicio de cosecha se realiza con el primer tercio en la que se incluyen plantas de 17 meses de edad, socas y resocas de 12 meses, así como variedades precoces en los meses de noviembre a enero, variedades medias de enero a marzo y variedades tardías de marzo a mayo. Dependiendo del tipo de terreno la cosecha puede ser manual, mecanizada o ambas.		
h)	Rendimiento esperado	De 120 a 150 ton/ha de caña moledera en ciclo planta, de soca de 110 a 130 ton/ha, resoca de 100 a 110 ton/ha. De punta de caña como forraje se logra recuperar alrededor de 300 pacas por hectárea con un peso aproximado de 16 kg por unidad.	En lo que respecta a las nuevas siembras (plantas) se obtiene un rendimiento de 80 - 90 ton/ha y en socas y resocas se logra cosechar de 60 - 70 ton/ha aproximadamente.		

Chapoleo: Corte manual o con máquina de todas las hierbas existentes en el terreno para su quema.

²Subsoleo: Se rompen las capas endurecidas del subsuelo para los primeros 50 cm para facilitar la penetración de las raíces.

³Primer y segundo barbecho: En el primero se rompe una capa superficial del suelo de 25 a 30 cm produciendo una intemperización durante 30 días para dejar expuestos a larvas y huevecillos al sol para que mueran. El segundo se realiza 30 días después.

⁴Rastreo de dos pasos: Se reducen de tamaño los terrones obtenidos en los barbechos.

⁵Nivelación o empareje del terreno: Forma planimétrica del terreno para facilitar la mejor distribución del agua.
 ⁶Surcado: Se inicia después de terminar el rastreo. La distancia entre surcos es de 1.40 m.

⁷Limpia de canales: Facilita que el agua corra libremente para impedir pérdidas por evaporación y filtración.

⁸Construcción de regaderas (canales): Son transversales a los surcos y sirven para repartir el agua.

⁹Cabecereo de surcos: Elimina obstáculos entre las regaderas y los surcos.

¹⁰ Variedades de caña: MEX.- Mexicana; CP.- Canal point, Florida

- ¹¹**Rebote o destroncone:** Se refiere a la eliminación manual (con machetes) de los troncos de tallos sobrantes de las cosechas después de la quema de los residuos.
- ¹²Método de uso consuntivo de cultivo: Se refiere a la cantidad de agua (en milímetros) con que se regarán los cultivos.
- ¹³Barrenadores del tallo: Favorecen que ciertas enfermedades penetren por los orificios del tallo como el hongo causante de la pudrición roja (Physalospora tucumanensis) que deteriora la calidad del jugo.

¹⁴Mosca pinta: Los insectos adultos pican las hojas de caña inyectando una toxina que provocan que las hojas presenten síntomas como si estuvieran sufriendo por sequía, se pueden perder de 3 a 7 toneladas de caña por hectárea.

¹⁵Roedores: Cuando no tienen suficiente comida en su área natural (temporada seca) emigran a los cañaverales.

¹⁶Carbón de la caña: Organismo que provoca deformaciones impresionantes de la caña de azúcar causando además disminuciones significativas en el rendimiento de la caña.

Entre los elementos mencionados en la tabla 9, los que más influyen en la cantidad de biomasa que puede contener la caña de azúcar son 1) la variedad de caña, ya que la cantidad de masa puede variar en cada especie (p. ej. Figura 18); 2) las labores culturales, debido a la cantidad de residuos a quemar en el control de la maleza; 3) el manejo de agua, ya que la caña necesita más de 1500 mm de agua para su buen desarrollo y 4) la fertilización, donde de acuerdo a las características de la zona de abastecimiento cañero se debe escoger la combinación adecuada de nitrógeno (N), fósforo (P) y potasio (K) (Tabla 9).

2.1.1 El rol de los ingenios azucareros en la quema de biomasa

La relación que existe entre la agroindustria de la caña de azúcar y su quema se establece legalmente a partir de la Ley de Desarrollo Sustentable de la Caña de Azúcar (LDSCA). En su artículo 2, Título Primero (referente a las Disposiciones Generales) menciona lo siguiente:

"Sus disposiciones son de interés público y de orden social, por su carácter básico y estratégico para la economía nacional en términos de la Ley de Desarrollo Rural Sustentable, tiene por objeto normar las asociadas a la agricultura de contrato y a la integración sustentable de la caña de azúcar, de los procesos de la siembra, el cultivo, la cosecha, la industrialización y la comercialización de la caña de azúcar, sus productos, subproductos, coproductos y derivados" (LDSCA, 2005).

Así mismo, dicha Ley en su artículo tercero define el Contrato de condiciones particulares como:

"El Contrato de compraventa, siembra, cultivo, cosecha, entrega y recepción de caña de azúcar, que de manera voluntaria e individual celebren los Abastecedores

¹⁷Roya o herrumbre: Genera manchas de un tono amarillo pálido en las hojas de la caña y provoca un secamiento prematuro del área foliar de la caña.

¹⁸Escaldadura de la hoja: Se distingue por generar rayas blancas en la lámina de la hoja. Provoca marchitamiento durante la temporada de sequía. Puede llegar a matar al 10% de los tallos de una población de caña de azúcar.
de Caña con algún Ingenio, que pudiera estipular condiciones diferentes a las del Contrato Uniforme" (LDSCA, 2005).

En estos dos artículos se identifica que los acuerdos entre el Abastecedor de Caña (productor) y el Ingenio determinan las condiciones bajo las cuales se llevará a cabo la cosecha y por ende la quema. La interacción entre ambas partes se realizará a través de un Comité de Producción y Calidad Cañera, ya que al artículo 23 de la LDSCA dice que a través de dicha organización, ambas partes (productores e ingenio) tratarán todo lo concerniente "...a la siembra, cultivo, cosecha, entrega, recepción y a la calidad e industrialización de la materia prima" (LDSCA, 2005).

El insumo que busca transformar el Ingenio Azucarero es la sacarosa, mientras que al productor le preocupa tener un buen rendimiento de campo (caña industrializada por hectárea) para obtener tener mayores ganancias. Ambos parámetros permitieron a la Secretaría de Economía (2012) determinar la eficiencia en la producción azucarera por estado cañero clasificándolos dentro de cuatro grupos:

- 1) Aquellos en que el rendimiento de campo y el contenido de sacarosa en caña se encuentra por arriba del promedio nacional (cuadrante superior derecho);
- El indicador de sacarosa se encuentra por encima del promedio nacional pero el rendimiento de campo es inferior al promedio nacional (cuadrante superior izquierdo;
- Ambos parámetros se encuentran por debajo del promedio nacional (esquina inferior izquierda;) y
- 4) El rendimiento en campo es superior al promedio nacional y el contenido de sacarosa es inferior (cuadrante inferior derecho).

Figura 19. Indicadores de campo y distribución de la superficie industrializada, ciclo comercial 2009/10 (SE, 2012).

Entre mejor sea el rendimiento de campo y los acuerdos entre los Abastecedores de Caña y los Ingenios, entonces se incrementará la producción de sacarosa. La quema de caña de azúcar favorece la volatilización de nutrientes que pueden ser útiles para el siguiente periodo de cosecha y esto reduce las ganancias por producción a futuro.

El estado de Veracruz es el mayor productor, pero se encuentra clasificado en el tercer grupo (bajos niveles de sacarosa y producción), San Luis Potosí se encuentra por encima del promedio nacional en producción de sacarosa pero presenta estándares por debajo del promedio nacional en rendimiento de campo; únicamente el estado de Jalisco (2do lugar nacional en producción de caña) presenta altos valores en ambos parámetros (Figura 19).

La mayor superficie de producción de caña se encuentra en aquellos estados con un bajo rendimiento de campo. Los cinco estados que proporcionaron el 69% de la producción nacional de 1999 al 2010 fueron Veracruz, Jalisco, San Luis Potosí, Oaxaca y Tamaulipas (SE, 2012). La sobreproducción de caña de azúcar que se presentó en la zafra 2012/2013 tal y como se mencionó al principio de este capítulo, no es un problema reciente, ya que viene afectando desde la firma de las "Cartas Paralelas" en 1998 contenidas en el Tratado de Libre Comercio con América del Norte (TLCAN) (Olivares, 2004).

En este documento se menciona que prácticamente Estados Unidos estima la cantidad de caña Mexicana excedente que recibirá y la cantidad de fructuosa que deberá recibir México, sin embargo, el cálculo indica que de las 575 mil toneladas excedentes en el país, únicamente podría vender 100 mil toneladas (alaingarcia, 2015).

En base a lo anterior, resulta evidente que el comercio residual Mexicano de la caña de azúcar no es una estrategia económicamente viable porque aún no se cuenta con la suficiente infraestructura para darle otro uso a dicho cultivo, aunque regiones cañeras como El Naranjo, S.L.P ya lo ocupan para generar energía.

Posterior a la cosecha se seguirá quemando caña excedente que por ahora no tiene un objetivo claro de ser. La presión que tienen los ejidos recae sobre el Abastecedor Cañero, no solamente porque debe mejorar su rendimiento de producción para competir con otros productores nacionales, sino también porque además debe considerar que la importación de fructuosa (sobre todo el edulcorante derivado del maíz) lo obliga a competir internacionalmente con países más avanzados tecnológicamente como Brasil, Australia y Cuba (Olivares, 2004).

De acuerdo a la Secretaría de Economía (SE) la eficiencia productiva en campo (cantidad de caña por hectárea y contenido de sacarosa) y fábrica (azúcar producida por Ingenio entre la sacarosa total recibida de campo) se pudo clasificar en cuatro grupos para el periodo 2000 - 2008:

 Ingenios cuyo campo cañero y eficiencia en fábrica se encontraron por encima del promedio nacional (esquina superior derecha, color azul);

- Ingenios con eficiencia en campo mayor al promedio nacional, pero que la eficiencia en fábrica se encontró por debajo del promedio (esquina inferior derecha, color naranja);
- Ingenios que obtuvieron en fábrica rendimientos por arriba de la media nacional, pero con una eficiencia en campo por debajo de la media (izquierda superior, color rojo); y
- Ingenios que registraron tanto eficiencia en campo como fábrica por debajo de la media nacional (esquina inferior izquierda, verde) (Figura 20 y Tabla 10) (SE, 2012).

Figura 20. Indicadores de eficiencia en campo y fábrica, según grupo de Ingenio.

Tabla 14. Indicadores de eficiencia en campo y fábrica, según grupo de Ingenie	0.
--	----

	Grupo	Ingenio (indicando la nomenclatura usada en la Figura 20)
I		JOY-La Joya; PRO-La Providencia; PSL-Plan de San Luis; HUI-Huixtla; ZAPEmiliano Zapata; PRI-La Primavera; HIG-EI Higo; MOCH-Los Mochis; TAM-Tamazula; SMN-San Miguel del Naranjo; SFA-San Fco. Ameca; MAN-EI Mante; JMM-Jose Ma. Martinez; CPR-Central Progreso; PUJ-Pujiltic; SNM- San Miguelito; CON-Constancia; PA-Plan de Ayala; CLACasasano la Abeja.

Grupo	Ingenio (indicando la nomenclatura usada en la Figura 20)
II	Grupo II: CUA-Cuatotolapam; ZAP-Zapoapita; AP-Alianza Popular; PM-Pablo Machado; MO-Melchor Ocampo; AS-Aarón Sáenz; LCA-Lázaro Cárdenas; CMO-Central Motzorongo; PED-Pedernales.
III	BELL-Bellavista; SFN-San Francisco; El Naranjal; ALP-Adolfo López Mateos; TVA-Tres Valles; MAH-Mahuixtlan; SNIC-San Nicolas; CAR-El Carmen; JMM-Jose Ma. Morelos; ATE-Atencingo; PUG-Puga; AZS-Azsuremex; REF- El Refugio; BEJ-Benito Juarez; DOR-El Dorado; GLO-La Gloria; CAL- Calipam; SCRIS-San Cristobal; MOD-El Modelo; SNJA-San Jose de Abajo; SNP-San Pedro; SRP-San Rafael del Pucte; SROS-Santa Rosalia.
IV	SCLA-Santa Clara; QUE-Quesería; MOL-El Molino; POT-El Potrero.

De los 56 ingenios analizados 22 se encuentran en el Grupo 1, incluidos Plan de San Luis, San Miguel del Naranjo y Plan de Ayala; 12 se localizan en el grupo 2, donde está Alianza Popular; en el Grupo 3 hay 22 Ingenios; y en el Grupo 4 hay cuatro Ingenios.

Este análisis permite identificar que el aumento o descenso de la quema de caña de azúcar depende de:

- 1) Acuerdos entre el Ingenio y el Abastecedor Cañero (LDSCA, 2005; PNAC, 2014; SE, 2012);
- 2) Sacarosa a ser transformada por el Ingenio y rendimiento de campo (Figura 19);
- Acuerdos contenidos en el Tratado de Libre Comercio de América del Norte (TLCAN);
- 4) Eficiencia productiva en campo y en fábrica (Figura 20 y Tabla 10);
- 5) Eficiencia en el proceso de combustión, emisiones de contaminantes, gases de efecto invernadero y parámetros climáticos involucrados; y
- 6) Usos alternos que se le puedan dar al excedente de caña.

Todos estos elementos pueden identificarse como áreas de oportunidad para la construcción de políticas públicas, las cuales se refieren a las respuestas del Estado ante situaciones que presentan un problema social (Salazar, 1994). El artículo séptimo ubicado en el Capítulo I, Título Segundo (De las Autoridades y de los Órganos en materia de la Agroindustria de la Caña de Azúcar) menciona que:

"La Secretaría, en coordinación con las dependencias y entidades competentes de los Gobiernos Federal, Estatales y del Distrito Federal, así como de los municipios, en el ámbito de sus atribuciones realizará lo siguiente:

 Dictar las políticas públicas nacionales que habrán de aplicarse en la materia, a fin de imprimir rentabilidad, productividad y competitividad a las actividades que regula esta Ley, que le hagan sustentable".

 Influencia de la quema de caña de azúcar sobre la liberación de carbono y nitrógeno bajo condiciones de sequía y evapotranspiración en una zona de abastecimiento cañero

En este capítulo se muestra el artículo aceptado por la Revista Internacional de Contaminación Ambiental a publicarse en el Número 2 del Volumen 32 correspondiente al mes de mayo de 2016 tal y como se muestra a continuación en la carta de aceptación. El formato utilizado es el de la tesis.

INFLUENCE OF SUGARCANE BURNING ON CARBON AND NITROGEN RELEASE UNDER DROUGHT AND EVAPOTRANSPIRATION CONDITIONS IN A MEXICAN SUGARCANE SUPPLY ZONE

Key words: soil quality, meteorological events, waste burning, water flux.

ABSTRACT

Sugarcane cultivation is an agricultural activity of worldwide importance. This crop has been cultivated in Mexico for centuries, impacting important productive areas like the study region called Huasteca Potosina which is located at the Central-East part of Mexico. The relationship between soil conditions, weather and production per hectare allows identifying the edaphological and climatic conditions (aptitude levels) for cultivating sugarcane in the study area. The objective of this research work is to analyze the relation between the cultivated hectares and production of sugarcane. Likewise, to explain its behavior and interpret the contribution of N and C released to the atmosphere for burning sugar cane in association with events and meteorological parameters involved in the flux of water between soil and atmosphere such as drought, evapotranspiration and rainfall. The methods and indicators for burning waste provided by the IPCC, the value of potential evapotranspiration as Thornthwaite and drought severity index were applied in order to understand the correlations between the drought severity index and potential evapotranspiration and between C and N released and potential rainfall availability. The results show the increase of harvested hectares and the loss of water from the soil by the increase periods of drought events and evapotranspiration. The volatilized nutrients in soil varied from 1.32×105 to 2.17×105 t for C and from 1.32×103 t to 2.17×103 t for N during the burning of sugarcane, affecting production levels with values fluctuating between 38 t/ha to 77 t/ha for the period 1990-2010.

Palabras clave: calidad del suelo, eventos meteorológicos, quema de residuos, flujo de agua

RESUMEN

El cultivo de caña de azúcar es una actividad agrícola de importancia mundial llevada a cabo en México durante siglos, impactando importantes áreas productivas como la región de estudio llamada Huasteca Potosina, localizada al este-centro de México. La relación entre las condiciones del suelo, clima y producción por hectárea permite identificar las condiciones edafológicas y climáticas (niveles de aptitud) para cultivar la caña de azúcar en el área de estudio. Bajo este contexto, el objetivo fue analizar la relación entre las hectáreas cultivadas y la producción de caña de azúcar y explicar su comportamiento interpretando las contribuciones del N y C liberados a la atmósfera por la quema de caña asociados a eventos y parámetros meteorológicos involucrados en el flujo de agua entre el suelo y la atmósfera como sequía, evapotranspiración y lluvia. Los métodos e indicadores para la quema de residuos provistos por el IPCC, el valor de la evapotranspiración potencial por Thornthwaite y el índice de severidad de la seguía fueron aplicados para comprender las correlaciones entre el índice de severidad de la sequía y la evapotranspiración potencial y entre el C y N liberados y la disponibilidad potencial de lluvia. Los resultados muestran el incremento en las hectáreas cosechadas y la pérdida de agua del suelo por el aumento de los periodos de seguía y la evapotranspiración. Los nutrientes del suelo volatilizados, varían de 1.32×10⁵ ton a 2.17×10⁵ ton para C y 1.32×10³ ton a 2.17×10³ ton para N durante la quema de caña de azúcar, afectando sus niveles de producción con valores que fluctúan entre 38 t/ha to 77 t/ha durante el periodo 1990-2010.

INTRODUCTION

The sugarcane crop is easily adaptable to tropical and subtropical climates and is of economic importance in more than 100 countries around the world (Rein *et al.* 2011). Sugarcane cultivation has caused enormous changes in land use with the removal of tropical forest and other vegetation types (Scherr and Sthapit 2009). Some practices related to sugarcane such as burning bring with them the further decline of air and soil quality and affect the regional climate due to variations of soil temperature (Sandhu *et al.* 2013), which can be reflected for example in the heat flux and moisture transport at this scale. The common practice of sugarcane burning methods, before and after the harvest, is an anthropogenic source of emissions of greenhouse gases (GHG) and aerosol to the atmosphere that may also cause respiratory toxicity (França *et al.* 2012, Mazzoli-Rocha *et al.* 2014). Moreover, the procedure includes the strippage of weed from soil, nutrients uptake, and control of pests among others (Hernández-Valencia and López-Hernández 2002). The sugarcane burning can increase its efficiency if the moisture levels in the fuel are poor (Chen *et al.* 2010, França *et al.* 2012).

Soil quality depends on its capability to accept, store and recycle nutrients and water resources in maintaining production yields without affecting the environment (Haynes 1997), but the sugarcane burning can affect several of these factors. Particularly, the process of combustion during vegetation burning contributes to reduce the organic matter in the soil due to the release of nutrients such as carbon and nitrogen. This can be detrimental to crops when nutrients do not recuperate their natural mechanisms such as rain and atmospheric fixing and the use of nitrogen fertilizers (Hernández-Valencia and López-Hernández 2002).

Potential evapotranspiration (PET) is an indicator of the maximum evaporation from the soil and plant transpiration and depends on weather conditions of the study region where factors such temperature, solar radiation, water availability among others have an important role. There are several methods to calculate PET (Tukimat *et al.* 2012, De Carvalho *et al.* 2013), where a variety of parameters are used to analyze the atmospheric forcing (Bautista *et al.* 2009). Comparing the change in the water vapor concentration that occurs in the air with precipitation levels, the water flux between the atmosphere and the soil surface it is used (Swenson and Wahr 2005) to know the potential rainfall availability at the surface (SENASICA 2010). In humid regions, such as in the Huasteca region in Mexico (**Fig. 22**), land use change from natural vegetation to cropping and grazing occurs (Reyes *et al.* 2005). These changes may cause variations in humidity and precipitation levels, affecting negatively the availability of water resources, leading to an increase in drought periods (Algara-Siller and Contreras-Servin 2009).

There are several ways to quantify drought periods, such as the Palmer drought severity index (PDSI), the drought severity index (DSI), and the standardized precipitation index (SPI) among others. To calculate the PDSI it is necessary to know the precipitation, the temperature and the soil moisture (Dai *et al.* 2004). However, in some regions such as San Luis Potosí State, Mexico, this last parameter is not measured by weather stations. On the other hand, the DSI method is defined as a statistical analysis based on the deficit of precipitation which is commonly calculated with data usually registered by regular meteorological stations. Since it does not depend on the type of climate, it can be applied to any region (Hernández and Valdez 2004, Algara-Siller and Contreras-Servin 2009).

Methane (CH₄) and nitrous oxide (N₂O) are released to the atmosphere by agricultural activities significantly contributing to total emissions of GHG and to radiative forcing due to their effectiveness to absorb heat compared to carbon dioxide (CO₂) (Scheele and Kruger 2006). The Intergovernmental Panel on Climate Change (IPCC) developed a series of methodologies to quantify emissions. Inventories of GHG in Mexico have included agricultural waste burning, dominantly

sugarcane crops (Ordóñez *et al.* 2012). However, these inventories are still deficient in variables that have an impact on the loss of soil nutrients. It is also necessary to investigate the fraction of carbon in organic waste to obtain national emissions factors (Ordóñez and Hernández 2006) and the annual amount of organic matter and carbon in different types of soil (Sánchez-Hernández *et al.* 2011), among others issues. The calculation of C and N released during sugarcane burning depends on whether parameters such as fraction of area burned, aboveground biomass density and aboveground biomass burned among others can be obtained specifically for the study region (Tier 2) or whether the standard values proposed by the IPCC for each region are used (Tier 1) (IPCC 1996).

Mexico is the seventh-largest world producer of raw material for the sugar industry. Sugarcane fields cover up 790,650 hectares supplying raw material to 57 sugar mills, located in 15 states and 6 regions of Mexico (**Fig. 21** and **Fig. 22**). Sugarcane represents 3% of total Mexican crop area (CONADESUCA 2014, Aguilar-Rivera *et al.* 2012, Aguilar-Rivera *et al.* 2013). The conventional harvest system in Mexico starts when the sugarcane is burned before manual cutting is carried out in order to eliminate dry foliage and to facilitate the harvest process. After removing the cane, there is a waiting period until the remaining foliage is completely dry. Finally, a second burning is applied. The pollutants that are emitted to the atmosphere are nitrogen monoxide, carbon monoxide, sulfur oxide, hydrocarbons, carbon dioxide and other substances (Vilaboa and Barroso 2013, Sentíes-Herrera *et al.* 2014).

Fig. 21 National distribution of sugarcane production. Sugarcane fields shown in the central picture and sugar mills shown in the East zone and in the West zone pictures (author's own production).

The Mexican government has implemented efforts to decrease the burning of sugarcane through the National Program of the Sugarcane Agroindustry (PRONAC) (SEGOB 2014), in which, for example, for the period 2006-2012 the target was to reduce the cane burning from 90% to 70% (SAGARPA 2007, FIRCO 2012). Particularly, in the cane region of San Luis Potosí State, green harvest is practiced

in 5% of the total cane production, however, there are experimental cane fields in which the government implement strategies that contribute to the gradual recovery of ecological balance (CNIDTACHP 2014).

On the other hand the use of edaphological mapping and satellite imagery allow identifying spatial attributes of soil fertility for sugarcane crop. The method is based on physical, chemical and biological soil properties affecting the production levels in a specific sugarcane region (Ortega and Corvalán 2007, Quintero-Durán 2008, Geissen *et al.* 2009, Aguilar-Rivera *et al.* 2010, Aguilar-Rivera *et al.* 2013). The soil characteristics are better classified when taking into account the weather conditions that interact directly with sugarcane crops, showing thus a robust basis for a classification on edaphological and climatic conditions under which the cane cultivation takes place (Subiros 2002, Sánchez-Hernández *et al.* 2011), thus the term aptitude levels is adopted from now on.

According to previous studies, during the period 1990-2010 while the field performance (production yield) decreased, the harvested surface increased substantially (Aguilar-Rivera *et al.*, 2012, Aguilar-Rivera *et al.* 2013). The hypothesis is that changes in the land use in Huasteca Potosina and in the water flux between soil and atmosphere have contributed to the increase in the release of C and N to the atmosphere. The objective of this research work is to analyze the relation between the cultivated hectares and production of sugarcane. Likewise, explain its behavior and interpret the contributions of N and C released to the atmosphere for burning sugar cane in association with events and meteorological parameters involved in the flux of water between soil and atmosphere such as drought, evapotranspiration and rainfall.

MATERIAL AND METHODS

Sugarcane production conditions at the Huasteca Potosina region

The Huasteca region is located in the Central-East part of Mexico covering around of 65 675.85 km² (CONABIO 2012). An important area of this region is called Huasteca Potosina, located in the eastern part of San Luis Potosí State (**Fig. 22**). This region shows year-long rainfall conditions most of the year where its maximum precipitation values are in the months of September and July and range from 200 to 500 mm. Likewise, highest monthly mean temperatures varies between 22 °C and more than 40 °C and the coldest months have temperatures fluctuating from -3° C to 18 °C (Pineda *et al.* 2006). The predominant type of soil in the sugarcane region of the Huasteca Potosina is an argillaceous Pelic Vertisol (Aguilar-Rivera *et al.* 2012). This kind of soil reaches deep in the ground, and develops within dry to sub-humid climates. Although it is not considered as a fertile soil, it has been adapted to sugarcane fields with an agricultural irrigation system (SEMARNAT 2013).

The plant water availability depends largely on soil-atmosphere interaction. In Huasteca Potosina, the study of these elements is carried out by the use of the drought severity Index (Hernández and Valdez 2004, Algara-Siller and Contreras-Servin 2009), precipitation (P), potential evapotranspiration (PET) and the relation between the latter two parameters P-PET to investigate the net flux water between the soil and the atmosphere (Swenson and Wahr 2005, SENASICA 2010).

The soil parameters based on physical, chemical and biological properties and their relationship with those weather conditions that contribute with sugarcane production levels are shown in **table 15** and are used as a starting point to analyze the stages under which carbon (C) and nitrogen (N) are released in the sugarcane burning. This approach includes the classification of production per hectare based on aptitude

levels (**Table 15**), the relationship analysis between DSI and PET and the release of N and C during the burning process related to the availability of water in the ground (P-PET).

	Liab	Madium		
Property	High	wealum	LOW	Not suitable
Annual temperature (°C)	22-32	20/22-32/35	18-20	<18
Annual average precipitation (mm)	>1500	1250-1500	1250-1000	<1000
Solar radiation (hours/year)	1800-2200	1800-1400	1400-1200	<1200
Drought severity index	Absent	Slight	Strong to very strong	Severe
Slope (%)	0-8	8-16	16-30	>30
Altitude (masl)	Up to 400	400-850	850-1300	>1300
Texture	Loam- Argillaceous	Argillaceous	Loam-sandy	Sandy
рН	6.6-7.3	6.1-6.5 7.4-8.3	5.6-6.0 >8.3	<5.5
Organic matter (%)	>5	3-5	2-3	1-2
Available nitrogen (kg/ha)	>300	300-225	225-150	<150
C/N relation	8-12	12-15	15-30	>30
Expected yield (t/ha)	>80	55-80	40-55	<40

Table 15. Edaphological and weather conditions for sugarcane production (aptitude levels) (Aguilar-Rivera 2013).

Sugarcane production data and harvested area used to classify aptitude levels for sugarcane crop for the period 1990-2010 were obtained from the Agro-food system reference information software (SIACON 2010) administrated by the Agro-food and

fishery information system (SIAP) from the Mexican government. Weather data, specifically precipitation and maximum and minimum temperatures were collected from the National Climatological Database (CLICOM 2014) whose data are administrated by the National Meteorological Service (NMS) database.

Thornthwaite potential evapotranspiration and drought severity index

Potential evapotranspiration represents the maximum possible evapotranspiration under existing circumstances. There are few models for its quantification (Tukimat *et al.* 2012, De Carvalho *et al.* 2013). In recent years Thornthwaite method has been utilized to calculate potential evapotranspiration, particularly for humidity balance studies (SEMARNAT 2009, Rivas *et al.* 2011). Moreover, it has shown great reliability during rainy periods, disregarding any adjustment (Bautista *et al.* 2009, Gutiérrez *et al.* 2013). Based on this evidence, due to the humid climate of the Huasteca (Pineda *et al.* 2006) and data availability, the calculation of potential evapotranspiration parameter by this methodology is the choice for the present study.

$$PET = ET \left(\frac{Hs}{12}\right) \left(\frac{dm}{30}\right) \tag{1}$$

where Hs is maximum number of sunlight hours, dm is number of days per month and ET is evapotranspiration without corrections, which in turn is rewritten as

$$ET = C(10 * t_{med}/I)^a \tag{2}$$

Influencia de la quema de caña de azúcar sobre la liberación de carbono y nitrógeno bajo condiciones de sequía y evapotranspiración en una zona de abastecimiento cañero where the constant C = 16; t_{med} is monthly mean temperature; and I is the annual heat index expressed as $I = \sum i$ where

$$i = \left(\frac{t_{med}}{5}\right)^{1.514} \tag{3}$$

Finally, *a* is an exponent on a logarithmic basis for the annual index, where both are related by a third polynomial order

$$a = 0.49239 + 1792 - 771x10^{-7}I^2 + 675x10^{-9}I^3$$
(4)

In the same way, the precipitation (*P*) minus the potential evapotranspiration (*PET*) allows the calculation of the net flux of water between soil and atmosphere or the potential rainfall availability, namely P - PET (Swenson and Wahr 2005, SENASICA 2010).

The drought severity index (DSI) shows the percentage of rain scarcity in a year with respect to average rain values and for every meteorological station it is calculated from the following statistical analysis (Hernández and Valdez 2004, Algara-Siller and Contreras-Servin 2009)

$$DSI_n = \frac{(\sum X - \sum \bar{X})}{\sum \bar{X}}$$
(5)

where $\sum X - \sum \overline{X}$ is the sum of the accumulated monthly precipitation ($\sum X$) for the year calculated minus the annual average precipitation ($\sum \overline{X}$) and where *n* represents the number of weather stations. The yearly mean DSI considering all stations is:

$$\overline{DSI}_n = \left(\frac{1}{N}\right) \sum DSI \tag{6}$$

Influencia de la quema de caña de azúcar sobre la liberación de carbono y nitrógeno bajo condiciones de sequía y evapotranspiración en una zona de abastecimiento cañero Drought severity index comprises seven levels as shown in **table 16**. These levels show that the *DSI* is strong when the negative value increases, while the strength of *DSI* decreases when it is close to zero.

Table 16. Drought severity index levels (Algara et al. 2009).				
Classification levels	Range of values			
Absent	0.0 to -0.2			
Slight	-0.2 to -0.35			
Strong	-0.35 to -0.4			
Very strong	-0.4 to -0.5			
Severe	-0.5 to -0.6			
Very severe	-0.6 to -0.8			
Extremely severe	Less than -0.8			

Calculation of carbon and nitrogen released

The parameters, based on IPCC guides, to calculate the release of C and N values during the sugarcane burning with respect to the information availability in the state of San Luis Potosí. The amount of waste and the amount of dry residue described in equations (7) and (8), the total burned biomass (equation (9)), and carbon and nitrogen releases (equations (10) and (11)) are obtained by the IPCC (2000) methodology. Some variable values used in the equations correspond to the geographical region which contains the study area.

After reviewing previous studies, it was found that the value of 0.2230 corresponding to fraction of carbon in waste (FCW) (**Table 17**) obtained from Mexican reference (Ordóñez and Hernández 2006) represents 50% of the IPCC value. This value has

not been verified for sugarcane crops in the region of Huasteca Potosina. Likewise, there are other parameters such as fraction burned in fields (FBF) and fraction oxidized (FO) that have not been calculated for Mexico. These are the main reasons why in this study the reference data to calculate the C and N released during the burning of sugarcane were obtained using the values of the IPCC methodologies.

Variable	Values (IPCC)	Values (studies from Mexico)
Residue-crop ratio (RCR)	0.16	0.15 (Ordóñez and Hernández 2006)
Dry matter fraction (DMF)	0.83	0.78 (Ordóñez and Hernández 2006)
Fraction burned in fields (FBF)	1	Not calculated (was used the IPCC value)
Fraction oxidized (FO)	0.9	Not calculated (was used the IPCC value)
Fraction of carbon in waste (FCW)	0.4325	0.2230 (Ordóñez and Hernández 2006)
Nitrogen-carbon ratio (NCR)	0.01	Averages in the range 0.033 to 0.074 (Aguilar-Rivera 2013)

Table 17. Reference values from Intergovernmental Panel on Climate Change manuals for carbo	n
and nitrogen releases during the sugarcane burning process.	

Amount of residue = AP × RCR(7)Amount of dry residue = Amount of residue × DMF(8)Total burned biomass = Amount of dry residue × FBF × FO(9)Total released carbon = Total burned biomass × FCW(10)

 $Total released nitrogen = Total released carbon \times NCR$ (11)

The Mexican reference values of nitrogen-carbon ratio (NCR) are obtained from the inverse of C/N, shown in **table 15** as a first approach, while the value used in these research was obtained from IPCC methodologies (**Table 17**) (IPCC 1996). Also, the AP variable in equation (7) is sugarcane annual production for Huasteca Potosina.

RESULTS

Annual Aptitude Level classification for sugarcane crop

The relationship between extension of harvested sugarcane, its production per hectare considering both irrigated and rain-fed, and its relationship to aptitude levels (**Table 15**) is shown in **figure 23**. The mean level was between 55 and 80 t/ha.

Fig. 23. Aptitude levels for sugarcane for the period 1990-2010 based on production levels given in t/ha. The correlation coefficient between the harvested area and the production per hectare is -0.1 (author's own production).

Influencia de la quema de caña de azúcar sobre la liberación de carbono y nitrógeno bajo condiciones de sequía y evapotranspiración en una zona de abastecimiento cañero The slope in the production per hectare is negative and the trend of the crop surface is towards growth, hence the correlation coefficient between both parameters is very small (-0.1) because the aptitude levels of sugarcane keep a relation with specific weather and soil conditions. For example, relating the production per hectare (Fig. 3) to aptitude levels during the study period, the drought severity index (DSI) presented a change from slight to severe (Table 1). Also, the C/N relation ranged from 12 to 30 affecting the annual production per hectare of this crop (Table 1). Thus, an increase in cultivated hectares does not imply growth in sugarcane production (Fig. 3) because of the influence of soil and climate parameters such as PET, DSI, PRA and the release to the atmosphere of C and N as will be discussed further.

Potential evapotranspiration (PET) and Drought Severity Index (DSI) analysis

While the PET tendency increased in the 1990-2010 period, the DSI remained practically constant with a very strong severity index ranging between -0.4 and -0.5 (**Table 16**) and consequently their correlation coefficient was 0.6 (**Fig. 24**). However, for the first eight years it reached a value of 0.8 due to an increase of DSI and a decrease of PET because of deficit precipitation and decrease of water flux to the atmosphere respectively. Likewise, for the period 1998-2010 this correlation decrease to 0.45 due to the increase of both parameters was mainly represented in 1999 where both parameters had higher contrast values.

Fig. 24. Comparison between DSI (drought severity index) and PET (potential evapotranspiration) for the 1990-2010 period. The correlation coefficient between both parameters is 0.6 (author's own production).

In contrast, the annual variation levels for drought severity index ranged from slight (-0.2 to -0.35) and severe (-0.5 to -0.6) drought conditions as observed for years 1992 and 1999 respectively (**Fig. 24**). These calculated values from DSI methodology are consistent with the information obtained from yearly production per hectare and aptitude levels of sugarcane (**Table 15** and **Fig. 23**).

As mentioned above, the rise of evaporation and transpiration from soil and plants respectively increase the potential evapotranspiration. Also, if both phenomena are combined with an increase of precipitation levels as occurred from 1990 to 1992, then the DSI values decrease. However, in 1993 and 1994 the precipitation levels decreased by 60% compared to 1991 (i.e. from 1529 mm to 912 mm) helping to increase the DSI and reducing the PET (**Fig. 24**) due to plants and soil not having the same water availability as in previous years.

The DSI indicated a severe drought event (-0.5) in 1995 and 1997 where lowest PET values were registered with 261.9 and 261.8 mm respectively (**Fig. 24**). Meanwhile, the same years presented low accumulated precipitations of 879 and 905 mm. These values are in contrast with the highest precipitation of 1529 mm in 1991, 1516

mm in 1993, 1411 mm in 2007 and 1464 mm in 2008, where there was a greater availability of water.

Year 1996 reveals that a severe drought condition of -0.5 is accompanied by a high of 271 mm for PET. This value was derived from the second maximum temperature (30 °C) in the year of the study period. Likewise, the highest mean temperature of 31.8 °C corresponds to 1998 which is reflected in an increase of the PET value (266 mm) with respect to 1997.

The strongest increment of DSI, up to a severe drought event of -0.68 is found in 1999 and is associated with an increase of PET. The period 2000 to 2008 maintained values for PET above the mean of 271.5 mm while the DSI value oscillated from strong to very strong levels. During the last two years of the study, the DSI varied from very strong to severe drought condition in chronological order.

Carbon and nitrogen released and their relation with Potential Rainfall Availability (PRA)

The water flux between soil and atmosphere can be reflected in the analysis of the precipitation (P) minus the PET (P-PET) and is termed Potential Rainfall Availability (PRA) (SENASICA 2010).

Both C and N release showed levels above its annual average, 17.8×10^4 t and 17.8×10^2 t respectively when the PRA (P-PET) was below average annual value (10.8×10^2 mm) from 1994 (**Fig. 25**). In general, a PET increase and its derived PRA (P-PET) decrease provoked an increment on the release of both gases for the period 1990-2010 (**Fig. 25a and 24b**). The linear tendency shown in **figure 25a and 25b** revealed a positive slope for C and N release and a negative slope for P-PET. This

behavior is due first to the decrease of precipitation levels from 1994 to 2006, mainly below 1000 mm, and secondly to the increase of PET (> 270 mm) during the period.

a. Annual averages for carbon release during sugarcane burning.

b. Annual averages for nitrogen release during sugarcane burning.

Fig. 25. Annual averages for C (a) and N (b) release during sugarcane crop burning and precipitation (P) minus potential evapotranspiration (PET) (P-PET), which is the potential rainfall availability (PRA) (author's own production).

DISCUSSION

The variability in PET and DSI showed in **figure 24** are related with the increase or decrease occurred in the release of C and N (**Fig. 25a** and **24b**) during the sugarcane burning due to water availability while the combustion process occurs. However, the increase in cultivated areas also favored the rise of soil evaporation and plant transpiration, reflected in PET parameter (**Fig. 24**) and the growth of burned areas too (in the period 2000-2008 and in year 2010).

The water flux between soil and atmosphere is studied with the PRA through the P-PET. But, the correlation analysis between these parameters with the C and N released let us know that for both cases (**Fig. 25a** and **24b**) it was close to zero (-0.28), mainly during the 13 years of the study period (1994-2006), where P-PET was below their average because there was PET increase with respect to precipitation levels. Likewise, for the period 1990 to 1993 the water availability levels reduced the C and N emitted during sugarcane burning, but during the period 2007-2010 the increase of burned areas did not allow these nutrients to reduce their emission rate, although the precipitation levels recovered relative to the first years.

The differences in the order of magnitude between C and N released in IPCC and Mexico's results are indicated in **table 17**. The correlation coefficient in the carbon released for both analyses (with Mexican reference values (*) and IPCC reference values) is practically equal to 1 because the carbon fraction in waste (FCW) was constant in every yearly calculus (0.2230 for Mexican values and 0.4325 for IPCC) (**Fig. 26a**) but for the nitrogen is 0.8 due to variations of nitrogen-carbon ratio (NCR) depending on annual production per hectare levels (**Tables 15 and 17**) (**Fig. 26b**).

a. Carbon released. Obtained from Mexico (*) and IPCC values. The correlation coefficient between both parameters is 1.

b. Nitrogen released. Obtained from Mexico (*) and IPCC values. The correlation coefficient between both parameters is 0.8.

Fig. 26. Carbon (a) and nitrogen (b) releases. Calculated according to Intergovernmental Panel on Climate Change and Mexico's own (*) reference data respectively (author's own production).

Influencia de la quema de caña de azúcar sobre la liberación de carbono y nitrógeno bajo condiciones de sequía y evapotranspiración en una zona de abastecimiento cañero According to sugarcane annual production per hectare (**Fig. 22**), San Luis Potosí keeps a medium aptitude level (**Table 15**) for most of the year. Nevertheless, there is insufficient information to analyze the annual levels of C and N during the study period. The only year in which data exist for N levels in the sugarcane zone (**Fig. 23**) is 2009 where nitrogen availability was less than 20 kg/ha (SAGARPA 2009a, 2009b, 2009c) placing the aptitude level of sugarcane as "not suitable" (**Table 15**). However this condition does not match with the aptitude level obtained based on the annual production because it was superior (medium level). This means that the floor area of sugarcane is being forced to support the cane crop, affecting the soil health.

The increase of potential evapotranspiration and the decrease of rainfall in the period 2000-2008 and in year 2010 were not favorable for production because the net water flux is principally to the atmosphere (P-PET) and the sugarcane must extract water at a rate that is fast enough that it does not lose it during this process. Also, the decrease in soil water favors greater loss of C and N because of the increase in efficiency in the combustion process (Chen *et al.* 2010, França *et al.* 2012).

Aguilar-Rivera *et al.* (2010) mention that in a complete cycle the sugarcane crop requires 1500 mm of water for its development. However, it is found that there were just two years in which the rainfall reached these levels (1991 and 1993), therefore favoring the increase of DSI, mainly in the last 11 years of the study period in which there was an important increase in the cultivated hectares and the PET levels (**Fig. 24**).

The C and N released in the Huasteca Potosina during sugarcane burning represented practically 0.05% and 1% of the total losses of these nutrients in Mexico (Ordóñez *et al.* 2012). In addition, when comparing these values with those of the other countries such as Brazil and Australia it is observed that the carbon and nitrogen release increased substantially (more than 100% of the Mexican losses)

(UNFCCC 2014). The direct affectation is reflected in the land use change due to a growing sugarcane surface displacing natural vegetation as was demonstrated by Peralta-Rivero *et al.* (2014) for the Mexican Huasteca Region and as is shown in this research, particularly for the Huasteca Potosina (**Fig. 23**).

Actually, various strategies exist to manage the C and N in soils. In these particular cases it is imperative to increase the amount of these nutrients in the surface but minimizing soil disturbance, as noted by Lal (2006), in a proportional way to the increase of cultivated hectares. Also, there is an important rise in the quantity of nitrogen during the agricultural practices as recommended by SAGARPA (2009a, 2009b, 2009c) from 20 kg/ha to 190 kg/ha. Finally, it is necessary to use sustainable methods to take advantage of sugarcane's waste keeping potential in the availability of the C, N and water in the soil.

CONCLUSIONS

When the cane production level has no consistent growth related with the increasing of harvested area, then is relevant to analyze the climate and soil conditions under which the cane crop take place. The aptitude levels of sugarcane fluctuated from "not suitable" to "medium" during the period 1990-2010 in the Huasteca Potosina region. Consequently, the production per hectare never reached the optimal levels (>80 t/ha). Furthermore, the weather settings played an important role in each of the studied periods of sugarcane burning where the water flux to atmosphere is related with potential evapotranspiration. In this study had three types of behavior: it grows when the DSI decrease is helping to keep a water balance (ranged from 1990 to 1994), it decreases when the DSI increases which affects the water soil availability (years 1995, 1996, 1997 and 2009) and it increases when DSI increases too (1998, 1999 and in the period 2000-2008 and 2010) due probably to an increase in cultivated hectares and the rise of precipitation levels. In the latter two cases the

combustion process during sugarcane burning was favored due to soil water loss and the increase of the crop surface, respectively. The analysis that represents the soil-atmosphere water flux was the potential rainfall availability (P-PET). Since 1994 and practically until 2006 the water flux was mostly to the atmosphere, because P-PET was less than their average value of the study period (10.8E + 02 mm). The conditions in which there was an increase in the C and N released were favored due to a decrease in the amount of water present in the soil and consequently supporting the combustion process during the burning of sugarcane. In the years 2007, 2008 and 2010 the annual values of P-PET were greater than the average value due to an increase of precipitation levels, but these did not affect in an important way the release of C and N in the burning of the cane due to the increase of crop hectares and therefore the number of acres burned. The correlation of analyzed parameters allowed identification of important phenomena, such as the -0.1 value obtained between the production per hectare (with a negative trend) and the crop surface (with a positive slope). Due to the relation between cane production and aptitude levels, as mentioned above, it was possible to identify C and N losses, which was justified with the analysis of DSI, PET and PRA in the study period. Likewise, the DSI and PET where in the period 1990-1997 their correlation value was close to one (0.8) due to PET increase depending strongly on water availability. In contrast, for the same period, the correlation coefficient between the C and N released and P-PET was close to zero (0.28) due to the decrease in precipitation levels (from 1512 mm to 913 mm) during 1993 and 1994, which helped to increase nutrient emissions. Finally, it is relevant to mention agricultural methods and land use strategies to increase the harvested sugarcane without affectation to soil health and climatic conditions. One of the methods is the green harvesting in which there is no release of nutrients to the atmosphere, method that only involves leaf cutting, another method is the use of cane plant species with a less percentage of waste to be burned. Although it is important to analyze the economic cost for farmers to know if really will be a benefit to them. In contrast, other Mexican states like Jalisco have fewer hectares to grow sugarcane but still produce more cane per hectare than

Huasteca Potosina region, thus a land use strategy could be the increase the soil nutrients (mainly N and C) instead of the cultivated surface to support the sugarcane grow.

ACKNOWLEDGMENTS

This research was made through the program "Programa Multidisciplinario de Posgrado en Ciencias Ambientales", financed by Consejo Nacional de Ciencia y Tecnología, Mexico. Special thanks to Cecilia Barrera-Gutiérrez from the Universidad Autónoma de San Luis Potosí, who provided help in the analysis for the dry season.

REFERENCES

- Algara-Siller M. and Contreras-Servin C. (2009). Drought and climate change on the Huasteca region, San Luis Potosí, Mexico. In: Environmental Engineering and Management (M. Theophanides and Teophanides, Eds.). ATINER, Athens, Greece, pp. 287-301.
- Aguilar-Rivera N., Galindo M.G., Contreras S.C. and Fortanelli M.J. (2010). Zonificación productiva cañera en Huasteca Potosina, México. Agronomía Trop. 60, 139-154.
- Aguilar-Rivera N., Galindo M.G. and Fortanelli M.J. (2012). Evaluación agroindustrial del cultivo de caña de azúcar (*Saccharum officinarum* L.) mediante imágenes SPOT 5 HVR en la Huasteca México. Revista de la Facultad de Agronomía, La Plata 111, 64-74.

- Aguilar-Rivera N., Olvera V.A. and Galindo M.G. (2013). Evaluación de aptitud de tierras de cultivo de caña de azúcar en la Huasteca Potosina, México, por técnicas geomáticas. Revista de Geografía Norte Grande 55, 141-156.
- Aguilar-Rivera N. (2013). Ficha técnica del cultivo de Caña de Azúcar. Sistema Potosino de Vigilancia Epidemiológica. Technical Report. Veracruz, Mexico, 20 pp. [online]. http://nutriciondebovinos.com.ar/MD_upload/nutriciondebovinos_com_ar/Archi vos/File/CA%C3%91A_DE_AZ%C3%9ACAR,_FICHA_T%C3%89CNICA.pdf 21/08/2014.
- Bautista F., Bautista D. and Delgado-Carranza C. (2009). Calibration of the equations of Hargreaves and Thornthwaite to estimate the potential evapotranspiration in semi-arid and subhumid tropical climates for regional applications. Atmósfera 22, 331-348.
- CLICOM (2014). Datos climáticos diarios del CLICOM del Servicio Meteorológico Nacional con gráficas del Centro de Investigación Científica y de Educación Superior de Ensenada [online]. http://clicom-mex.cicese.mx 15/03/2014.
- Chen L–W.A., Verburg P., Shackelford A., Zhu D., Susfalk R., Chow J.C. and Watson J.G. (2010). Moisture effects on carbon and nitrogen emission from burning of wildland biomass. Atmos. Chem. Phys. Discuss. 10, 7985-8007.
- CNIDTACHP (2014). Arreglos topológicos y densidad de siembra de caña de azúcar en la Huasteca Potosina. Technical Report. Centro Nacional de Investigación y Desarrollo Tecnológico para la Agroindustria Cañera de la Huasteca Potosina, A.C.

http://siproduce.sifupro.org.mx/seguimiento/archivero/24/2013/anuales/anu_58 1-25-2014-05-1.pdf 14/07/2015.

- CONABIO (2012). Distribución de la población en México por municipio, 1990, escala 1:250000. Comisión Nacional Para el Conocimiento y Uso de la Biodiversidad. México D.F.: Datos estadísticos del 2010, Instituto Nacional de Geografía y Estadística [online]. http://www.conabio.gob.mx/informacion/metadata/gis/dipomun90gw.xml?_xsl=/ db/metadata/xsl/fgdc_html.xsl&_indent=no 12/12/2014.
- CONADESUCA (2014). Reporte de avance de producción de caña y azúcar. Ciclo azucarero 2013/14. Reporte No.36. Semana No. 41. Del 5 al 12 de julio del 2014
 Días corrientes de zafra: 254. Final Report. Comité Nacional para el Desarrollo Sustentable de la Caña de Azúcar. Mexico City, 32 pp.
- De Carvalho L.C., Evangelista A.W.P., Oliveira K.M.G., Silva B.M., Alves M de C., Júnior A de S. and Mirando W.L. (2013). FAO Penman-Monteith equation for reference Evapotranspiration from missing data. IDESIA 31, 39-47.
- Dai A, Trenberth K.E. and Qian T. (2004). A global dataset of Palmer drought severity index for 1870-2002: Relationship with soil moisture and effects of surface warming. American Meteorological Society. Journal of Hydrometeorology 5, 117-1130.
- França D de A., Longo K.M., Soares N.T.G., Santos J.C., Freitas S.R., Rudorff B.F.T., Cortez E.V., Anselmo E. and Carvalho Jr. A. (2012). Pre-Harvest Sugarcane Burning: Determination of Emission Factors through Laboratory Measurements. Atmosphere 3, 164-180.

Influencia de la quema de caña de azúcar sobre la liberación de carbono y nitrógeno bajo condiciones de sequía y evapotranspiración en una zona de abastecimiento cañero

- FIRCO (2012). Informe de rendición de cuentas 2006-2012. México. Report. Fideicomiso de Riesgo Compartido. Etapa 1. Mexico City [online]. http://www.firco.gob.mx/POTTtransparencia/Documents/Informes/IRC_FIRCO _1.pdf 11/07/2015.
- Geissen V., Sánchez-Hernández R., Kampichler C., Ramos-Reyes R., Sepúlveda-Lozada A., Ochoa-Goana S., de Jong B.H.J., Huerta-Lwanga E. and Hernández-Daumas S. (2009). Effects of land-use change on some properties of tropical soils – An example from Southeast Mexico. Geoderma 151, 87-97.
- Gutiérrez E.S., Dávila-Vázquez G., Sánchez J. de A. and Torres J.J.D. (2013). Estimación del balance hídrico mediante variables climáticas, en la cuenca del Río Cazones, Veracruz, México [Estimation of water balance by climatic variables in the Río Cazones, Veracruz, Mexico]. Ambiente y Agua – An Interdisciplinary Journal of Applied Sciences 8, 104-117.
- Haynes R.J. (1997). The concept of soil quality and its applicability to sugarcane production. Proc. S. Afr. Sug. Technol. Ass. 71, 9-14.
- Hernández C.M.E and Valdez M.G. 2004. Impactos, Vulnerabilidad y Adaptación
 En: Cambio Climático: una visión desde México (J. Martínez y A. Fernández
 Bremauntz (compiladores) con la colaboración de P. Osnaya). Secretaría del
 Medio Ambiente y Recursos Naturales, Distrito Federal, Mexico, 315-325 pp.
- Hernández-Valencia I. and López-Hernández D. (2002). Pérdida de nutrimentos por la quema de vegetación en una sabana de *Trachypogon*. Rev. Biol. Trop. 50, 3-4.

- IPCC (1996). Revised 1996 guidelines for national greenhouse inventories. Intergovernmental Panel on Climate Change / Organisation for Economic Cooperation and Development / International Energy Agency. United Kingdom Meteorological Office, Bracknell Published for the Intergovernmental Panel on Climate Change. Manual. Bracknell, England, Vol. 2, 84 pp., [online]. http://www.ipcc-nggip.iges.or.jp/public/gl/invs5c.html 7/05/2014.
- IPCC (2000). Good practice guidance and uncertainty management in national greenhouse gas inventories. IPCC national greenhouse gas inventories programme. Published for the Intergovernmental Panel on Climate Change by the Institute for Global Environmental Strategies. Manual. Japan, Japan, 517 pp. [online]. http://www.ipcc-nggip.iges.or.jp/public/gp/english/ 7/05/2014.
- Lal R. (2006). Carbon management in agricultural soils. Mitigation and Adaptation Strategies for Global Change 12, 303-322.
- Mazzoli-Rocha F., Carvalho G., Lanzetti M, Valença S.S., Silva L.F., Saldiva P.H.N., Zin W.A. and Faffe D.S. (2014). Respiratory toxicity of repeated exposure to particles produced by traffic and sugar cane burning. Respiratory physiology and neurobiology 191, 106-113.
- Ordóñez D.J.A. and Hernández T.T. (2006). Obtención de factores de emisión en el sector agrícola para disminuir incertidumbre en el Inventario Nacional de Emisiones de Gases de Efecto Invernadero. Instituto Nacional de Ecología y Cambio Climático. Report. Mexico City, 22 pp.
- Ordóñez D.J.A.B., Hernández T.T., Galicia N.A., Jiménez Álvarez I.F., Ordóñez D.M.J., Torres O.J.F., León G.J.D., Nuñez R.A., Hernández Q.M., González F.A. and Carrera J.A. (2012). Actualización del Inventario Nacional de Gases de
Efecto Invernadero 1990-2010, para el sector Agricultura. Report, Mexico City, 294 pp., [online]. http://www.inecc.gob.mx/descargas/cclimatico/2012_estudio_cc_invgef5.pdf 8/06/2014.

- Ortega A. and Corvalán E. (2007). Diagnóstico de suelos. Instituto Nacional de Tecnología Agropecuaria Estación Experimental Agropecuaria Salta. Salta, Argentina, 5 pp. [online]. http://www.profertilnutrientes.com.ar/images/archivos/?id=615 5/05/2014.
- Peralta-Rivero C., Contreras-Servin C., Galindo-Mendoza M.G., Mas C.J.F. and Algara-Siller M. (2014). Analysis of land use and land cover changes and evaluation of natural generation and potential restoration areas in the Mexican Huasteca Region. Open Journal of Forestry, 4, 124-135.
- Pineda L., Carbajal N. and Medina R.E. (2006). Regionalization and classification of bioclimatic zones in the central-northeastern region of Mexico using principal component analysis (PCA). Atmósfera 20, 133-145.
- Quintero-Durán R. (2008). Efectos de la aplicación de elementos menores en caña de azúcar en suelos del valle del río Cauca. Cali, Colombia, pp. 18-25. [online]. http://www.tecnicana.org/pdf/2008/tec_v12_no20_2008_p18-26.pdf 10/09/2014.
- Meyer J., Rein P., Turner P. and Mathias K. (2011). Good management practices manual for the cane sugar industry (final). PGBI Sugar and Bio Energy (Unlimited Proprietary Company) Public Limited Company. South Africa, Africa. 696 pp.

Influencia de la quema de caña de azúcar sobre la liberación de carbono y nitrógeno bajo condiciones de sequía y evapotranspiración en una zona de abastecimiento cañero

- Reyes H., Aguilar R.M., Aguirre R.J.R. and Trejo VI. (2005). Cambios en la cubierta vegetal y uso de suelo en el área del proyecto Pujal-Coy, San Luis Potosí, Mexico, 1973-2002. Boletín del Instituto de Geografía 59, 26-42.
- SIACON (2010). Sistema de información agroalimentaria de consulta. Sistema de Información Agroalimentaria y Pesquera (SIAP) [online]. http://www.siap.gob.mx/optestadisticasiacon2012parcialsiacon-zip/ 13/08/2014.
- SEMARNAT (2009). Impacto del cambio climático en las tierras y sus características. Report. Secretaría del Medio Ambiente y Recursos Naturales. Mexico City, 104 pp.
- SEMARNAT (2013). Informe de la Situación del Medio Ambiente en México. Compendio de Estadísticas Ambientales. Indicadores Clave y de Desempeño Ambiental. Report. Secretaría del Medio Ambiente y Recursos Naturales. Mexico City,20 pp.
- SAGARPA (2007). Programa Nacional de la Agroindustria de la Caña de Azúcar.
 2007-2012. Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y
 Alimentación.Mexico City, 10 pp. [online].
 http://www.conadesuca.gob.mx/eficienciaproductiva/PRONAC.pdf 28/06/2015.
- SAGARPA (2009a). Digitalización del Campo Cañero en México para Alcanzar la Agricultura de Precisión de la Caña de Azúcar. Ingenio Alianza Popular, S.A. de C.V. Programa Nacional de la Agroindustria de la Caña de Azúcar. Servicio de Información Agroalimentaria y Pesquera. Colegio de Postgraduados. Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación. Report. San Luis Potosí, Mexico, 11 pp., [online].

http://www.infocana.gob.mx/materiales/suelos/03_ALIANZA_POPULAR_SIAP _II.pdf 4/04/2014

- SAGARPA (2009b). Digitalización del Campo Cañero en México para Alcanzar la Agricultura de Precisión de la Caña de Azúcar. Ingenio Plan de Ayala, S.A. de C.V. Programa Nacional de la Agroindustria de la Caña de Azúcar. Servicio de Información Agroalimentaria y Pesquera. Colegio de Postgraduados. Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación. Report. San Luis Potosí, Mexico, 10 pp., [online]. http://www.infocana.gob.mx/materiales/suelos/37_PLAN_DE_AYALA_SIAP_II. pdf 4/04/2014.
- SAGARPA (2009c). Digitalización del Campo Cañero en México para Alcanzar la Agricultura de Precisión de la Caña de Azúcar. Ingenio Pla de San Luis, S.A. de C.V. Programa Nacional de la Agroindustria de la Caña de Azúcar. Servicio de Información Agroalimentaria y Pesquera. Colegio de Postgraduados. Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación. Report. San Luis Potosí, Mexico. 10 pp., [online]. http://www.infocana.gob.mx/materiales/suelos/38_PLAN_DE_SAN_LUIS_SIA P_II.pdf 4/04/2014.
- SEGOB (2014). Programa Nacional de la Agroindustria de la Caña de Azúcar 2014-2018. Diario Oficial de la Federación. 2 de mayo de 2014. Secretaría de Gobernación. Mexico City [online]. http://www.dof.gob.mx/nota_detalle.php?codigo=5343244&fecha=02/05/2014 21/04/2015.

Sánchez-Hernández R., Ramos-Reyes R., Geissen V., Mendoza-Palacios J. de D., de la Cruz-Lázaro E., Salcedo Pérez E. and Palma-López D. (2011). Contenido de carbonos en suelo con diferentes usos agropecuarios en el trópico mexicano. Terra Latinoamericana 29, 211-219.

- Sandhu H.S., Gilbert R.A., Kingston G., Subiros J.F., Morgan K., Rice R.W. and Davis L. (2013). Effects of sugarcane harvest method on microclimate in Florida and Costa Rica. Agricultural and Forest Meteorology 177, 101-109.
- Sentíes-Herrera H.E., Gómez-Merino F.C., Valdez-Balero A., Silva-Rojas H.V. and Trejo-Téllez L.I. (2014). The agro-Industrial sugarcane system in Mexico: Current status, challenges and opportunities. Journal of Agricultural Science 6, 26-54.
- SENASICA (2010). Boletín climático fitosanitario. Boletín No. 1. Climatología fitosanitaria. Sistema Nacional de Vigilancia Epidemiológica Fitosanitaria. Servicio Nacional de Sanidad, Inocuidad, y Calidad Agroalimentaria. San Luis Potosí, Mexico, 3 pp. [online]. http://portal.sinavef.gob.mx/documentos/BoletinClimatico/Boletin_Clima_Agost o_2010.pdf 3/09/2015.
- Scheele E.A. and Kruger D. (2006). Global anthropogenic methane and nitrous oxide emissions. The Energy Journal, Multi-Greenhouse Gas Mitigation and Climate Policy Special Issue, 27, 33-44.
- Scherr J. and Staphit S. (2009). Mitigating climate change. Through food and land use. Worldwatch Report 179. Ecoaagriculture Partners and Worldwatch Institute. Washington, D.C., USA, 48 pp.

- Swenson S. and Wahr J. (2005). Estimating Large-Scale Precipitation Minus Evapotranspiration from GRACE Satellite Gravity Measurements. Journal of Hydrometeorology 7, 252-270.
- Tukimat N.N.A., Harun S. and Shahid S. (2012). Comparison of different methods in estimating potential evapotranspiration at muda irrigation scheme of Malaysia. Journal of Agriculture and Rural Developments in the Tropics and Subtropics 113, 77-85.
- UNFCCC (2014). Greenhouse gas inventory data Detailed data by Party. United Nations Framework Convention on Climate Change. [online]. http://unfccc.int/di/DetailedByParty/Event.do?event=selectPageItem 12/06/2014.
- Vilaboa A.I. and Barroso L.A. (2013). Contaminación ambiental por quema de caña de azúcar. Un estudio exploratorio en la región central del estado de Veracruz. Congress Memories. Think Green 2013: Crecimiento verde, retos y oportunidades para México. Veracruz, Veracruz, Mexico. 7 al 9 de octubre, 2013 [online].
 http://www.igs.org.mx/sites/default/files/TG2013_Vilaboa_Barroso_0.pdf 17/06/2015.

4. Metodologías para estimar las emisiones de gases de efecto invernadero por quema de residuos agrícolas y sobre el modelado de su dispersión en la atmósfera

Las emisiones de GEI generados por la quema de caña de azúcar en México se estiman a partir de las metodologías del 1) PICC (1996; 2000), específicamente para CH₄ y N₂O; y la de 2) Seiler y Crutzen (1980) actualizada por Levine (2003) para CO₂ y CH₄. Posteriormente se identifica cuáles emisiones de metano son incorporadas como datos de entrada al modelo WRF.

Figura 27. Esquema general de la relación entre el cálculo de las emisiones de GEI y el modelado con el WRF.

El periodo a analizar es del 2011 al 2014 tomando las zafras (periodos de cosecha) del 2011/2012, 2012/2013 y 2013/2014 debido a que la disponibilidad de la información espacial para la metodología de Seiler y Crutzen (sección IV.2) solo permite que ambas metodologías de emisiones coincidan en ese rango de tiempo para ser comparadas.

El total de zonas de abasto cañero en el país y cuyos datos fueron tomados en cuenta para este estudio suman un total de 56. Las coordenadas latitudinales y longitudinales de cada uno de ellos se muestran en el Anexo B y está actualizada para el año 2011 (Tabla 18).

	I abia To. Callaverales					
Estado	No.	Zona de abasto cañero	Estado	No.	Zona de abasto cañero	
	1	Central Progreso	Singles	29	La Primavera	
	2	Cuatotolapan	Sinaida	30	Los Mochis	
	3	El Carmen		31	Alianza Popular	
	4	El Higo	San Luis 3	32	Plan de Ayala	
	5	El Modelo	Potosí	33	Plan de San Luis	
	6	El Potrero		34	San Miguel del Naranjo	
	7	La Independencia	Quintana Roo	35	San Rafael del Púcte	
	8	La Concepción		36	Atencingo	
	9	La Constancia	37	37	Calipam	
	10	La Gloria		38	Adolfo López Mateos	
	11	La Providencia	Oaxaca	39	El Refugio	
	12 Mahuixtlan 40	40	Pablo Machado			
	13	Motzorongo		41	El Molino	
	14	San Cristobal	Mayanı	42	Puga	
	15	San Gabriel	Morelos	43	Casasano	
	16	San José	Moreios	44	Emiliano Zapata	
	17	San Miguelito		45	Santa Clara	
	18	San Nicolas	Michoacán	46	Pedernales	
	19	San Pedro		47	Lázaro Cárdenas	
	20	San Francisco	lolioco	48	Bellavista	
	21 Tres Valles	49	José María Morelos			

Tabla 18. Cañaverales por estado en México.

Estado	No.	Zona de abasto cañero	Estado	No.	Zona de abasto cañero
	22	Zapoapita		50	Melchor Ocampo
Tamaulipas	23	AA Saenz Xico		51	San Francisco Ameca
	24			52	José María Martínez Tala
	24	Ermante		53	Tamazula
Tabasco	25	Pte. Benito Juárez	Colima	54	Quesería
	26	Santa Rosalía	Chienee	55	Huixtla
	27	Azsuremex Tenosique		56	Pujiltic
Sinaloa	28	El Dorado	Campeche	57	La Joya

De ahora en adelante se ocupará la numeración propuesta en la Tabla 13 para identificar cada zona de abasto cañero. Las dos metodologías sobre las estimaciones de las emisiones de GEI que se ocupan en este proyecto requieren los datos sobre producción total de caña de azúcar por cañaveral (riego + temporal), los cuáles son obtenidos de la Comisión Nacional para el Desarrollo Sustentable de Caña de Azúcar (CONADESUCA, 2014).

Con respecto a las variedades de caña consideradas para los cálculos se utilizaron la MEX 60-290 y la CP 72-2086 porque son las que ocupan una mayor superficie de siembra a nivel nacional y eso las hace más representativas. Así mismo, no se tomó en cuenta si la producción considerada pertenecía a la plántula, soca o resoca ni los periodos de tiempo exactos de quema durante cada zafra considerada.

Los resultados de las emisiones son obtenidos como "totales anuales" por cada zona de abasto cañero y periodo de cosecha. Posteriormente, en base a la metodología del modelo WRF se explica el tratamiento que se les da a los resultados seleccionados como datos de entrada (Figura 27).

4.1 Metodología de emisiones del Panel Intergubernamental sobre Cambio Climático (PICC)

En el capítulo III se habló de la primera parte de la metodología relacionada con la estimación del C y N volatilizados durante la quema de caña de azúcar (Ecuaciones 10 y 11), la cual se esquematiza en la figura 28.

Figura 28. Orden de las estimaciones a realizar para obtener el total de C y N liberados por la quema de caña de azúcar. Las frases en color representan los parámetros que son utilizados en los pasos previos para el siguiente cálculo. Los números entre paréntesis indican los valores estándar asignados para la región de estudio (IPCC, 1996; 2000).

El PICC establece una serie de pasos para tomar la decisión sobre si es conveniente o no calcular las emisiones de GEI generados por quema de residuos agrícolas. Los puntos a resaltar son: 1) Identificar si el cultivo quemado pertenece a una categoría principal de fuentes, que se define como aquella que influye en gran medida sobre las emisiones totales; y 2) si se dispone de un factor de emisión específico para el país (Figura 29) (PICC, 2000).

Figura 29. Árbol de decisiones aplicable a las emisiones de CH₄ y N₂O procedentes de la quema de residuos agrícolas (PICC, 2000).

La disponibilidad de información en México y particularmente en el estado de San Luis Potosí favoreció que se decidiera utilizar el nivel metodológico 1 (Tier 1), que como consecuencia, en el árbol de decisiones de la figura 29 lleva a la instrucción de la esquina inferior izquierda llamada: "Estime las emisiones usando los valores por defecto del PICC".

Las emisiones de metano dependen del 1) total de carbono liberado (Ecuación 11); 2) de la relación de emisión para el CH₄, que se refiere a la fracción de la masa del carbono liberado de dicho compuesto con respecto a la masa total de carbono liberado por la quema (Tabla 19) (Ecuación 12).

Tabla 19. Relaciones de e	Tabla 19. Relaciones de emisión estándar aplicados en la quema de residuos agrícolas para distintos gases.					
Gas	Relaciones de emisión					
	Valores por default	Rangos				
CH ₄	0.005	0.003-0.007				
СО	0.06	0.04-0.08				
N ₂ O	0.007	0.005-0.009				
NOx	0.121	0.094-0.148				

Emisión de $CH_4 = Total de carbono liberado \times Relación de emisión para el <math>CH_4$ (12)

Finalmente, las emisiones de CH₄ generadas por la quema del campo de residuos agrícolas depende de la emisión obtenida en la ecuación 12 y de la "relación de conversión" (Tabla 20) para dicho gas (que es el máximo factor de conversión para la generación del metano por unidad de carbono orgánico total consumido) (Ecuación 13).

Emisión CH_4 en campo = Emisión de $CH_4 \times Relación de conversión para el CH_4$ (13)

Gas	Relación de conversión
Metano (CH ₄)	16/12
Monóxido de carbono (CO)	28/12
Óxido nitroso (N ₂ O)	44/28
Óxidos de nitrógeno (NO _x)	46/14

 Tabla 20. Relaciones de conversión para distintos gases generados por la quema de residuos agrícolas

Metodologías para estimar las emisiones de gases de efecto invernadero por quema de residuos agrícolas y sobre el modelado de su dispersión en la atmósfera Con respecto a las emisiones de N₂O también se requieren calcular la emisión de dicho gas (Ecuación 14) y su emisión en campo (Ecuación 15) considerando la relación de emisión y la relación de conversión (Tabla 14) respectivamente.

Emisión de N_2O = Total de carbono liberado × Relación de emisión para el N_2O (14)

Emisión N_20 en campo = Emisión de $N_20 \times Relación de conversión para el <math>N_20$ (15)

El cálculo de las emisiones de CO₂ se hará a partir del factor de conversión de C a CO₂ propuesto por la EPA (2004), el PICC (2000) y la Fundación Monetaria Internacional (IMF, 2000), el cual consiste en que 1 kg de C corresponde a 3.667 kg de CO₂ ($FC_{CO2} = 3.667$) (De Figueiredo et al. 2010).

4.2 Metodología de emisiones de Seiler y Crutzen

Para calcular las emisiones a la atmósfera de CO_2 generado durante un incendio forestal y que se aplicará a la quema de caña de azúcar se debe conocer la masa total de vegetación quemada (*M*) (Ecuación 16).

$$M = A \times B \times E \tag{16}$$

donde A es el área quemada (Tablas 18 y 21), B es la cantidad de biomasa que se quema y E es la eficiencia de la quema, que se refiere a la cantidad de materia que realmente se quema (combustible) con respecto del total de biomasa por unidad de área (kilómetro cuadrado).

Para cultivos se propone usar un valor de eficiencia de 0.40 obtenido a partir de su cantidad de masa y tipo de cultivo (Seiler y Crutzen, 1980; Scholes et al. 1996; Levine, 2003), sin embargo para este proyecto se ocupará el valor de 0.29 que corresponde a la cantidad de biomasa que se puede quemar para las especies de

caña cuya mayor área de cultivo abarcan en el país (MEX 69-290 y CP 72-2086) (Tabla 8).

No.	Superficie cosechada que se quema (%)	No.	Superficie cosechada que se quema (%)
1	97.20	30	94.99
2	94.13	31	91.17
3	90.00	32	77.26
4	80.60	33	86.66
5	96.46	34	80.00
6	97.52	35	88.54
7	90.00	36	92.79
8	90.00	37	96.00
9	93.37	38	99.20
10	99.06	39	96.75
11	98.11	40	99.16
12	90.00	41	100.00
13	90.00	42	98.10
14	85.93	43	95.81
15	90.00	44	94.65
16	55.16	45	0.00

Tabla 21. Área cosechada que se quema durante el periodo de la zafra por zona de abasto cañero.La numeración mostrada representa cada zona de abasto cañero en el mismo orden de la Tabla18.

No.	Superficie cosechada que se quema (%)	No.	Superficie cosechada que se quema (%)
17	91.00	46	87.20
18	90.00	47	87.20
19	68.82	48	92.10
20	91.63	49	98.58
21	90.00	50	92.10
22	88.25	51	89.18
23	78.11	52	95.00
24	91.25	53	97.80
25	87.03	54	93.50
26	95.36	55	98.50
27	92.50	56	98.50
28	89.24	57	90.60
29	98.90		

Posteriormente se debe conocer la masa de carbono liberado a la atmósfera (M(C))(Ecuación 17), el cual está en función del porcentaje de masa de carbono en la biomasa (*C*) (que es de 0.45 para vegetación tropical) y de la vegetación total quemada (Ecuación 16).

$$M(C) = C \times M \tag{17}$$

La masa de CO₂ ($M(CO_2)$) liberada durante la quema (Ecuación 18) está en función del carbono liberado a la atmósfera (M(C)) y de la eficiencia en el proceso de

combustión *CE* que es la fracción de carbono emitido como CO₂ respecto al total de carbono liberado durante el incendio. Para incendios en vegetación tropical se toma el valor de 0.90 (Levine 2003).

$$M(CO_2) = CE \times M(C) \tag{18}$$

A partir de este último resultado se puede conocer la masa liberada de otra especie por quema de residuos agrícolas. Entonces la emisión de CH₄ ($M(CH_4)$) (Ecuación 19) se obtiene a partir de la masa de CO₂ liberada (Ecuación 18) y de la relación de emisión para el metano, que se refiere a la relación de producción del metano ($RE(CH_4)$) con respecto a la producción de dióxido de carbono durante el incendio. Para zonas tropicales se ocupa el valor de 0.32%.

$$M(CH_4) = RE(CH_4) \times M(CO_2) \tag{19}$$

4.3 Metodología para modelar el transporte y dispersión de CH₄ en la atmósfera

Los módulos del modelo WRF utilizados en este proyecto y cuyos pasos de instalación en el sistema Linux se encuentran en el Anexo C se clasifican en dos grandes grupos: 1) Pre-procesador del sistema WRF (WPS, por sus siglas en inglés) en donde se incorporan datos meteorológicos y espaciales de la zona de estudio; y 2) el WRF, que contiene los módulos para los procesamientos físicos y químicos utilizados durante la modelación meteorológica y de la dinámica del metano en la atmósfera (ARW, 2012).

El primer módulo a utilizar es el WPS, en éste 1) se define el dominio de estudio, que considera la base de datos geográficos y terrestres contenidos en el modelo y su interpolación en las celdas contenidas en éste (módulo geogrid); 2) se asimilan los datos meteorológicos globales (FNL) (ver tabla 8) mediante la creación de archivos legibles para el modelo, conocidos como datos GRIB (módulo ungrib); y 3) se realiza la interpolación horizontal de los datos mencionados en el punto anterior sobre los dominios generados para establecer las condiciones iniciales de la modelación (metgrid) (Figura 14) (ARW, 2012; WRF-Tutorial, 2015).

El WPS originalmente se ejecuta desde una terminal de comandos del sistema operativo (SO) en que se haya instalado, que en este caso fue la versión de Fedora 20, sin embargo existe una interfaz gráfica más amigable en donde se facilita dicho proceso conocida como WRF Domain Wizard creado por la National Oceanic and Atmospheric Administration (NOAA, 2013).

Figura 30. Esquema de funcionamiento del WPS (ARW, 2012).

La base de datos geográficos contenida en el WPS (usada en el módulo geogrid) tiene información global distribuida espacialmente sobre tipo de suelo, uso de suelo, albedo, cobertura de agua, orografía, niveles de nieve y temperatura del suelo entre otros. Los parámetros meteorológicos considerados en la base de datos globales FNL tienen una resolución de 100 km x 100 km (Iredell, 2002) y fueron descargados de una base de datos del Centro Nacional para el estudio de la atmósfera (NCAR, por sus siglas en inglés) clasificada como "ds083.2" (NCEP, 2015).

Los parámetros meteorológicos contenidos en dichos archivos (Tabla 22) vienen en formatos llamados GRIB1 (abarca los años de 1999 a 2007) y GRIB2 (de 2008 en adelante) y dependiendo del año con el que decida trabajar el usuario, debe escoger el que más le convenga (NCEP, 2015). En este proyecto se trabajó con la segunda opción debido a las fechas seleccionadas para el modelado (ver capítulo 5).

Temperatura del aire	Contenido de agua en las nubes/hielo	Convección	Evaporación
Altura de Geopotencial	Humedad	medad Presión hidrostática	
Cobertura del suelo	Capa límite planetaria	Potencial de temperatura	Agua precipitable
Presión a nivel del mar	Temperatura a nivel del mar	Temperatura de la piel	Equivalencia de nieve en agua
Humedad en el suelo/contenido de agua	Temperatura del suelo	Temperatura del aire en superficie	Presión en la superficie
Vientos en superficie	Elevación del terreno	Tropopausa	Ozono troposférico
Vientos en capas altas	Movimiento vertical del viento	Vorticidad	(celda vacía intencionalmente)

Tabla 22. Tipos de variables contenidas en los archivos GRIB1 y GRIB2 (NCEP, 2015)

Parámetros meteorológicos considerados en el WRF

Los archivos GRIB tienen una gran cantidad de variables, sin embargo el WRF no necesita de todas para ser inicializado, por lo que el usuario tiene la opción de escoger la combinación de datos que más le convenga de acuerdo a una serie de tablas contenidas en "ungrib" (Figura 30). Para este trabajo se utilizaron los parámetros de la tabla "Vtable.GFS" (Tabla 23), a partir de los cuales el WRF obtuvo posteriormente en el modelado parámetros adicionales como la cobertura de nubes, precipitación y radiación infrarroja entre otros.

Variable	Abreviatura*	Unidad	Variable	Abreviatura*	Unidad
Temperatura	тт	к	Humedad del suelo a 40 cm debajo del suelo	SM010040	Fracción
Velocidad horizontal de vientos	UU	m/s	Humedad del suelo a 100 cm debajo del suelo	SM040100	Fracción

Tabla 23 Datos utilizados	para inicializar el WR	E contenidos en	Vtable GES	WRF/Chem 2014)
	para inicializar er virt		viable. Of 5	(WIN /OHEIN, 2014	7.

Metodologías para estimar las emisiones de gases de efecto invernadero por quema de residuos agrícolas y sobre el modelado de su dispersión en la atmósfera

Variable	Abreviatura*	Unidad	Variable	Abreviatura*	Unidad
Velocidad vertical de vientos	VV	m/s	Humedad del suelo a 200 cm debajo del suelo	SM100200	Fracción
Humedad específica	SPECHUMD	Kg/kg	Humedad total del suelo de 10 cm a 200 cm	SM010200	Fracción
Humedad relativa	RH	%	Temperatura del suelo a 10 cm debajo del suelo	ST000010	К
Altura	HGT	m	Temperatura del suelo a 40 cm debajo del suelo	ST010040	К
Temperatura a 2 m del suelo	тт	к	Temperatura del suelo a 100 cm debajo del suelo	ST040100	К
Humedad Relativa a 2 m del suelo	RH	%	Temperatura del suelo a 200 cm debajo del suelo	ST100200	К
Velocidad horizontal de vientos a 10 m del suelo	UU	m/s	Temperatura total del suelo de 10 cm a 200 cm	ST010200	К
Velocidad vertical de vientos a 10 m del suelo	VV	m/s	Contenido de hielo en agua	SEAICE	Proporción
Presión superficial	PSFC	Pa	Cobertura de tierra en agua	LANDSEA	Proporción
Presión a nivel del suelo	PMSL	Pa	Variaciones de altitud en suelo	SOILHGT	М
Humedad del suelo a 10 cm debajo del suelo	SM000010	Fracci- ón	Temperatura en la piel	SKINTEMP	к

*Las abreviaturas mostradas son acorde a la manera en que el WRF identifica dichos parámetros.

Los archivos de salida generados en metgrid son los que traen las condiciones geográficas y meteorológicas iniciales que sirven de entrada al módulo WRF (Figura 31). En el WPS también se generaron dos archivos de texto, el "namelist.wps" (Tabla 24) y el "namelist.input (Tabla 25), que permiten al usuario establecer condiciones espaciales, temporales, físicas y químicas que debe identificar el modelo (Wang et al. 2012).

Figura 31. Archivos de salida del WPS que sirven como condiciones iniciales en el WRF, donde se ejecutarán programas que permitirán hacer el modelado.

Secciones	Descripción						
	Número de dominios (principal y anidados)						
8 sharo	Fechas inicial y final de los datos de entrada						
ashare	Periodo de tiempo entre la entrada de un nuevo grupo de datos						
	Carpeta de almacenamiento de los datos						
	Tipo de proyección geográfica a ser utilizada						
	Coordenadas centrales de cada dominio						
&geogrid	Dimensiones de cada celda						
	Proporción de cada celda con respecto a su dominio patrón						

 Tabla 24. Secciones contenidas en el archivo namelist.wps (Wang et al. 2012).

Metodologías para estimar las emisiones de gases de efecto invernadero por quema de residuos agrícolas y sobre el modelado de su dispersión en la atmósfera

Secciones	Descripción
&ungrib	 Nombre de los archivos de salida que contienen los campos meteorológicos Formato de salida
&metgrid	 Carpeta donde se ubicarán los archivos ".met" Carpeta donde se ubican los archivos con formato ".tbl", que definen los campos de entrada para geogrid, ungrib y metgrid.

Tabla 25. Secciones contenidas en el archivo nameli	list.input (Wang et al. 2012; WRF/Chem 2014)
---	--

Secciones	Descripción				
&time_control	 Variables de tiempo en que se correrá el modelo (año, mes día, hora, minutos y segundos). Archivos de salida (formato, cantidad de información contenida, tipos de archivos, tipo de información) 				
&physics	 Condiciones físicas que se presentarán durante la modelación. Parámetros de tiempo asignados a variables específicas. 				
&domains	 Dimensiones de la zona de estudio. Dominios anidados. Parámetros que rigen las características espaciales de los dominios en cada eje coordenado. 				
&dynamics	 Difusión de masas de aire y contaminantes en la atmósfera. Condiciones de amortiguamiento (factores físicos que frenan la dinámica natural en la atmósfera). Opciones de advección. 				

Secciones	Descripción				
&fire	Incendios ideales.Incendios reales.				
&chem	 Reacciones fotoquímicas. Incorporación de contaminantes y gases de efecto invernadero. Mecanismos químicos completos. Emisiones naturales y antropogénicas. Niveles verticales considerados. 				

En el módulo WRF (Figuras 31 y 32) se debe correr primero "real.exe", el cual generará dos archivos de salida por dominio: 1) "wrfinput_d0X" (X = número de dominio), que contiene los datos generados en metgrid pero ahora interpolados verticalmente para un tiempo inicial; y 2) "wrfbdy_d0X", en donde se ubican las condiciones de frontera para cada periodo de tiempo en el que estén los datos que vienen del módulo WPS.

En este punto se debe comenzar a trabajar con la parte química del módulo WRF, para ello se descarga de la red el Inventario Nacional de Emisiones de Estados Unidos (NEI, por sus siglas en inglés) en su versión del 2011 (NOAA, 2011), ya que éste viene en un formato que puede leer el modelo y contiene información de Canadá, Estados Unidos y el norte de México (WRF/Chem, 2014).

A partir del programa de Fortran Ilamado "emiss_v04.F" (NOAA, 2011) se deben incorporar las condiciones del dominio de estudio (tamaño de malla, dominios anidados, coordenadas centrales del dominio y ubicación del directorio donde se encuentra el NEI) para generar archivos binarios que contendrán las emisiones del inventario localizadas en estas zonas de interés, llamados "wrfem_00to12Z" y "wrfem_12to24Z" para 12 hrs y 24 hrs respectivamente (Figura 32) (WRF/Chem,

2014). En el anexo D se muestra la parte del código original de dicho programa que se tuvo que modificar para lograr tal propósito.

El ejecutable "convert_emiss.exe" (Figura 31) leerá únicamente las emisiones contenidas en el dominio definido para el estudio a partir de los archivos binarios y generará información horaria sobre las 24 hrs de emisiones dividiéndola en dos archivos de salida (12 hrs en cada uno) en formato netcdf (".nc") (el cual puede leer el WRF) llamados "wrfchemi_00z" y "wrfchemi_12z" (Figura 32). En estos archivos aún no están contenidas las emisiones de CH₄ generados por la quema de caña de azúcar que fueron estimados previamente, sin embargo son el punto de partida para incorporarlas (WRF/Chem, 2014).

Mediante una serie de códigos en Fortran creados por el Dr. Agustín García del Centro de Ciencias de la Atmósfera en la UNAM se modificó el contenido de los archivos de emisiones para incorporar las fuentes emisoras de caña en su respectiva ubicación geográfica (Anexo B) dentro del dominio de estudio con sus valores de emisión (Figura 32).

En el inventario de emisiones realizado en este proyecto dichos valores vienen en unidades de Toneladas/año (ton/año) (ver secciones IV.1 e IV.2), sin embargo el programa de Fortran en cuestión los solicita en moles/hora (mol/hora), para lo cual se realiza el cambio de unidades de la siguiente manera:

Emisión de
$$CH_4 = \left(\frac{1 \times 10^6 g}{1 \text{ ton}}\right) \left(\frac{1 a \|o\|}{365 \text{ dias} \times 24 \text{ hrs}}\right) \left(\frac{1 \text{ mol}}{16 \text{ g}}\right)$$
 (20)

El WRF internamente toma un valor promedio global de las emisiones de CH₄ (emisión de fondo) igual a 1.7 ppmv (partes por millón volumétrica) equivalente a 351.97×10^6 mol/hr que es generado por procesos naturales (emisión de fondo). Dicha emisión es respaldada por diversos autores (van et al. 1999; Sonneman et al. 2014) y se debe sumar el resultado obtenido en la Ecuación 20 a éste valor para que el modelo calcule las concentraciones de CH₄ en la atmósfera con un menor grado de incertidumbre.

Una vez incorporados las emisiones generadas por la quema de caña de azúcar en los archivos "wrfchemi_00z_d0X" y "wrfchemi_12z_d0X", entonces se debe correr el ejecutable "wrf.exe" para modelar el transporte y dispersión de CH₄ en la zona de estudio para un cierto periodo de tiempo y así obtener sus concentraciones en la atmósfera. El archivo de salida por dominio de estudio recibe el nombre de "wrfout_d0X:Año_mes_dia_hora:minuto:segundo" (Figura 32) (WRF/Chem, 2014).

Figura 32. Esquema de los procesos involucrados en la modelación del transporte y dispersión del CH₄ (X=Número de dominio de estudio).

4.3.1 Validación del modelado

La evaluación de los resultados obtenidos con el WRF debe considerar la parte meteorológica y de concentraciones por separado, ya que por un lado se cuenta con estaciones para comparar los cálculos meteorológicos por el modelo con mediciones reales y por otro, en México, instituciones de gobierno como el Servicio Meteorológico Nacional (SMN) o el Instituto Nacional de Ecología y Cambio Climático (INECC) aún no han colocado sensores que midan las concentraciones de GEI en el país.

Para el modelado de las variables meteorológicas, los resultados obtenidos con el modelo (temperatura, velocidad de vientos y humedad relativa) serán comparados con los valores medidos por las estaciones del estado de San Luis Potosí escogidas al azar dentro de cada dominio de estudio para identificar si el WRF subestima o sobreestima las condiciones atmosféricas reales.

Los métodos estadísticos a utilizar son: 1) raíz del error cuadrático medio, que cuantifica la raíz del promedio de las diferencias que hay entre los datos calculados (X_i^c) y los observados por los sensores (X_i^o) (Ecuación 21); y 2) BIAS que calcula la tendencia del sesgo de los datos calculados (X_i^c) con respecto a los datos observados (X_i^o) . El subíndice *i* indica cada dato horario considerado.

$$RECM = \sqrt{\frac{\sum (X_i^o - X_i^c)^2}{N}}$$
(21)

$$BIAS = \frac{\sum (X_i^o - X_i^c)}{N}$$
(22)

Los datos observados que son comparados con los calculados por el modelo WRF se extraen de Estaciones Sinópticas Meteorológicas (ESIME's) y Estaciones Meteorológicas Automáticas (EMA's) pertenecientes a la Comisión Nacional del Agua (CONAGUA). Se procuró que los modelados de las variables de interés se llevaran a cabo a una altura con respecto al suelo a la que se encuentra la estación meteorológica.

Con respecto a la evaluación de las concentraciones de GEI se decidió utilizar imágenes MODIS de la NASA (2015) con resolución de 1 km x 1 km. En éstas se pueden apreciar los puntos de calor a partir de los cuales se generan plumas de dispersión de gases y partículas en la atmósfera generados por diversos tipos de incendios. Al compararlas con el modelado de los GEI (particularmente CH₄) se puede identificar si la dirección de la dispersión obtenida con el WRF coincide con el de la imagen satelital.

La resolución a la cual se hace la evaluación de los datos meteorológicos es de 1 km x 1 km con. Para dichas evaluaciones se seleccionan las fechas en las cuales se hayan encontrado imágenes satelitales cuyos puntos de calor coincidan con las zonas de abasto cañero en algún periodo de quema.

Estimación de las emisiones de metano en México durante la quema de caña de azúcar y escenarios de su dispersión en la atmósfera

Estimation of methane emissions during sugarcane burning in Mexico and scenarios of their dispersion in the atmosphere

David E. Flores-Jiménez; Noel Carbajal; Marcos Algara-Siller; Alfredo Ávila-Galarza; Gregorio Álvarez-Fuentes; Noé Aguilar-Rivera and Agustín R. García

Abstract

The study of methane around the world has been important due to their role as greenhouse gas and their implications at global and regional scale in urban and rural areas. In Mexico, the sugarcane cultivation is an important economic and alimentary activity and is the sixth world sugar producer. The burn of the cane during the harvest period is responsible of methane emissions. In this study are estimated their emissions in the cane states of the country during the harvest period of 2011/2012, 2012/2013 and 2013/2014 with the methodology of Seiler and Crutzen in which it is consider the area source and the biomass burned. The total emissions obtained is 2×10^3 t, comparable with the magnitude order of other important cane countries as India and Brazil. The results obtained serve as input data in the WRF model to obtain the methane concentrations and their distribution in specific places in which it is used satellite images to validate the dispersion direction of this greenhouse gas. The results show a wind circulation to the east predominantly for San Luis Potosí, to the west for Jalisco and to the north for Tabasco. The orography in the first two cause a bad dispersion in which the range concentrations is of 9.22x10⁻⁵ ppmv to 122.04 ppmv for San Luis Potosí and 32x10⁻⁵ ppmv a 236.05 ppmv for Jalisco. The good

wind transport in Tabasco contribute to obtain low concentrations of 8.74x10⁻⁵ ppmv a 32.74 ppmv.

5.1 Introduction

The burning of agricultural waste around the world contribute significantly in the wildfires, due to pollutant and greenhouse gases emissions to atmosphere (Bautista et al. 2014; Jain et al. 2014), which can cause health damage and alter the balance of radiative force affecting the global weather (Crutzen and Andreae 1990; Streets et al., 2003). The agricultural soils are potential reservoirs of organic carbon and their crops contribute meaningfully to absorption and emissions of carbon dioxide (CO₂) (Francaviglia et al., 2012; Villarino et al. 2013) and also favors methane generation (França et al., 2012).

The agricultural activities in tropical regions play an important role in wildfires (Levine, 2003). In this latitudes, sugarcane is an important economic and food activity due to easy adaptability to meteorological and edaphological conditions. The potential of this crop to trap CO₂ it is comparable to tropical forests (Aguilar et al., 2013). However, the practice of sugarcane burning during the harvest period generate pollutants as monoxide carbon (CO), nitrogen monoxide (NO), sulfur dioxide (SO₂) and particulate matter (PM) among others (Vilaboa and Barroso 2013; Senties-Herrera et al. 2014).

Mexico contribute with about 2% (112 Tg) of CO_2 global emissions (5716 Tg) generated by wildfires. During the 1990-2010 period the total area of Mexican surface affected by fires was 86,800 km², it means, 4% of national territory (Bautista et al., 2014). The burning of this crop it's practiced in more than 90% of the surface dedicated to this cultivation (7116 km²), thus represents 8% of the total burned area in this period.

During the burning of sugarcane, soil nutrients are released and this affect the soil health and the good development of the cultivation in the next crop period. Proof of

this is that during 1985-2012 while the crop surface growth, the production per hectare decrease in states like San Luis Potosí, Mexico (Aguilar-Rivera et al., 2013). The plume dispersion generated during the combustion process in the cane burning (Figure 33) depends of edaphological and meteorological parameters as precipitation, temperature, quantity of biomass burned, organic material and surface burned among others (Levine, 2003; Aguilar-Rivera, 2009).

a. Plume dispersion from sugarcane burning in Chetumal, Quintana Roo, Mexico in Junuary 2014 (Zafranet, 2014).

b. Wildfire in the cane city called Ciudad Valles, San Luis Potosí, Mexico, generated by high temperaturas (56 °C) in March 2013 (FerrizliveTV, 2013).

Figure 33. Fires generated in a cane Mexican cities due to the start of harvest period (a) and high temperatures (b).

The methane is formed due to biogeochemical processes, particularly in the carbon cycle because of anaerobic process due to the carbon interaction with organic matter in the soil (Smith et al., 2001). When the cane is burned during the harvest a fraction

of C isn't oxide immediately to form CO₂ and contribute to produce methane (CH₄) (UNFCCC, 2015).

Currently there aren't official regulations in the country to control the methane concentrations in the atmosphere due to their direct affectation isn't in the health of people but rather in the exacerbation of the greenhouse effect, however, there are laws and agricultural development plans to promote the good practice to cultivate and harvest sugarcane and reduce the environmental impacts (LDSCA, 2005; DOF, 2014). Europe have the compromise of reduce their greenhouse emissions a 30% in 2020 (Diario Oficial de la Unión Europea, 2009) and the Environmental Protection Agency (EPA, 2015) has implemented measures to control directly the source emissions.

The United States through the Occupational Safety and Health Administration (OSHA) and the National Institute for Occupational Safety and Health (NIOSH) use limit methane concentrations for industrial purposes focus on care the health of workers (Table 26).

Exposure level (ppm)	Effect or symptom
1000	8 hours (Threshold Limit Value)
50,000 to 150,000	Potentially explosive
500,000	Asphyxiation

Table 26. Methane exposure level and effects (Alberta, 2004; NIOSH, 2009).

Mexico is one of the most important producers of saccharose, in fact, has been ranked sixth worldwide in cane production (Aguilar-Rivera, 2009). In 2011 contribute with 3.6% of the global production. The country shows a trend to increase their harvested area, however this wasn't proportional to the production growth in years before to 2012 and subsequently presented overproduction that hasn't economically

favorable due to the scarcity of alternative mechanisms to exploit the crop (DOF, 2014).

The growth of cane surface cultivated has caused an increase of area and biomass burned during the harvest period (DOF, 2014) causing a major release of methane to the atmosphere. The objective of this work is estimate and study the emissions of this greenhouse gas to analyze the dispersion and concentrations scenarios in the atmosphere.

5.2 Methodology

5.2.1 Area of Study

The sugarcane it's produced in 15 Mexican states and is distributed in sugarcane mills (Figures 34 and 35). The burned surface represent more than 90% of harvested surface in most of the sugarcane supply zones (SAGARPA, 2007), only in Santa Clara, located in Michoacan State it's practice the 100% of green crop (Table 27).

Figure 35. Number of sugarcane supply zones by state.

Table 27	7. Classification of sugarcane supply zones, ordered	according to Figure 35 (For example,
	the first 22 are located in Veracru	uz State).

No.	Sugarcane supply zones	Harvested area burned (%)	No.	Sugarcane supply zones	Harvested área burned (%)
1	Central Progreso	97.20	30	Los Mochis	94.99
2	Cuatotolapan	94.13	31	Alianza Popular	91.17
3	El Carmen	90.00	32	Plan de Ayala	77.26
4	El Higo	80.60	33	Plan de San Luis	86.66
5	El Modelo	96.46	34	San Miguel del Naranjo	80.00
6	El Potrero	97.52	35	San Rafael del Pucte	88.54
7	La Independencia	90.00	36	Atencingo	92.79
8	La Concepción	90.00	37	Calipam	96.00
9	La Constancia	93.37	38	Adolfo López Mateos	99.20
10	La Gloria	99.06	39	El Refugio	96.75

No.	Sugarcane supply zones	Harvested area burned (%)	No.	Sugarcane supply zones	Harvested área burned (%)
11	La Providencia	98.11	40	Pablo Machado	99.16
12	Mahuixtlán	90.00	41	El Molino	100.00
13	Motzorongo	90.00	42	Puga	98.10
14	San Cristóbal	85.93	43	Casasano	95.81
15	San Gabriel	90.00	44	Emiliano Zapata	94.65
16	San José	55.16	45	Santa Clara	0.00
17	San Miguelito	91.00	46	Pedernales	87.20
18	San Nicolás	90.00	47	Lázaro Cárdenas	87.20
19	San Pedro	68.82	48	Bellavista	92.10
20	San Francisco	91.63	49	José María Morelos	98.58
21	Tres Valles	90.00	50	Melchor Ocampo	92.10
22	Zapoapita	88.25	51	San Francisco Ameca	89.18
23	AA Saenz Xico	78.11	52	José María Martínez Tala	95.00
24	El Mante	91.25	53	Tamazula	97.80
25	Pte. Benito Juárez	87.03	54	Quesería	93.50
26	Santa Rosalía	95.36	55	Huixtla	98.50
27	Azsuremex Tenosique	92.50	56	Pujiltic	98.50
28	El Dorado	89.24	57	La Joya	90.60

No.	Sugarcane supply zones	Harvested area burned (%)	No.	Sugarcane supply zones	Harvested área burned (%)	
29	La Primavera	98.90				

5.3 Methane Estimation

The cane production data and harvested areas was obtained from National Commission for Sustainable Development of Sugarcane (CONADESUCA, 2014) for the following periods: 2011/2012, 2012/2013 and 2013/2014 which were written in this way because every harvest cycle begins in October and finish in July of the following year (Campos-Ortiz y Oviedo-Pacheco, 2013). The National Emissions Inventory of Greenhouse Gases has considered in the field burning of agricultural residues category only the sugarcane crop to estimate their emissions due to reliability of the data available for the calculation (INECC, 2010).

The methane emissions are estimated using the Seiler and Crutzen methodology (1980) updated by Levine (2003). The first step is to calculate the total mass of vegetation burned (M) (Equation 23)

$$M = A \times B \times E \tag{23}$$

where *A* is the burned area, *B* is the quantity of biomass burned, *E* is the burn efficiency. Secondly, it is necessary to know the carbon biomass released to the atmosphere (M(C)) (Equation 24) where *C* is the percentage of carbon contained in the biomass.

$$M(C) = C \times M \tag{24}$$

The CO₂ mass ($M(CO_2)$) released during the burning it is in function of carbon losses where *CE* is the efficiency in the combustion process of carbon fraction generated by carbon dioxide respect to total of released carbon during the burning (Equation 25).

$$M(CO_2) = CE \times M(C) \tag{25}$$

From this result it can know the mass released or emission of other species generated for the burning of agricultural waste, particularly sugarcane, where $RE(CH_4)$ is the methane emission relation, which means the methane emission which respect to carbon dioxide production during the burning of sugarcane (Equation 26). For tropical zones have the value of 0.32% (Table 26).

$$M(CH_4) = RE(CH_4) \times M(CO_2)$$
⁽²⁶⁾

Seiler-Crutzen standard values	Values
Burn efficiency (<i>E</i>)	0.4
Percentaje of carbon biomass (<i>C</i>)	0.45
Efficiency in the combustion process (<i>CE</i>)	0.9
Methane emission relation (RE_{CH4})	0.0032

Table 28.	Reference	values	used in th	e emissions	methodoloav	(Levine.	2003)
						<u>(=</u>)	

Estimación de las emisiones de metano en México durante la quema de caña de azúcar y escenarios de su dispersión en la atmósfera

5.4 Methane Dispersion Model

The meteorological conditions and dispersion of methane in the atmosphere was simulated by using the Weather Research and Forecasting Model (WRF). The Pennsylvania State University and the National Center developed it for Atmospheric Research (NCAR). Other contributors was Academic, Research and Government Institutions as the University of Oklahoma, the Federal Aviation Administration and the Naval Research Laboratory (Dudhia et al., 2003; Skamarock, 2005).

The WRF is a non-hydrostatic, numerical and three dimensional model (Jacobson, 2005) in which the σ coordinate is used in the physics equations to determine vertical levels (Skamarock et al., 2008). The model is initiated with meteorological global data obtained from the National Center for Environmental Prediction (NCEP) in which the resolution is of 100 km × 100 km with a temporal resolution of six hours per file (Iredell, 2002).

The physics part include the microphysics of WSM 6-class graupel scheme, that consider parameters as condensation, precipitation and latent heat (Hong and Jade, 2006); also it's included the radiation schemes of RRTM (Rapid Radiation Transfer Model) to consider long wave radiation and Dudhia (1989), to also consider short wave radiation.

The chemical module coupled to WRF is the WRF/Chem, created by the National Oceanic and Atmospheric Administration (NOAA) (Grell et al., 2005). The mechanisms used was "RADM2 and MADE/SORGAM using KPP library" (WRF/Chem, 2013) related respectively to 1) the Regional Acid Deposition Model (second generation) (Stockwell et al., 1997); and 2) the Aerodynamic Organic Model and Secondary Organic Model for Aerosol (Ackermann et al., 1998). This mechanisms was used due to their properties of consider air pollutants, oxidant agents and methane anthropogenic emissions in atmospheric models (Carbajal et al., 2015; WRF/Chem, 2013).
The CH₄ emissions input initially are calculated in tons per year (t/yr) units, but the WRF require the data in mole of methane per hour (mol/hr) (1 mol of CH₄ correspond to 16 grams). Is necessary to sum to every value the background emissions obtained in this case from the background concentrations that are representative of the area and/or occur naturally (EPA, 2008). According to various authors, the average global methane concentrations oscillate between 1.7 ppmv and 1.85 ppmv depending of the study year. In these case for convenience it's occupied the first mentioned (Sonnemann and Grygalashvyly, 2014; van et al., 2000). The consideration is used to obtain more confident results comparable with real data (Carbajal et al., 2015)

The emissions values are located in three different sugarcane supply areas (Table 29 and Figures 4a, 4b and 4c) where it has NASA satellite images of plume dispersion presented during wildfires generated with a resolution of 1 km \times 1 km. The grid of every domain in the WRF has the same resolution (Figure 36). The total time modelation took 24 hours for San Luis Potosí starting at 0 hrs in April 27,2011 with an area of 210 km \times 210 km; 24 hours for Jalisco initiating at 0 hrs in June 10, 2012 with an area of 250 km \times 200 km; and 324 hours for Tabasco, beginning at 0 hrs in May 18, 2013 with an area of 220 km \times 220 km.

The modeling dates in UTC hourly that correspond with the time in which the satellital images was taken for validation are April 27, 2011 at 19:50 hrs; June 10, 2012 at 17:20 hrs; and May 18, 2013 at 13:00 hrs UTC respectively (Table 29 and Figure 36). Accordint to the GMT hourly (used for Mexico) this times correspond to 13:50 hrs, 11:20 hrs and 7:00 hrs correspondingly in the WRF modelation.

It seeks to obtain the satellite images in which most of the hot spots match with sugarcane areas cultivated, but some of them are originated for other reasons and it's unknown the burning duration and the time in which started. Also, according to other studies, a finer grid resolution (Lee and Fernando, 2004) and the orography conditions can cause difficulties in the model validation.

For that reason, according to topography conditions in every estudy area (Figure 36), is considered to build scenarios in which input methane emissions take place

every hour during all modelling period. The total of cultivated sources located in every study area emit simultaneously. Some meteorological parameters are evaluated due to their influence in the plume dispersion behavior as wind speed and direction, relative humidity and temperature.

The methods used for evaluation is the root mean square error (RMSE) and mean bias (MB) because it has proven to be statistically reliable to evaluate these parameters in the country (Pineda et al., 2014; Zhang et al., 2009; Carbajal et al., 2015). Also, these strategies have been used for WRF evaluation at high resolutions (1 km) (Mentes et al., 2013; Singh et al., 2015).

Table 29. Source emissions considered in the WRF. The sugarcane supplies zones are classified as follow: 1) For San Luis Potosi State AP is Alianza Popular, PA is Plan de Ayala, PS is Plan de San Luis, SMN is San Miguel del Naranjo; 2) For Jalisco State, JMM is José María Morelos, MO is Melchor Ocampo; and for Tabasco State, PBJ is Pte. Benito Juárez, SR is Santa Rosalía and AT is Azsuremex Tenosique.

Sugarcane supply zone polygon	Central Longitude	Central Latitude	Burned Hectares	Sugarcan e supply zone polygon	Central Longitude	Central Latitude	Burned Hectares
1_AP	-99.389	21.987	49.299	7_SMN	-99.267	22.604	115.082
2_AP	-99.272	21.759	2270.992	8_SMN	-99.366	22.567	6615.108
3_AP	-99.182	22.021	1057.355	9_SMN	-99.121	22.741	116.122
4_AP	-99.404	21.930	236.746	10_SMN	-99.379	22.852	4531.844
5_AP	-99.216	21.997	478.190	11_SMN	-99.315	22.376	371.759
6_AP	-99.248	22.108	237.388	12_SMN	-99.416	22.485	398.897
7_AP	-99.408	21.877	109.636	13_SMN	-99.207	22.507	2004.207
8_AP	-99.386	21.899	39.242	1_JMM	-104.550	19.744	20.910
9_AP	-99.270	21.972	10163.572	2_JMM	-104.591	19.681	21.290
10_AP	-99.134	21.834	1403.234	3_JMM	-104.574	19.646	38.225
11_AP	-99.393	22.009	19.36976	4_JMM	-104.519	19.405	666.894

Sugarcane supply zone polygon	Central Longitude	Central Latitude	Burned Hectares	Sugarcan e supply zone polygon	Central Longitude	Central Latitude	Burned Hectares
12_AP	-99.210	21.948	51.964	5_JMM	-104.527	19.560	4308.455
1_PA	-98.768	21.983	154.427	6_JMM	-104.433	19.446	1796.571
2_PA	-98.994	21.701	183.126	1_MO	-104.139	19.812	220.750
3_PA	-98.970	22.067	13.589	2_MO	-104.254	19.764	7579.198
4_PA	-98.960	22.155	9.229	PBJ_1	-93.621	18.187	26.391
5_PA	-98.966	22.123	41.898	PBJ_2	-93.710	18.106	126.968
6_PA	-99.037	21.895	15.686	PBJ_3	-93.684	18.094	80.048
7_PA	-98.922	21.728	417.906	PBJ_4	-93.555	18.123	985.236
8_PA	-99.126	22.271	248.610	PBJ_5	-93.545	18.017	13525.747
9_PA	-98.992	21.932	12482.753	SR_1	-93.336	18.080	224.762
1_PS	-99.314	22.147	858.174	SR_2	-93.426	18.111	8206.021
2_PS	-99.278	22.189	22.038	AT_1	-91.372	17.564	280.973
3_PS	-99.238	22.243	12821.071	AT_2	-91.352	17.612	102.640
1_SMN	-99.319	22.581	44.680	AT_3	-91.471	17.550	189.880
2_SMN	-99.082	22.441	32.740	AT_4	-91.228	17.510	241.670
3_SMN	-99.052	22.434	80.121	AT_5	-91.411	17.457	139.437
4_SMN	-99.097	22.589	4201.613	AT_6	-91.404	17.425	200.844
5_SMN	-99.162	22.701	82.433	AT_7	-91.367	17.503	530.196
6_SMN	-99.103	22.707	7.386	AT_8	-91.340	17.457	1214.229

a. Study domain in San Luis Potosí

b. Study domain in Jalisco

Figure 36. Areas of study, to the east of Mexico country in San Luis Potosí State (a), to the west in Jalisco State (b) and to the south in Tabasco State (c). The source emissions are marked with red dots.

5.5 Results and Discussion

5.5.1 National methane emissions

In the harvest periods analyzed, 2011/2012, 2012/2013 and 2013/2014 the higher total methane emissions correspond to Veracruz, followed by Jalisco and San Luis Potosí. They have the major production of sugarcane and harvested area with burning of the country (Table 26). Their emissions have the magnitude order of \times 10³ t for the first and \times 10² t for the other two (Figure 37).

The national total emissions correspond to 1.3×10^3 t of CH₄, comparable with emissions of other countries as Brazil, India and USA in which the estimations were realized with other methodologies (Table 30).

Figure 37. Total methane emissions of sugarcane generated by burning in Mexican cane States.

CH₄ emissions (t)	Cane country
(86 – 283)×10 ³	India (Venkataraman et al 2006)
16×10 ³	Sao Paulo, Brazil (França et al. 2014)
4.7×10 ³	USA (USDA, 2011)
1.3×10 ³	Mexico – This work: Seiler and Crutzen (1980) methodology updated by Levine (2003).

 Table 30. Comparison of methane emissions generated by sugarcane burning in different

In every sugarcane supply zone, it has a great variability of burned vegetation, carbon released and consequently methane emissions. According to Segura-Castruita et al. (2005), Veracruz, Jalisco and San Luis Potosí (From 1 to 22, 48 to 53 and 31 to 34 respectively in Figure 38) don't have the major quantity of soil organic carbon of the country, but according to DOF (2014) and to this study, they have the major levels of residue burned and cultivated areas (Figures 37 and 38).

Figure 38. Vegetation burned (■) and released carbon (▲) (A), (C) and (E). CH₄ emissions (B), (D) and (F) in every harvest period (●). The numbers in the horizontal axis represent a sugarcane supply zone and are ordered according to Figure 35 and Table 21.

5.5.2 WRF model validation

The meteorological parameters evaluated play an important role in the plume dispersion dynamic. The wind speed shows variability between the values measured and calculated for the three cities selected. The Root Mean Square Error (RMSE) is 8.6 m/s for San Luis Potosi, 17.88 m/s for Tabasco and 1.33 m/s for Jalisco (Figure 39). According to Carbajal et al. (2015) this values would be too large if used in a cell grid resolution of 3 km except for Jalisco.

The Mean Bias (MB) analysis shows the values of 1.63, 16.40 and -0.77 respectively, where the trend bias for Tabasco is too large if it is compared with other studies at the same resolution as the realized by Singh et al. (2015) in Singapore The orographic characteristics are important in the wind dynamics for 1 km resolution Morton et al. (2010). Mentes et al. (2013) explain that the confident decrease when the run period increase except for extreme winds in a 3 km resolution.

Other aspect that affect the confident of this results is consider the calm winds measured by the meteorological stations because are not represent an important physical change of the mass air in the study areas as it see particularly for San Luis Potosí and Jalisco.

a1) Wind speed calculated and measured by the WRF model and meteorological station respectively in San Luis Potosí.

a2) Wind direction calculated and measured by the WRF model and meteorological station respectively in San Luis Potosí.

b1) Wind speed calculated and measured by the WRF model and meteorological station respectively in Tabasco.

b2) Wind direction calculated and measured by the WRF model and meteorological station respectively in Tabasco.

c1) Wind speed calculated and measured by the WRF model and meteorological station respectively in Jalisco.

c2) Wind direction calculated and measured by the WRF model and meteorological station respectively in Jalisco.

Figure 39. Comparison of measured and calculated wind speed and wind direction at three different stations and places: San Luis Potosí (a1 and a2), Tabasco (b1 and b2) and Jalisco (c1 and c2).

Estimación de las emisiones de metano en México durante la quema de caña de azúcar y escenarios de su dispersión en la atmósfera The wind directions for San Luis Potosí are predominantly to the south, although there are a little differences between the values of the model and the station due to the WRF is not considering with exactitude the turbulence phenomenon due to orography (Figure 39a)

The same situation occur in the cane region of Jalisco, where the wind directions are to the east (Figure 39c). In contrast, The air has a good dispersion in Tabasco, where the winds direction was to the west (Figure 39b).

The temperature and relative humidity show results that are more confident during the study period. As it see in figures 40 and 41, the bias between the values measured by meteorological stations and calculated by WRF is 1.8 °C and 32% for San Luis Potosí; 0.27 °C and 8.3% for Tabasco; and 5.10 °C and 4.5% for Jalisco. In both cases, the principal bias it is present in San Luis Potosí due to orography conditions related with the Sierra Madre Oriental.

a)

c)

b)

Figure 40. Comparison of measured and calculated temperature at three different stations and places: San Luis Potosí (a), Tabasco (b) and Jalisco (c).

b)

a)

Meteorological Station
 •WRF Model

c)

Figure 41. Comparison of measured and calculated relative humidity at three different stations and places: San Luis Potosí (a), Tabasco (b) and Jalisco (c).

Although the statistical analysis for winds show important difference between the values measured and calculated, their directions during the study period are more confident, and this were observed in the comparison with satellite images from NASA (Figure 42).

The satellite image for San Luis Potosí (Figure 42a) shows a dispersion plume to the east predominantly, but the winds have three behaviors occurring at the same time (Figure 42b), in the north of the study site it have an air mass moving to the south, in the west area (Sierra Madre Oriental), an air mass is moving to the east, and in the south area, other air mass it is moving to the north. The las two are responsible of those methane concentrations (1.70001 ppmv) (Figure 42c) moving to the same direction of the dispersion plume showed in the satellite image.

Figure 42. Satellite images, wind dynamics and methane concentrations according to dispersion showed for San Luis Potosí (a), (b) and (c); Tabasco (d), (e) and (f); and Jalisco (g), (h) and (i).

The figures 42d, 42e and 42f show the situation occurred in Tabasco State, in which the plume dispersion is moving to the northwest and the winds with values in a range from 1.95 m/s to 3.9 m/s have this direction. The methane concentrations transported in this sense have the values of 3 ppmv and 3.5 ppmv. Finally, in Jalisco State, the air mass responsible of transport the methane concentrations in the same direction showed in satellite image it is moving to the west to the Pacific Ocean with a value of 1.7 ppmv (Figures 42g, 42h and 42i).

5.5.3 Methane dispersion

As it mentioned above, the orography play an import role in the air mass dynamic and the distribution of methane concentrations. For San Luis Potosí, the sugarcane supply zones are located between the mountains of the Sierra Madre Oriental in the valley and the wind converge her (Figure 43b) causing that the highest concentrations of CH₄ remain stuck (Figure 43a) due to a bad dispersion in the horizontal plane.

In the sugarcane area located in Tabasco State, the proximity of the sugarcane areas to the coast favors a good dispersion of methane generating low concentrations of this greenhouse gas in the study area (Figures 43c and 43d). In Jalisco State, although the cane cultivated are close to the Pacific Ocean, there are

many mountains that cause a convergence of CH₄ between these in the valley zone (Figure 43e). The winds moving to the west (Figure 43f and Figure 43h) contribute to transport it to the coast better than San Luis Potosí as it see comparing the concentration levels between both States.

The methane stelae dispersion for the three states analyzed increase during the day due to the wind dynamics and because in every scenery was considered hourly emissions during all study period. The closeness of the sugarcane supply zones with the Pacific Ocean (for Jalisco) and Mexican Gulf (for San Luis Potosí and Tabasco), let identify the temperature behavior in the morning, at middle day and in the afternoon due to the heat transport between the surface and the sea. The relative humidity levels is an important parameter that affects the burning efficiency during the combustion process.

The highest methane concentrations are located in the emission sources, but to see the dispersion range in every image the value palette is considering those values that cover the entire study domain (Table 31).

Sugarcane state	Concentrations range (ppmv)
San Luis Potosí	9.22x10 ⁻⁵ ppmv a 122.04 ppmv
Tabasco	8.74x10 ⁻⁵ ppmv a 32.74 ppmv
Jalisco	5.32x10⁻⁵ ppmv a 236.05 ppmv

 Table 31. Interval methane concentrations for every cane State analyzed

At 6:00 hrs, it can observe that methane transport has an east direction due to the air it is moving to the cold zone toward hot zone located in the Mexican Gulf (Figures 44a and 44d). At this time, the relative humidity shows an upward growth toward the sea (Figure 44g) due to the orography distribution (Figure 36a). As time increases, air mass from other places affect the methane dispersion. It observe that at 13:50 hrs the air is moving dominantly to the northeast and to the south (Figures 44e), where the highest temperature are distributed close to the source emissions. At

18:00 hrs the methane dispersion is moving mostly to the southeast and east (Figure 44c), and the highest temperature levels it has spread southward (Figures 44f) where the relative humidity has decreased (Figure 44i).

The Tabasco cane areas are located close to the sea as it can see in Figures 45a, 45b and 45c, due to a good methane dispersion toward north predominantly. As was discussed above, at morning (Figure 45d) the highest temperature levels are located in the Mexican Gulf, but these phenomena remains during the day (Figures 45e and 45f) due to the air is not affect in an important way for other air mass from other places. The relative humidity distribution is practically greater than 80% during the study period (Figures 45g, 45h and 45i).

Figure 45. Methane concentrations (a), (b) and (c); temperature (d), (e) and (f); and relative humidity (g), (h) and (i) for sugarcane areas in Tabasco at 07:00 hrs, 12:00 hrs and 18:00 hrs respectively.

In the study domain for Jalisco it can observed two air masses moving in different directions, firstly, close to the Pacific Ocean toward the south, and in the cane area is moving to the west predominantly (Figures 46a, 46b and 46c). As in San Luis Potosí (Figure 44) the hot air is in the sea at morning (Figure 46d), but due to orography there isn't a good methane dispersion and the heat remain between the mountains favoring a vertical methane transport (Figure 43e and 43f). The relative

humidity is increasing close to the surface during the day thanks to the humid winds from Pacific Ocean (Figures 46g, 46h and 46i).

Figure 46. Methane concentrations (a), (b) and (c); temperature (d), (e) and (f); and relative humidity (g), (h) and (i) for sugarcane areas in Jalisco at 07:00 hrs, 12:00 hrs and 18:00 hrs respectively.

5.6 Conclusions

This study shows an estimation of national methane emissions generated during sugarcane burning for three harvest periods, 2010/2011, 2011/2012 and 2012/2013. The results obtained serve as input data in WRF model to analyze the methane plumes dispersion, their concentrations and those meteorological parameters that

affect their behavior, particularly wind speed, temperature and relative humidity. The national total emissions obtained with the methodology of Seiler and Crutzen was 2×10^3 t (2 Gg) that is comparable with the emissions of other important cane countries. The surface burned during the harvest in most of the sugarcane supply zones was greater than 80% and the cane states with the highest production and harvested areas (Veracruz, Jalisco and San Luis Potosí) have the highest methane emissions too. To improve these estimations is necessary measure or calculate continuously the quantity of residue and carbon contained in the cane species cultivated in Mexico. In addition, a classification of hot spots that correspond to sugarcane burning is necessary. The domains used in the WRF model have a horizontal grid resolution of 1 km on more than 200 grid points for every cane zone. The model initialized with meteorological global data from the National Center of Environmental Prediction (NCEP) with temporal data of six hours, with hourly methane emissions in mol/hr units estimated in this study and 35 sigma vertical levels where was used the first level in this study. The numerical simulation began at 0 hours for every domain with a duration of 36 hours for San Luis Potosí and Tabasco and 24 hours for Jalisco. The chemical WRF module is considering a chemical mechanism that let incorporate the methane emissions. The concentrations that have a similar plume dispersion compared with NASA satellite images are 1.7 ppmv for San Luis Potosí and Jalisco, and 3.5 ppmv for Tabasco. The validation of winds speed show statistical values greater than of the other countries analyzed as the same resolution as Singapore. Some values measured by the meteorological stations, particularly for San Luis Potosí and Jalisco have winds with velocities close to zero, and the resolution of the orographic layers and land use is greater that the grid points resolution. The temperature and relative humidity have results that are statistically more confident. The thermodynamics force presented induce a convergence motions that favor an increase of CH₄ concentrations in San Luis Potosí and Jalisco except for Tabasco, in which the air mass circulation is better due to the altitude of their orography is lower than the other two countries. The range concentrations is of 9.22x10⁻⁵ ppmv a 122.04 ppmv for San Luis Potosí; 8.74x10⁻⁵ ppmv a 32.74 ppmv for Tabasco; and .32x10⁻⁵ ppmv a 236.05 ppmv for Jalisco.

Actually don't exist official laws that mention limit concentrations for certain time period due to not represent a healthy problem as other species, but their significance's in the greenhouse effect causing climatic variability let to know the importance of this studies to understand the roll of this gases in different geographic scales. The information generated in this work could be incorporate in a global database for studies that involve longer periods, or can be used as reference point in other studies realized in Mexico.

5.6 References

- Aguilar-Rivera N., Olvera V. L. A., Mendoza G. G., 2013. Evaluación de aptitud de tierras de cultivo de caña de azúcar en la Huasteca Potosina, México, por técnicas geomáticas. Revista de Geografía Norte Grande, 55: 141-156 pp.
- Aguilar-Rivera N. 2009. Ficha Técnica del cultivo de Caña de Azúcar. Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación. Link: <u>http://nutriciondebovinos.com.ar/MD_upload/nutriciondebovinos_com_ar/Arch</u> <u>ivos/File/CA%C3%91A_DE_AZ%C3%9ACAR, FICHA_T%C3%89CNICA.pdf</u> [November 2015].
- Alberta. 2004. Methane Safety. Agriculture and Forestry. Link: <u>http://www1.agric.gov.ab.ca/\$Department/deptdocs.nsf/all/agdex9038</u> [October 2015].
- Ackermann I. J., Hass H., Memmersheimer M., Ebel A., Binkowski F. S. and Shankar
 U. 1998. Modal Aerosol Dynamics Model for Europe: Development and First
 Applications. Atmospheric Environment. 32(17): 2981-2999 pp.

- Bautista B.F., Carbajal N., Pineda M. L. F. 2014. Estimation of Total Yearly CO₂
 Emissions by Wildfires in Mexico during the Period 1999-2010. Advances in
 Meteorology. Volume 2014, Article ID 958457, 8 p.
- Blake, N.J., D. R. Blake, B.C. Sive, T. T. then, F. S. Rowland, J. E. Collins, G. W. Sachse, and B. E. Anderson. 1996. Biomass burning emissions and vertical distribution of atmospheric methyl halide s and other reduced carbon gases in the South Ariantic region,/. Geophys. Res., 101, 24,151-24,164.
- Carbajal N., Pineda-Martínez L. F. and Bautista V. F. 2015. Air Quality Deterioration of Urban Areas Caused by Wildfires in a Natural Reservoir Forest of Mexico. Advances in Meteorology. Volume 2015, Article ID 912946, 13 p.
- Campos-Ortiz F. y Oviedo-Pacheco M. 2013. Study on the Competitiveness of the Mexican Sugar Industry. Banco de México. Working Papers. N° 2013-16.
- CONADESUCA. 2014. Reporte de avances de producción semanal. Link: <u>http://www.infocana.gob.mx/lista_boletines.php?t=1</u> [February 2015].
- Crutzen, P.J. and Andreae, M.O. 1990. Biomass Burning In the Tropics: Impact on Atmospheric Chemistry and Biogeochemical Cycles. *Science*, 250: 1669–1678 pp.
- DOF. 2014. Programa Nacional de la Agroindustria de la Caña de Azúcar 2014-2018. Mexico.
- Diario Oficial de la Unión Europea. 2009. Decisiones adoptadas conjuntamente por el parlamento Europeo y el Consejo. L 140/136. Sitio web: <u>http://eur-</u>

lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2009:140:0136:0148:ES:P DF Link: [March 2015].

- Dudhia J. 1989. "Numerical study of convection observed during the wintermonsoon experiment using a mesoscale two-dimensional model," *Journal of the Atmospheric Sciences*, vol. 46, no. 20, pp. 3077–3107.
- Dudhia J., Gill, Manning, Wang, Bruyere, Kelly, Lackey, 2003, PSU/NCAR Mesoscale Modeling System Tutorial Class Notes and User's Guide: MM5 Modeling System Version 3. Mesoscale and Microscale Meteorology Division. National Center for Atmospheric Research.
- EPA. 2008. Determination of background concentrations. EPA Guidelines. EPA

 838/08.
 South
 Australia.
 Sitio
 web:

 file:///C:/Users/Algara/Downloads/8369_background_concentrations_27nov08

 .pdf
 [Consulted el 25 de November del 2015].
- EPA. 2015. Clean Air Act Permitting for Greenhouse Gases. Sitio web: <u>http://www2.epa.gov/nsr/clean-air-act-permitting-greenhouse-gases</u> [Consultado el 19 de Agosto del 2015].
- França D., Longo K., Rudorff B., Aguilar D., Freitas S., Stockler R., Pereira G. 2014. Pre-harvest sugarcane burning emissions inventories based on remote sensing data in the State of Sao Paulo, Brazil. Atmospheric Environment. 99:446-456.
- Francaviglia R., Coleman K., Whitmore A. P., Doro L., Urracci G., Rubino M., Ledda L. 2012. Changes in soil organic carbón and climate change – Application of the RothC model in agro-silvo pastoral Mediterranean systems. Agricultural Systems, 112: 48-54 pp.

- Grell, G. A., Peckham, S. E., Schmitz, R., McKeen, S. A., Frost, G., Skamarock, W. C., and Eder, B. 2005. Fully coupled "online" chemistry within the WRF model, Atmos. Environ., 39, 6957–6975.
- Hong S. and Lim J. J. 2006. The WRF Single-Moment 6-Class Microphysics Scheme (WSM6). Journal of the Korean Meteorology Society. 42(2): 129-151.
- INECC. 2010. Actualización del Inventario Nacional de Emisiones de Gases de Efecto Invernadero 1990-2010, para el sector Agrícola. México.
- Iredell. 2002. About the Global Parallel System. NCEP/EMC. Global Modeling Branch. Sitio web: <u>http://www.emc.ncep.noaa.gov/gmb/para/parabout.html</u> [Consultado el 27 de Agosto del 2015].
- Jain N., Bhatia A., Pathak H. 2014. Emissions of Air Pollutants from Crop Residue Burning in India. Aerosol and Air Quality Research, 14: 422-430.
- Levine J.S. 2003. Biomass Burning: The Cycling of Gases and Particulates from the Biosphere to the Atmosphere. Treatise on Geochemistry, Volume 4. Editor: Ralph F. Keeling. Executive Editors: Heinrich D. Holland and Karl K. Turekian. pp. 347. ISBN 0-08-043751-6. Elsevier, 2003., p.143-158.
- LDSCA. 2005. Ley de Desarrollo Sustentable de la Caña de Azúcar. Diario Oficial de la Federación. México.
- NIOSH. 2009. Methane. RTECS #: PA1490000. CAS #: 74-82-8. National Institue for Ocuppational Safety and Health. Link: <u>http://www.cdc.gov/niosh-</u> <u>rtecs/pa16bc50.html</u> [November 2015].

- Mentes E. T. S., Unal E., Onol B., Unal Y. S., Yilmaz E., Sayinta M. and Goktepe N., Incecik S. 2013. Performance evaluation of the WRF Model for the Short Term Wind Energy Prediction System (SWEPS) for Turkey. The European Wind Energy Asociation. EWEA Wind Power Forecasting Technology Workshop Rotterdam, 4-5 December 2013. PO.0125.
- Pineda-Martínez L. F., Carbajal Noel, Campos-Ramos A., Aragón-Piña A. and García A. N. 2014. Dispersion of atmospheric coarse particulate matter in the San Luis Potosí, Mexico, urban area. Atmosfera. 27(1): 5-19.
- Sentíes-Herrera H. E., Gómez-Merino F. C., Valdéz-Balero A., Silva-Rojas H. V., Trejo-Téllez L. I., 2014. Agro-Industrial Sugarcane System in Mexico: Current Status. Challenges and Opportunities. Journal of Agricultural Science, 6(4): 26-54 pp.
- Streets, D.G., Yarber, K.F., Woo, J.H. and Carmichael, G.R. 2003. An Inventory of Gaseous and Primary Aerosol Emissions in Asia in the Year 2000. *J. Geophys. Res.*, 108: 8809–8823.
- SAGARPA. 2007. Programa Nacional de la Agroindustria de la Caña de Azúcar. 2007-2012. Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación.
- Singh J., Yeo K., Liu X., Hosseini R. and Kalagnanam J. R. 2015. Evaluation of WRF model seasonal forecasts for tropical region of Singapure. Adv. Sci. Res., 12, 69-72.
- Smith R., Smith. 2001. Ecología. 4ta edición. West Virginia University, Emeritus. University of Virginia. Traducción: Francesc Mezquita, Eduardo Aparici.

Universitat de València. Editorial: Addison Wesley. Pearson Education, S.A., Madrid.

- Sonnemann G. R. and Grygalashvyly M. Global annual methane emission rate derived from its current atmospheric mixing ratio and estimated lifetime. Ann. Geophys. 32: 277-283.
- Stockwel W. R., Kirchner F., Kuhn M., Seefeld S. 1997. A new mechanism for regional atmospheric chemistry modeling. Journal of Geophysical Research. 102:25,847-25,879.
- Skamarock W. C., Klemp J. B., Dudhia J., Gill D. O., Barker D. M., Duda M. G., Huang X. Y., Wang W., Powers J. G. 2008. A Description of the Advanced Research WRF Version 3. NCAR/TN-475+STR. NCAR Technical Note. Mesoscale and Microscale Meteorology Division. National Center for Atmospheric Research. Boulder, Colorado, USA.
- Skamarock W., Klemp, Dudhia, Gill, Barker, Wang, Powers. 2005. A Description of the Advanced Research WRF Version2. NCAR/TN-468+STR. NCAR Technical Note. Mesoscale and Microscale Meteorology Division. National Center for Atmospheric Research. Boulder, Colorado, USA.
- UNFCCC. 2015. Manual del Sector de la Energía. Quema de Combustibles. 2015. Link: <u>https://unfccc.int/files/national_reports/non-annex_i_natcom/training_material/methodological_documents/application/pdf</u> /7-bis-handbook-on-energy-sector-fuel-combustion.pdf [November 2015].
- USDA. 2011. U.S. Agriculture and Forestry Greenhouse Gas Inventory. 1990-2008. United States Department of Agriculture. U.S.A.

- Villarino S. H., Studdert G. A., Laterra P., Cendoya M. G. 2014. Agricultural impact in soil organic carbón content: Testing the IPCC carbon accounting method for evaluations at country scale. Agriculture, Ecosystems and Environment, 185: 118-132 pp.
- Vilaboa A. I., Barroso L. A. 2013. Contaminación ambiental por quema de caña de azúcar. Un estudio exploratorio en la región central del estado de Veracruz. Memorias de ponencias Think Green 2013: Crecimiento verde, retos y oportunidades para México.
- van H.J., Baede A. P. M., Meyer L. A. and Ybema R. 2000. Non-CO₂ Greenhouse Gases: Scientific Understanding, Control and Implementation. Earth Sciences
 & Geography. Environmental Sciences. 425-432 DOI: 10.1007/978-94-015-9343-4.
- WRF/Chem. 2013. WRF/Chem. Version 3.5. User's Guide.0020. National Oceanic and Atmospheric Administration. The Cooperative Institute for Research in Environmental Sciences. The University Corporation for Atmospheric Research. The National Center for Atmospheric Research. The Mac Planck Institute. The University of Chile. Centro de Previsão de Tempo e Estudos Climáticos.
- Zhang V., Dubey M.K., Olsen S. C., Zheng J. and Zhang R. 2009. Comparisons of WRF/Chem simulations in Mexico City with ground-based RAMA measurements during the 2006-Milagro. Atmos. Chem. Phys. 9: 3777-3798.

6. Discusión general de los resultados obtenidos

6.1 Emisiones de dióxido de carbono, metano y óxido nitroso

La primera parte del objetivo general de esta investigación consiste en estudiar las emisiones de CH₄ generadas por la quema de caña de azúcar en México durante los periodos de cosecha 2011/2012, 2012/2013 y 2013/2014. La metodología de Seiler y Crutzen (1980) actualizada por Levine (2003) (capítulo 5) ha sido ocupada en México para estimar las emisiones a la atmósfera durante incendios forestales en distintos tipos de uso de suelo, incluido el de uso agrícola (Bautista et al., 2014).

Las emisiones de CH₄ por quema de residuos agrícolas se han estimado en México desde 1996 con la metodología propuesta por el PICC (2000; 1996). Los resultados obtenidos a partir de ésta sobreestiman a los obtenidos con el método de Seiler y Crutzen (1980) ya que sus emisiones totales tienen un orden de magnitud de ×10⁵ t, mientras que la primera de ×10³ t (capítulo 5). Esta diferencia se presenta también al comparar las emisiones de CO₂ obtenidas con ambos métodos (Figura 47).

Las emisiones de N₂O, únicamente fueron calculadas con la metodología del PICC debido a que los GEI estimados con el método de Seiler y Crutzen favorecen los cálculos para los compuestos de carbono. Los resultados obtenidos representan el 1% con respecto al metano, pero como su potencial de calentamiento es 310 veces mayor que el CO₂ esto lleva a obtener resultados más representativos en los cuales se observa que el N₂O en t de CO₂ eq., constituye el 20% de las emisiones de CH₄ también expresado en las mismas unidades.

La liberación de estos GEI a la atmósfera viene acompañada de contaminantes atmosféricos como dióxido de azufre (SO₂), monóxido de carbono (CO), óxidos nitrosos (NO_x) y material particulado (PM, por sus siglas en inglés), además de que se puede formar ozono troposférico (O₃) a partir de los anteriores. Por un lado la salud humana se puede ver afectada por estos gases y partículas, pero en contraste se ha encontrado que la caña de azúcar tiene la capacidad de protegerse de estos mediante del cierre parcial de sus estomas (Reilly, 2013).

Figura 47. Emisiones de CO₂ obtenidas a partir de Seiler y Crutzen (■) y el IPCC (▲): (a), (b) y (c). Emisiones de CH₄ calculado con metodologías de Seiler y Crutzen (●) y el IPCC (♦): (d), (e) y (f).

La principal diferencia entre ambos métodos radica en que el PICC toma en cuenta la producción total de caña sin importar si fue cosechada o no con quema, mientras que Seiler y Crutzen utiliza el área quemada y el cultivo realmente quemado. Ambos estiman la cantidad de biomasa quemada en base al residuo contenido por la planta.

En este estudio se considera como valor de referencia que el 29% es el residuo contenido en el total de biomasa de la caña en base a las dos variedades más cultivadas por unidad de área en el país, que son la CP 72-2086 y la MEX 69-290 (Hassuanni 2001; Herrera et al. 2010).

Actualmente no se ha realizado una comparativa de ambos métodos a mayor profundidad. Boschetti (2015) y Herold et al. (2015) mencionan que la metodología de Seiler y Crutzen se utiliza cuando los resultados se van a integrar a análisis espaciales.

Las técnicas propuestas por el PICC se dividen en dos niveles (Tier 1 y Tier 2) de acuerdo a la disponibilidad de información para alimentar a los modelos. En la categoría de emisiones por "quema por residuos agrícolas" solamente se ha publicado el nivel 1, que favorece el uso de valores de referencia estándar para los cálculos, que en su mayoría pudieran no ser tan representativos de la zona de estudio (capítulo 3).

En el capítulo 3 se menciona que aunque en México se han realizado esfuerzos por obtener factores de emisión específicos para la quema de caña de azúcar, estos solamente son representativos del sitio donde se obtuvieron experimentalmente, ya que las técnicas de cultivo varían entre cada estado cañero (Flores et al. 2016; Ordoñez-Díaz y Hernández Tejeda, 2006).

La variabilidad de las emisiones totales anuales obtenidas por zona de abasto cañero se debe entre otras cosas al área cosechada con quema, a los nutrientes disponibles en el suelo, a las condiciones meteorológicas (p. ej. Humedad y velocidad del viento) y a la cantidad de biomasa quemada.

Veracruz, Jalisco y San Luis Potosí son los tres estados con mayor producción y por ende con las mayores emisiones de CH₄, N₂O y CO₂ por quema de caña. Estos no poseen los más altos niveles de carbono orgánico y nitrógeno en suelo (Segura-Castruita et al., 2005), pero si son los que cuentan con la mayor superficie para sembrar dicho cultivo.

La caña de azúcar es un tipo de planta C4, lo que significa que tanto el incremento en las emisiones de CO₂, CH₄ y N₂O en la atmósfera como el aumento en los niveles de temperatura dentro de un rango de 25 °C a 30 °C favorecen el rendimiento en su producción. Esto se debe a que fisiológicamente es adaptable a este fenómeno y a los tipos de climas con baja humedad (Reilly, 2013).

En base a lo anterior se tiene el caso de la caña que se ha adaptado a los eventos de sequía discutidos para San Luis Potosí (capítulo 3) (Flores et al., 2016). La quema de este cultivo durante la escases de recursos hídricos favorece un incremento en la liberación de C y N, precursores de la generación de CH₄ y N₂O.

La pérdida de estos nutrientes afecta la salud del suelo y a los siguientes periodos de cosecha tal y como se analizó en dicho estado para el periodo 1990-2010 (capítulo 3).

En diversos estudios y manuales ((USDA, 2011; PICC, 2000; 1996) se menciona que el CO₂ liberado por la quema de residuos agrícolas es totalmente recuperable durante el siguiente periodo de cosecha y gracias a este balance no es necesaria la cuantificación de sus emisiones.

La caña quemada en la cosecha provoca que haya pérdida de nutrientes, ya que la mayor parte del residuo del cultivo no regresa al suelo para fertilizarlo. De manera natural no se compensa el carbono perdido y este decrecerá un 10% cada ciclo de la caña hasta que se alcance un nuevo equilibrio, que representaría el 70% del valor inicial (Egeskog y Gustafsson, 2007).

Con esta discusión de los resultados de emisiones obtenidos se ha presentado un panorama amplio del papel que juega el metano frente a otros GEI (N₂O y CO₂) y en conjunto se identificaron sus repercusiones sobre el suelo, la atmósfera y en el cultivo de la caña de azúcar.

Aunque los resultados de las emisiones totales abarcan únicamente tres periodos de cosecha, las condiciones en que se presentan vienen repitiéndose en el país desde los años 60's (Aguilar-Rivera 2013), por tal razón su análisis puede servir para identificar el papel que juega el cultivo de la caña de azúcar ante el cambio climático.

6.2. Modelado de metano en las zonas de estudio

La segunda parte del objetivo general consiste en el estudio del transporte y dispersión de metano en la atmósfera. En la modelación realizada se seleccionaron los estados de Jalisco, San Luis Potosí y Tabasco debido a que hubo imágenes satelitales de la NASA accesibles para comparar sus plumas de dispersión con las obtenidas a partir del WRF.

Otra ventaja de haber trabajado con estas zonas es que espacialmente son representativas de toda la zona cañera del país, ya que la primera se encuentra aledaña al Océano Pacífico, la segunda al Golfo de México y la tercera se ubica al sur del país respectivamente. Aunque para futuros estudios se pueden analizar las regiones cañeras del centro, cuyo rendimiento por hectárea ha sido de los más altos en los últimos años.

Los rangos de temperaturas obtenidos en cada modelación fueron de 14 °C a 45 °C para San Luis Potosí, de 15 °C a 30 °C en Tabasco y 12 °C a 28 °C para Jalisco (capítulo 5). Se observa que en el primero se alcanzaron temperaturas por encima de lo que necesita la caña de azúcar para su buen desarrollo (30 °C) (Reilly, 2013; Aguilar-Rivera, 2009). Un área de oportunidad es precisamente estudiar que tanto contribuyen los GEI analizados y además el vapor de agua en la obtención de esta información.

Los niveles de humedad relativa alcanzados en los días modelados permiten identificar que en San Luis Potosí se tienen los valores más bajos (10% a 60%); en Tabasco osciló entre el 45% y 90%; y en Jalisco estuvo entre 45% y 75% (capitulo 5). El vapor de agua tiene la capacidad de absorber radiación solar de onda corta disminuyendo la cantidad de energía que incide en la superficie (Rondanelli, 2008). Esto significa que en San Luis Potosí hay una mayor posibilidad de que los suelos absorban energía y ésta contribuya en el proceso de evapotranspiración.

En el capítulo 3 se discutió que en dicho estado se ha incrementado el flujo de vapor de agua hacia la atmósfera por encima de los niveles de precipitación. Como consecuencia se han reducido así los recursos hídricos y favorecido una mayor eficiencia en el proceso de combustión y de pérdida de nutrientes del suelo durante la quema de caña (Flores et al., 2016).

La orografía juega un papel muy importante en la dinámica de los vientos. San Luis Potosí presentó la mayor convergencia de masas aire en la zona cañera, mientras que en Tabasco hubo vientos con direcciones más homogéneas. Jalisco presentó un comportamiento combinado de estos dos fenómenos, es decir, que los vientos iban siendo más homogéneos conforme se acercaban a la costa.

El análisis de este parámetro representa un área de oportunidad para identificar cuáles pueden ser las técnicas más eficientes de la quema de caña (de Araújo, fecha) en función de la velocidad y dirección del viento. Desafortunadamente en México no hay regulaciones oficiales específica que establezcan como quemar dicho cultivo (Chávez y Bermúdez, 2006), aunque si existe una Norma Oficial Mexicana que busca regular de manera general los incendios en zonas forestales y agrícolas (capítulo 1).

Los reportes meteorológicos de cada mes correspondiente a los días modelados ayudan a demostrar que los cálculos del WRF para cada parámetro meteorológico analizado son confiables. Por ejemplo, todas las rosas de vientos realizadas a partir de los datos estimados por el modelo muestran que las direcciones de los vientos dominantes en cada zona de estudio son las mismas que las obtenidas con los datos medidos por las estaciones meteorológicas (SMN, 2011; 2012; 2013)

Los niveles de precipitación obtenidos el 27 de abril de 2011 (fecha de modelación para San Luis Potosí) son menores a 0.5 mm y por ende el modelo calculó niveles de humedad relativa menores al 30%. En dicho año hubo sequía, y por ende la temperatura máxima obtenida fue superior a los 45 °C tanto por la estación meteorológica, el reporte del Servicio Meteorológico Nacional (SMN) y el modelo (SMN, 2011).

En la región cañera de Tabasco se modeló el día 18 de mayo del 2013 y se obtuvieron valores de la humedad relativa superiores al 70%, tanto por la estación meteorológica como por el modelo. Esto debido a que los niveles de precipitación mensual en dicha región fueron superiores a los 90 mm. El reporte del SMN y el WRF indican que los valores de temperatura para este mes oscilaron entre los 25 °C y 35 °C (SMN, 2013).

Los niveles de precipitación para la zona cañera de Jalisco estuvieron en un rango de 90 mm a 150 mm, tal que los niveles de humedad relativa también se
mantuvieron altos (entre 60% y 80%) al igual que en Tabasco. La temperatura osciló entre 20 °C y 35 °C tal y como lo reportó el SMN, lo midió la estación meteorológica y lo calculó el modelo (SMN, 2012).

La comparación de los resultados estadísticos obtenidos con los métodos de la Raíz del Error Cuadrático Medio (RECM) y la tendencia del sesgo BIAS aplicados al WRF muestran resultados variables. Por ejemplo, en Singapur (Singh et al., 2015) hicieron un estudio similar a la misma resolución que en este trabajo (1 km² por celda) y para la temperatura se obtuvo un BIAS de -1.16 °C y una RECM de 1.75 °C. En San Luis Potosí fueron de 1.8 °C y 8.2 °C respectivamente; en Tabasco fueron de 2.8 °C (BIAS) y 7.1 °C (RECM); y en Jalisco fueron de 5.1 °C (BIAS) y 6.7 °C (RECM) (Tabla 32).

Parámetro	San Lui	s Potosí	Tab	asco	Jal	isco	Sing	Japur
	RECM	BIAS	RECM	BIAS	RECM	BIAS	RECM	BIAS
Velocidad de vientos (m/s)	8.6	1.6	18.5	17.8	1.3	0.7	1.34	0.64
Temperatura (°C)	8.2	1.8	7.1	2.8	6.7	5.1	1.75	-1.1
Humedad relativa (%)	43	32	25.8	14.4	11.4	4.5	12.62	9.2

 Tabla 32. Resultados estadísticos de la RECM y BIAS obtenidos en cada zona modelada, comparados con un estudio a la misma resolución en Singapur.

El resultado estadístico más cercano a los obtenidos en Singapur corresponde al BIAS. En base a esta comparación, el parámetro más confiable es el de temperatura. El estado que muestra los resultados de velocidad de vientos y humedad relativa más cercanos al estudio de referencia es Jalisco. La diferencia entre las condiciones de este estudio y el de dicho país es que se incorporaron más dominios anidados y se actualizaron los mapas de tipo de uso de suelo. Además, sus condiciones orográficas no son tan complejas como en México (Tabla 32) (Singh et al., 2015).

Integrando los análisis realizados a partir de los reportes del SMN (2011; 2012; 2013), el estudio en Singapur (Singh et al., 2015) y considerando las diferencias en las condiciones del modelado de dicha investigación con este trabajo se concluye que el modelo en general es confiable y que hay áreas de oportunidad para futuras investigaciones.

Las imágenes satelitales utilizadas tienen una resolución de 1 km al igual que los dominios construidos con el WRF (capítulo 5). Los incendios mostrados en dichas imágenes fueron generadas por diversas causas, por lo que no todos corresponden a la quema de caña de azúcar.

Las concentraciones de metano calculadas por el WRF en las áreas de estudio están conformadas por dos tipos de valores: 1) las de fondo, que ocurren de manera natural (EPA, 2008) y tienen un valor de 1.7 ppmv (Sonnemann and Grygalashvyly, 2014; van et al., 2000); y 2) las obtenidas a partir de las emisiones estimadas con el método de Seiler y Crutzen (1980) (capítulo 5).

Actualmente no hay sensores de CH₄ conectados junto con las estaciones de calidad del aire administradas por el Sistema Nacional de Calidad del Aire (SINAICA), ni hay satélites especializados que midan las concentraciones de este GEI en las capas bajas de la atmósfera.

Las Normas Oficiales Mexicanas están hechas para regular las concentraciones de contaminantes criterio dañinos para la salud pero los GEI tienen afectaciones de mayor peso sobre la variabilidad del clima, por ello resulta más complejo para los gobiernos encontrar la manera de regularlos a escala regional y local.

Los convenios internacionales existentes como el Protocolo de Kyoto norman principalmente las emisiones dejando a consideración de cada país identificar las estrategias más adecuadas para mitigarlos. La Unión Europea y los Estados Unidos tienen leyes que buscan regular las emisiones de GEI (capítulo 1)

La parte final del objetivo general hace mención a "identificar el papel que juega dicha actividad agrícola en la toma de decisiones sobre el cambio climático". Aunque

los resultados mostrados aquí abarcan periodos cortos de tiempo, estos pueden servir para integrarse a las enormes bases de datos creadas por diversas instituciones como los de la Agencia de Protección Ambiental de los Estados Unidos (EPA, por sus siglas en inglés), la Organización Meteorológica Mundial (OMM).

Un ejemplo de que se está construyendo una base de datos propia son las que se están construyendo en el Laboratorio de Mitigación y Adaptación al Cambio Climático – Casa Viva adscrito a la Facultad de Ingeniería de la Universidad Autónoma de San Luis Potosí en diversos temas como sequía, calidad del aire y emisiones de gases de efecto invernadero (capítulo 1).

El análisis de dicha información puede servir como herramienta al Consejo Consultivo de Cambio Climático del estado de San Luis Potosí en la toma de decisiones a corto, mediano y largo plazo.

La sustentabilidad del cultivo de la caña de azúcar se refiere a la capacidad que tengan las zonas de abasto cañero para mantener niveles de producción adecuados que le permitan al cañero una vida digna y a la agroindustria de dicho cultivo mantener niveles competitivos que atiendan las necesidades alimentarias de la sociedad.

La pérdida de nutrientes del suelo por la quema de caña de azúcar es uno de los aspectos analizados en este trabajo que impiden alcanzar dicha sustentabilidad. El incremento en las emisiones de GEI debido a esta actividad puede servir como indicador de dicho aspecto, ya que la volatilización de nutrientes, particularmente de C y N, guardan una relación directa con las emisiones de CO₂, CH₄ y N₂O.

7. Conclusiones y recomendaciones

El hecho de que la caña de azúcar sea el único cultivo tomado en cuenta dentro del inventario de emisiones de GEI en México y de que la cantidad de biomasa disponible para su quema sea mayor que la de cualquier otro cultivo, lleva a concluir de manera general que tanto la metodología aplicada como los resultados obtenidos en este proyecto sirven para comprender la manera de analizar la relación entre el suelo, el cultivo de interés y la atmósfera en temas de cambio climático.

Los resultados obtenidos en este estudio sobre la quema de caña de azúcar en México se pueden dividir en tres etapas: 1) Caso particular de estudio en el que se investiga la pérdida de nutrientes del suelo; 2) Estimación de las emisiones totales anuales de los gases de efecto invernadero en el país; y 3) Concentraciones de metano en la atmósfera junto con aquellos parámetros meteorológicos involucrados.

En la primera etapa se observó que la pérdida de nutrientes del suelo, los eventos de sequía y la evapotranspiración guardan una relación con los niveles de producción de caña. Este estudio se realizó de manera particular para el estado de San Luis Potosí. Se identificó que durante el periodo 1990-2010 el incremento del estrés hídrico para la caña ocurrió simultáneamente con las mayores pérdidas de C y N. El rendimiento de producción por hectárea se vio afectado para los periodos de cosecha analizados a pesar del incremento en las hectáreas sembradas.

Para la segunda etapa se observó que las emisiones de GEI por quema de caña están intrínsecamente relacionadas con la cantidad de residuo disponible para el proceso de combustión. El orden de magnitud de la biomasa disponible que se obtuvo con los cálculos está en millones de toneladas anuales por región cañera estatal (donde un año de cosecha equivale a 9 meses, de octubre a junio).

Los zonas de abasto cañero de Veracruz, Jalisco y San Luis Potosí tienen la mayor cantidad de superficie cosechada y es su área dedicada a este cultivo la razón de los niveles de producción alcanzados en vez de su rendimiento de cosecha por hectárea.

Las regiones cañeras ubicadas al centro del país como Puebla, Michoacán y Morelos han mostrado en los últimos años tener el mayor rendimiento por hectárea en sus zonas de cultivo. Esto se debe a las variedades cultivadas y al tratamiento que se le ha dado al suelo para mantenerlo con una mayor cantidad de nutrientes en comparación con las demás regiones cañeras.

Las emisiones totales de CO₂ y CH₄ por quema de caña estimada tanto con la metodología del PICC como con la de Seiler y Crutzen, muestran órdenes de magnitud comparables con las obtenidas en las zonas cañeras de los principales países productores como Brasil (primer lugar), la India (segundo lugar) y Estados Unidos (noveno lugar).

El orden de magnitud de sus hectáreas dedicadas a dicho cultivo es el mismo que en el país (millones), aunque los niveles de producción de países como Brasil y la India está en cientos de millones de toneladas, mientras que en México y Estados Unidos se encuentra en decenas de millones.

En la tercera etapa se incorporaron al WRF las emisiones de CH₄ estimadas con la metodología de Seiler y Crutzen. Los principales parámetros meteorológicos que rigieron la dispersión de este GEI en la atmósfera fueron la velocidad y dirección de vientos, la temperatura y la humedad relativa.

Los análisis estadísticos realizados para validar el modelo muestran que en general es confiable, sobre todo para los parámetros de temperatura y dirección del viento. La confiabilidad de los resultados de humedad relativa y velocidad de vientos se puede mejorar si las bases de datos geográficas del WRF se actualizan para México, sobre todo en lo que se refiere a uso de suelo y orografía.

Las plumas de dispersión modeladas muestran direcciones similares a las obtenidas a partir de las imágenes satelitales de la NASA. Los rangos de concentraciones de CH₄ no presentan valores que puedan ser perjudiciales para la salud de las personas. Un área de oportunidad para futuras investigaciones es relacionar estos datos con los valores de radiación de onda larga mostrados en los reportes del SMN, ya que repercuten en la exacerbación del efecto invernadero. La metodología y los resultados obtenidos pueden complementar estudios que se realicen sobre la mejora de la eficiencia productiva en campo y fábrica; estudiar la eficiencia en el proceso de combustión; proponer alternativas para la reducción de emisiones y concentraciones de GEI y contaminantes atmosféricos; e investigar cómo se relacionan los puntos mencionados con el comportamiento de los parámetros meteorológicos involucrados.

Actualmente en México no hay suficientes estudios en donde se reporten las pérdidas de nutrientes como el C y el N. Instituciones como la SAGARPA o la SEMARNAT no miden de manera continua las propiedades edafológicas de los suelos. En base a esto, una recomendación podría ser la creación de un Servicio Edafológico Nacional que se encargara de reportar esta información a nivel nacional.

La cosecha verde (sin quema) implica gastos que no pueden cubrir la mayoría de los cañeros en México. A pesar de esto hay algunos factores que se pueden ir manejando para reducir las consecuencias de la quema, por ejemplo, que la decisión sobre cuando quemar una zona de cultivo no solo dependa del grado de madurez de la caña y su cantidad de sacarosa, sino también de que la dirección de los vientos no transporte dichos gases a zonas urbanas. Esto también depende del manejo adecuado de las técnicas de quema propuestas por países como Brasil y México.

Actualmente la Organización Meteorológica Mundial emite en sus reportes las condiciones globales actuales de los GEI y su relación con otros parámetros meteorológicos. En futuros estudios se podría proponer al SMN reportar las emisiones o concentraciones de estos gases junto con la relación que guarda con otros parámetros como la radiación de onda larga y la temperatura.

Bibliografía

- Ahrens C. 2009. Meteorology Today. An introduction to weather, climate and the environment. Brooks/Coole. Ninth Edition.
- Aguilar-Rivera N., Olvera V.A., Galindo M.G. 2013. Evaluación de aptitud de tierras de cultivo de caña de azúcar en la Huasteca Potosina, México, por técnicas geomáticas. Revista de Geografía Norte Grande 55, 141-156.
- Aguilar-Rivera N. 2009. Ficha técnica del cultivo de Caña de Azúcar. Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación (SAGARPA). San Luis Potosí, México.
- Aguilar-Rivera N., Algara Siller M. y Olvera Vargas L. A. 2015. Gestión del agua como factor limitante de productividad cañera en México. Revista de Geografía Norte Grande. 60: 135-152.
- Algara-Siller M, Contreras-Servin C. 2009. Drought and Climate Change on the Huasteca Region, San Luis Potosí, México. En: Part 3: Climate Change. Book: Environmental Engineering and Management (M. Theophanides & T. Teophanides). ATINER, Athens, Greece, pp. 287-301.
- Algara-Siller M., Contreras-Servin C. 2010. Boletín climático fitosanitario. Boletín
 No. 4. Climatología Fitosanitaria. Sistema Nacional de Vigilancia
 Epidemiológica Fitosanitaria. 30 de agosto de 2010.
- Algara Siller Marcos, Flores Jiménez David Enrique, Barrera Gutiérrez Cecilia. Inventario de emisiones a la atmósfera de metano (CH₄) y óxido nitroso (N₂O) generados por actividades agropecuarias en el estado de San Luis Potosí. Oficio No. RJJ.111.-0277. México, D.F., a 19 de julio del 2013.
- Alberta 2015. Methane Safety. Alberta. Agriculture and Forestry. Sitio web: <u>http://www1.agric.gov.ab.ca/\$Department/deptdocs.nsf/all/agdex90381</u> [Consultado el 4 de julio del 2015].

- ARW. 2015. Advanced Research WRF. Sitio web: http://www2.mmm.ucar.edu/wrf/users/ [Consultado el 28 de Agosto del 2015].
- Andreae M. O. 1991. In Global Biomass Burning. Atmosphere Climatic and Biospheric Implications; Levine, J. S. E. ; The MIT Press, Cambridge, M.A.
- ARW. 2012. ARW Version 3 Modelling System User's Guide. Weather Research & Forecasting. Mesoscale & Microscale Meteorology Division. National Center for Atmospheric Research. July 2012.
- Ackermann I. J., Hass H., Memmersheimer M., Ebel A., Binkowski F. S. and Shankar
 U. 1998. Modal Aerosol Dynamics Model for Europe: Development and First
 Applications. Atmospheric Environment. 32(17): 2981-2999.
- Bautista F., Bautista D., Delgado-Carranza C. (2009). Calibration of the equations of Hargreaves and Thornthwaite to estimate the potential evapotranspiration in semi-arid and subhumid tropical climates for regional applications. Atmósfera 22, 331-348.
- Bautista B.F., Carbajal N., Pineda M. L. F. 2014. Estimation of Total Yearly CO₂
 Emissions by Wildfires in Mexico during the Period 1999-2010. Advances in
 Meteorology. Volume 2014, Article ID 958457, 8 p.
- Bassols. 1996. Los orígenes de la ganadería en México. Instituto de Ecología, A.C. Ciencias. Núm. 44.
- Benvenuti F. A. 2005. Relação de índices espectrais de vegetação com a produtividade da cana-de-açúcar e atributos edáficos Dissertação (mestrado)
 Universidade Estadual de Campinas, Faculdade de Engenharia Agrícola 120 pp.
- Blake, N.J., D. R. Blake, B.C. Sive, T. T. then, F. S. Rowland, J. E. Collins, G. W. Sachse, and B. E. Anderson. 1996. Biomass burning emissions and vertical

distribution of atmospheric methyl halide s and other reduced carbon gases in the South Ariantic region,/. Geophys. Res., 101, 24,151-24,164.

- Boschetti L. 2015. Estimation of GHG emissions from biomass burning. Global Observation of Forest and Land Cover Dynamics. USA.
- Brunini O., Carvalho J.P., Brunini A. P. C., Junior A. L., Adami S. F. y Abramides P.
 L. G. 2010. Agroclimatic zoning and climatic risks for sugarcane in Mexico A preliminary study considering climate change scenarios. Proc. Int. Soc. Sugar Cane Technol. 27.
- Carmona J. C., Bolívar D. M., Giraldo L. A. 2005. El gas metano en la producción ganadera y alternativas para medir sus emisiones y aminorar su impacto a nivel ambiental y productivo. Rev Col Cienc Pec 18(1): 49-63.
- Cavazos G. A. 2012. Comunicado sobre el cultivo de arroz. Campo experimental Las Huastecas INIFAP. [Consulta personal realizada por correo electrónico el 3 de mayo del 2012].
- Carbajal N. 2015. Air Quality Deterioration of Urban Areas Caused by Wildfires in a Natural Reservoir Forest of Mexico. Advances in Meteorology. http://dx.doi.org/10.1155/2015/912946.
- CENICAÑA. 2010. Biblioteca Digital del Sector Agroindustrial de la Caña de Azúcar en Colombia (BiDiCAÑA). Sitio web: http://bibliotecadigital.cenicana.org/browse?type=subject&order=ASC&rpp=2 0&value=tallo [Consultado el 12 de Octubre del 2014].
- CCA. 2014. La quema de residuos agrícolas: fuente de dioxinas. Comisión para la Cooperación Ambiental, Montreal, Canadá, 6 pp.
- CIDCA. 2015. Centro de Investigación y Desarrollo de la Caña de Azúcar (C.I.D.C.A). Cámara Nacional de las Industrias Azucarera y Alcoholera. Sitio web: <u>http://www.camaraazucarera.org.mx/Cidca.aspx</u> [Consultado el 15 de Octubre del 2015].

Cunningham J. G. 1994. Fisiología veterinaria. Segunda edición.

- CMAS. 2015. Community Modeling & Analysis System. Sitio web: https://www.cmascenter.org/cmag/ [Consultado el 27 de Agosto del 2015].
- CONADESUCA. 2011. Porcentaje de producción de azúcar por entidad federativa. Zafra 2010/2011. SAGARPA. Sitio web: <u>http://www.cndsca.gob.mx/producciondeazucarporentidadfederativa.html</u> [Consultado el 12 de Octubre del 2015].
- CONADESUCA 2014. Reporte de avance de producción de caña y azúcar. Ciclo azucarero 2013/14. Reporte No.36. Semana No. 41. Del 5 al 12 de julio del 2014
 Días corrientes de zafra: 254. Final Report. Comité Nacional para el Desarrollo Sustentable de la Caña de Azúcar. Mexico City, 32 pp.
- De Carvalho L.C., Evangelista A.W.P., Oliveira K.M.G., Silva B.M., Alves M de C., Júnior A de S., Mirando W.L. (2013). FAO Penman-Monteith equation for reference Evapotranspiration from missing data. IDESIA. 31: 39-47.
- Diario Oficial de la Unión Europea, 2009, *Decisiones adoptadas conjuntamente por el parlamento Europeo y el Consejo*. L 140/136. Sitio web: <u>http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2009:140:0136:0148:ES:P</u> DF [Consultado el 9 de marzo del 2015].
- DOF. 1986. Productos para uso agropecuario Fertilizantes Sulfato de Amonio Especificaciones de calidad. Estados Unidos Mexicanos.
- DOF. 2002. Norma Oficial Mexicana NOM-021-SEMARNAT-2000 que establece las especificaciones de fertilidad, salinidad y clasificación de suelos, estudio, muestreo y análisis. Segunda sección. Estados Unidos Mexicanos.
- DOF. 2009. Norma Oficial Mexicana NOM-015-SEMARNAT/SAGARPA-2007, que establece las especificaciones técnicas de métodos de uso de fuego en los

terrenos forestales y en los terrenos de uso agropecuario. Estados Unidos Mexicanos.

- DOF. 2015a. Ley General de Cambio Climático. Últimas reformas publicadas el 13 de mayo del 2015. Diario Oficial de la Federación.
- DOF. 2015b. Programa Nacional de Normalización 2015. Secretaría de Economía. Estados Unidos Mexicanos. Sitio web: <u>http://www.dof.gob.mx/nota_detalle.php?codigo=5390097&fecha=24/04/2015</u> [Consultado el 19 de agosto del 2015].
- Dudhia J., Gill, Manning, Wang, Bruyere, Kelly, Lackey. 2003. PSU/NCAR Mesoscale Modeling System Tutorial Class Notes and User's Guide: MM5 Modeling System Version 3. Mesoscale and Microscale Meteorology Division. National Center for Atmospheric Research.
- EPA. 2014. Prevention of Significant Deterioration (PSD) Basic Information. Sitio web: <u>http://www.epa.gov/NSR/psd.html</u> [Consultado el 19 de Agosto del 2015].
- EPA. 2015. Clean Air Act Permitting for Greenhouse Gases. Sitio web: <u>http://www2.epa.gov/nsr/clean-air-act-permitting-greenhouse-gases</u> [Consultado el 19 de Agosto del 2015].
- Environmental Science and Technology. 1995. Biomass Burning: A Driver for Global Change. Sitio web: <u>http://asd-</u> <u>www.larc.nasa.gov/biomass_burn/globe_impact.html</u> [Consultado el 7 de Octubre del 2015].
- Epiphanio, J. C. N.; Gleriani, J. M.; Formaggio, A. R. Rudorff, B. F. Theodor. 1996. Índices de vegetação no sensoriamento remoto da cultura do feijão. Pesquisa Agropecuária Brasileira, Brasília. 31(6): 445-454.
- Egeskog A. y Gustafsson S. 2007. Socioeconomic and Environmental effects from sugarcane expansion into the Pontal do Paranapanema region (state of Sao Paulo, Brazil). A model-based analysis. Chalmers University of Technology.

- FAOSTAT. 2011, 2009. Estadísticas de producción. Sitio web: <u>http://faostat3.fao.org/browse/Q/*/E</u> [Consultado el 7 de Octubre del 2015].
- FAO. 2014. Greenhouse Gas Emissions: from Agriculture, Forestry and Other Land Use. FAOSTAT.
- FAO. 2015a. Sugar cane. En: Feeding pigs in the tropics. Produced by: Agriculture and Consumer Protection. Sitio web: <u>http://www.fao.org/docrep/003/w3647e/w3647e03.htm</u> [Consultado el 6 de Octubre del 2015].
- FAO. 2015b. Biomass burning: Pressure State Response Indicators. Livestook and Environmental Toolbox. Sitio web: <u>http://www.fao.org/ag/againfo/programmes/en/lead/toolbox/indust/bioburea.ht</u> <u>m</u> [Consultado el 6 de Octubre del 2015].
- FAO. 2006. Crop Water Management for Sugarcane. Sitio web: <u>http://www.fao.org/nr/water/cropinfo_sugarcane.html</u> [Consultado el 7 de Octubre del 2015].
- Figuervelo E., Marino. 2001. Química Física del Medio Ambiente. Primera edición. Editorial: Reverté, S.A. Dirección General de Fomento Editorial. Benemérita Universidad Autónoma de Puebla.
- Fernández G. 2003. Plan estratégico para las pequeñas empresas ganaderas.
 Caso: Ganadería el Pedregal. Tesis profesional. Licenciatura en Administración de Empresas. Escuela de Negocios. Departamento de Administración de Empresas. Universidad de las Américas. Puebla.
- Fernández R., Allende D., Castro F., Cremades P., Puliafito E. 2010. Modelado Regional de la Calidad del Aire utilizando el modelo WRF/Chem: Implementación de datos Globales y Locales para Mendoza. Avances en Energías Renovables y Medio Ambiente. 14(01):43-50. ISSN 0329-5184.

- Field L. Y., Embleton K. M., De Gortari M. 2001. Manejo del estiércol del Ganado: Introducción y Resúmen. Purdue University. EPA.
- França D de A., Longo K.M., Soares N.T.G., Santos J.C., Freitas S.R., Rudorff B.F.T., Cortez E.V., Anselmo E. and Carvalho Jr. A. (2012). Pre-Harvest Sugarcane Burning: Determination.
- Flores-Jiménez D. E., Algara-Siller M., Aguilar-Rivera N., Noel Carbajal, Aldama-Aguilera C., Ávila-Galarza A., Álvarez-Fuentes G. 2016. Influence of sugarcane burning on carbon and nitrogen release under drought and evapotranspiration conditions in a Mexican sugarcane supply zone. Revista Internacional de Contaminación Ambiental, Núm. 2. Volumen 32 (aceptado).
- Garduño R. (2004). Sección I: : LAS BASES CIENTÍFICAS. ¿Qué es el efecto invernadero? Del libro titulado: Cambio climático: una visión desde México. Secretaría de Medio Ambiente y Recursos Naturales. Instituto Nacional de Ecología.
- Gilbert R. A., Shine R. A. J. M., Jr., Miller J. D. 2008. Sucrose Accumulation Maturity Curves for CP 72-208. Sitio web: <u>http://edis.ifas.ufl.edu/topics/agriculture/crops.html</u> [Consultado el 15 de Octubre del 2015].
- González-Ávalos E. y Ruiz Suarez L.G., 2001, Methane emission factors from cattle manure in Mexico. Elsiever. Bioresource Technology 80 (2001) 63-71.
- Gutiérrez E.S., Davila-Vazquez G., Sánchez J. de A., Torres J.J.D. (2013). Estimación del balance hídrico mediante variables climáticas, en la cuenca del Río Cazones, Veracruz, México [Estimation of water balance by climatic variables in the Rio Cazones, Veracruz, Mexico]. Ambiente & Agua – An Interdisciplinary Journal of Applied Sciences 8, 104-117.
- GRAIN. 2011. Alimentos y cambio climático: el eslabón olvidado. Sitio web: <u>http://www.grain.org/articles/</u> [Consultado el 21 de junio del 2015].

- Grell G. A., Peckham S. E., Schmitz R., McKeen S. A., Frost G., Skamarock W., Eder B. 2005. Fully coupled "online" chemistry within the WRF model. Atmospheric Environment. 39: 6957-6975.
- Hernández M. E. 2010. Suelos de humedales como sumideros de carbono y fuentes de metano. Terra Latinoamericana. 28(2): 138-147.
- Hassuanni, S. J. 2001. Sugarcane trash recovery for use in power generation. In Proc. Int. Soc. Sugar Cane Technol Vol. 24: 92-196 pp.
- Hao W. M. y Ward D. E. 1993. Methane production from global biomass burning. Journal of Geophysical Research, 98(11): 20,657-20661 pp.
- Hernández C.M.E, Torres T.L.A, Valdez M.G. 2000. Sequía Meteorológica. En: C. Gay (comp.) México: una visión hacia el siglo XXI. El cambio climático en México. Resultados de los estudios de la vulnerabilidad del país, coordinados por el INE con el apoyo del U.S. Country Studies Program, 25-40. México: INE, SEMARNAP, UNAM, U. S. Country Studies Program. Report. México. 525 pp.
- Herrera A., Ordóñez P., Castillo A., Enríquez V., Milanés N., Heredia C. 2010. MATERIA PRIMA MAS LIMPIA EN EL INGENIO SAN MIGUELITO CON EL USO DE CONTENEDORES EN LA COSECHA DE CAÑA DE AZÚCAR (Saccharum spp.). Cultivos Tropicales 31(4).
- Herold M., Román-Cuesta R. M., Heymell V., Hirata Y., Laake P. Van., Asner G. P., Souza C., Avitabile V. and MacDicken K. 2011. A review of methods to measure and monitor historical carbon emissions from forest degradation. Unasilva 238, Vol. 62, 2011/2.
- INECC. 2003. Capítulo 7: Fuentes Naturales. Del libro: Inventario de Emisiones. Sitio web: <u>http://www2.inecc.gob.mx/publicaciones/libros/458/fnaturales.pdf</u> [Consultado el 12 de junio del 2014].
- INECC. 2010a. Inventario Nacional de Emisiones de Gases de Efecto Invernadero. 1990-2010. ISBN: 978-607-8246-63-2.

- INECC. 2010b. Actualización del Inventario Nacional de Gases de Efecto Invernadero 1990-2010, para el sector Agrícola. México.
- INECC. 2013. Contaminantes criterio. SEMARNAT. Sitio web: <u>http://www.inecc.gob.mx/calaire-indicadores/523-calaire-cont-criterio</u> [Consultado el 16 de febrero del 2016].
- INIFAP. 2015a. Tecnología de producción para el cultivo de la caña de azúcar en riego en San Luis Potosí. Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias. Sitio web: http://www.campopotosino.gob.mx/modulos/tecnologiasdesc.php?idt=94 [Consultado el 14 de octubre del 2015].
- INIFAP. 2015b. Tecnología para el cultivo de la caña de azúcar en temporal en el estado de San Luis Potosí 2013. Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias. Sitio web: http://www.inifapcirne.gob.mx/Biblioteca/Paquetes2012/84.pdf [Consultado el 14 de octubre del 2015].
- Iredell. 2002. About the Global Parallel System. NCEP/EMC. Global Modeling Branch. Sitio web: http://www.emc.ncep.noaa.gov/gmb/para/parabout.html [Consultado el 27 de Agosto del 2015].
- Jacobson Mark Z. 2005. Fundamentals of Atmospheric Modelling. Cambridge University Press. Second Edition.
- LDSCA. 2005. Ley de Desarrollo Sustentable de la Caña de Azúcar. Diario Oficial de la Federación, DOF 22-08-2005. Secretaría General. Secretaría de Servicios Parlamentarios. México
- Lazaridis M. 2011. First Principles of Meteorology and Air Pollution. Springer. ISBN: 978-94-007-0162-5.
- Levine J.S. 2003. Biomass Burning: The Cycling of Gases and Particulates from the Biosphere to the Atmosphere. Treatise on Geochemistry, Volume 4. Editor:

Ralph F. Keeling. Executive Editors: Heinrich D. Holland and Karl K. Turekian. pp. 347. ISBN 0-08-043751-6. Elsevier, 2003., p.143-158.

- Li G., Zavala M., Lei W., Tsimpidi A. P., Karydis V. A., Pandis S. N., Canagaratna M. R. and Molina L. T. 2011. Simulations of organic aerosol concentrations in Mexico City using the WRF-CHEM model during the MCMA-2006/MILAGRO campaign. Atmos. Chem. Phys. 11:3789-3809.
- Magaña R. V. O. 2007. Pronóstico climático estacional regionalizado para la República Mexicana como elemento para la reducción del riesgo, para la identificación de opciones de adaptación al cambio climático y para la alimentación del sistema: cambio climático por estado y por sector. Dirección General de Investigación sobre Cambio Climático. Informe final de trabajo. Informe final del proyecto: INE/A1-006/2007. Duración: 6 meses. Centro de Ciencias de la Atmósfera. Universidad Nacional Autónoma de México.
- Magaña R. V. O. 2004. Sección I: LAS BASES CIENTÍFICAS. El cambio climático global: comprender el problema. Del libro titulado: Cambio climático: una visión desde México. Secretaría de Medio Ambiente y Recursos Naturales. Instituto Nacional de Ecología.
- Martínez. 1983. Historia de la agricultura en México. Centro de Estudios de Desarrollo Rural. Colegio de Postgraduados, Chapingo, México. Ponencia presentada en el III Taller Latinoamericano "Prevención de Riesgos en el Uso de Plaguicidas" realizada en el Instituto Nacional de Investigaciones sobre Recursos Bióticos. Xalapa, Veracrúz, México.
- McKenzie 2007. A Brief History of Agriculture and Food Production: The Rise of Industrial Agriculture. Johns Hopkins Center for a Livable Future. Johns Hopkins Bloomberg. School of Public Health. USA.
- Mugica A. V. 2012. Emisiones de carbono negro en partículas atmosféricas provenientes de la quema de la caña de azúcar. Informe final del proyecto. INECC. SEMARNAT. UAM-Azcapotzalco.

- NASA. 2015. Earth Data. Sitio web: <u>http://lance-modis.eosdis.nasa.gov/cgi-bin/imagery/gallery.cgi</u> [Consultado el 10 de julio del 2015].
- NCEP. 2015. NCEP FNL Operational Model Global Tropospheric Analyses, continuing from July 1999: ds083.2. NCAR. UCAR. Research Data Archive. Computational & Information Systems Lab. Sitio web: <u>http://rda.ucar.edu/datasets/ds083.2/</u> [Consultado el 7 de febrero del 2013].
- NOAA. 2011. Inventario Nacional de Emisiones de Estados Unidos adaptado para ser leído por el WRF. Sitio web: <u>ftp://aftp.fsl.noaa.gov/divisions/taq/emissions_data_2011/</u> [Consultado el 23 de marzo del 2013].
- NOAA. 2013. WRF Domain Wizard. Earth System Research Laboratory. Global Systems Division. National Oceanic and Atmospheric Administration. Sitio web: <u>http://esrl.noaa.gov/gsd/wrfportal/DomainWizard.html</u> [Consultado el 23 de septiembre del 2015].
- NOAA. 2014. Greenhouse Gases. National Center for Environmental Information. Sitio web: <u>http://www.ncdc.noaa.gov/monitoring-references/faq/greenhouse-gases.php</u> [Consultado el 15 de junio del 2015].
- NMM. 2015. WRF-NMM Users Page | DTC. Sitio web: <u>http://www.dtcenter.org/wrf-</u> <u>nmm/users/overview/wrf_overview.php</u> [Consultado el 28 de Agosto del 2015].
- Ordóñez D.J.A, Hernández T.T. (2006). Obtención de Factores de Emisión en el Sector Agrícola para disminuir incertidumbre en el Inventario Nacional de Emisiones de Gases de Efecto Invernadero. Instituto Nacional de Ecología y Cambio Climático. Report. México. 22 pp.
- OMM. 2014. Boletín de la OMM sobre los Gases de Efecto Invernadero. Estado de los gases de efecto invernadero en la atmósfera según las observaciones mundiales realizadas en 2013. Nº 10. 9 de septiembre del 2014. Global Atmosphere Watch. ISSN: 2078-0818.

- ONU. 1998. Protocolo de Kyoto de la Convención Marco de las Naciones Unidas sobre Cambio Climático. FCCC/INFORMAL/83*. GE. 05-61702 (S) 130605 130605. *Nueva tirada por razones técnicas. Organización de las Naciones Unidas.
- Ortolano L. 1984. Environmental Planning and Decision Making. Edition Ilustrated. University of California.
- OSHA. 2015. Nitrous oxide. United States. Department of Labor. Occupational Safety & Health Administration. Sitio web: <u>https://www.osha.gov/dts/chemicalsampling/data/CH_258300.html</u> [Consultado el 19 de agosto del 2015].
- OpenCourseWare. 2015. Tema 5. Cinética química, termodinámica y equilibrio (II). Diego, J. P. d. (2008, September 04). Retrieved August 18, 2015, from OCW -UC3M Sitio web: <u>http://ocw.uc3m.es/ciencia-e-oin/quimica-de-los-</u> <u>materiales/Material-de-clase/tema-5.-cinetica-quimica-termodinamica-y-</u> <u>equilibrio-ii</u> [Consulado el 18 de Agosto del 2015].
- Palma-López D. J., Salgado S. G., Obrador O. J. J., Trujillo N. A., Lagunes E. Luz del C., Zavala C. J., Ruiz B. A. y Carrera M. M. A. 2002. Sistema integrado para recomendar dosis de fertilización en caña de azúcar. Terra 20:347-358.
- PNAC. 2014. Programa Nacional de la Agroindustria de la Caña de Azúcar 20142018. Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y
 Alimentación. Diario Oficial. Viernes 2 de mayo de 2014.
- planetWRF. 2015. The Planetary Weather Research and Forecasting (planetWRF) Model. Sitio web: <u>http://planetwrf.com/</u> [Consultado el 28 de Agosto del 2015].
- PICC. 1996. Directrices del IPCC para los inventarios de gases de efecto invernadero. Panel Intergubernamental del Cambio Climático. Organización de las Naciones Unidas.

- PICC. 2000. Orientación del IPCC sobre las buenas prácticas y la gestión de la incertidumbre en los inventarios nacionales de GEI. Panel Intergubernamental del Cambio Climático. Organización de las Naciones Unidas.
- PICC. 2001. Intergovernmental Panel on Climate Change, 2001, Climate Change 2001: The Scientific Basis, Contribution of working group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. IPCC. ONU.
- PICC. 2006. Volumen 5. Capítulo 6: Tratamiento y eliminación de aguas residuales.
 Del libro titulado: Directrices del IPCC de 2006 para los inventarios nacionales de gases de efecto invernadero. IPCC. ONU.
- Pineda L, Carbajal N, Medina R.E. 2006. Regionalization and classification of bioclimatic zones in the central-northeastern region of Mexico using principal component analysis (PCA). Atmosfera 20, 133-145.
- Pinos J., García-López, Peña-Avelino, Rendón-Huerta, González-González, Tristán Patiño, 2012, Impactos y regulaciones ambientales del estiércol generado por los sistemas ganaderos de algunos países de América. Instituto de Investigación de Zonas Desérticas. Programa Multidisciplinario de Posgrado en Ciencias Ambientales. Universidad Autónoma de San Luis Potosí. Publicado como ENSAYO en Agrociencia 46: 359-370.2012.
- Quintero N. M. y Moncada A. A. 2008. Contaminación y control de las quemas agrícolas en Imperial, California y Mexicali, Baja California. Región y Sociedad.
 20. No 43.
- RAS, 2010, Norma para Sistemas Sostenibles de Producción Agrícola. Red de Agricultura Sostenible". Rainforest Alliance Certified. Conservación y Desarrollo, Ecuador. Nature Conservation Fundation, India. Pronatura Sur, México. Rainforest Alliance. Salvanatura, El Salvador.
- Richardson N., Fraas A., Burtraw D. 2010. Greenhouse Gas Regulation under the Clean Air Act.

- Relling A. E. Mattioli G. A. 2003. Fisiología digestive y metabólica de los ruminates.
 Cátedra de Fisiología. U. N. L. P. Actualización de los autores del libro
 "Fisiología Digestiva y Metabólica de los Rumiantes" de la editorial EDULP.
 Ediciones 2002 y 2003.
- Reilly J. 2013. Agriculture in a Changing Climate: Impacts and Adaptation. USA.
- Ruiz J. 2002. Simulación de la contaminación atmosférica generada por fuentes móviles en Bogotá D. C. Facultad de Ciencias. Universidad Nacional de Colombia.
- Sanhueza J. E. 2013. La Agricultura y el Cambio Climático: Emisiones de Gases de Efecto Invernadero en Latinoamérica.
- Seiler W. y Crutzen P. J. 1980. Estimates of gross and net fluxes of carbon between the biosphere and the atmosphere from biomass burning. Climate Change, 2: 207-247.
- SEGAM. 2013. Inventario de emisiones a la atmósfera. Estado de San Luis Potosí, México. Fuentes fijas, de área, móviles y naturales. Preparado por Tejeda Le Blanc & Cia., S.C. LT Consulting.
- SE. 2012. Análisis de la situación económica, tecnológica y de política comercial del sector edulcorantes en México. Dirección General de Industrias Básicas. Secretaría de Economía.
- SIIA. 2013. Emisiones regionales de metano (CH₄) y óxido nitroso (N₂O) para el año 2010. Sitio web: <u>http://casaviva.uaslp.mx/siia/siia.html#</u> [Consultado el 11 de Enero del 2016].
- SEMARNAT, INE. 2005. Guía de elaboración u usos de inventarios de emisiones. SEMARNAT. INECC. México.
- Szeto K. K. 2002. An Overview of Atmospheric Models. York University. Sitio web: <u>http://www.usask.ca/geography/MAGS/Events/Workshops/Model/Overview-</u> <u>AtmosphericModels.pdf</u> [Consultado el 27 de Agosto del 2015].

Smith R., Smith. 2001. Ecología. 4ta edición. West Virginia University, Emeritus. University of Virginia. Traducción: Francesc Mezquita, Eduardo Aparici. Universitat de València. Editorial: Addison Wesley. Pearson Education, S.A., Madrid.

SMN. 2011. Reporte del clima en México. CONAGUA. Año I. Número 4. México.

- SMN. 2012. Reporte del clima en México. CONAGUA. Año 2. Número 6. México.
- SMN. 2013. Reporte del clima en México. CONAGUA. Año 3. Número 5. México.
- Sportisse B. 2010. Fundamentals in Air Pollution. From Processes to Modelling. Springer. ISBN 978-90-481-2969-0.
- SAGARPA. S.f. Utilización de estiércoles. Colegio de Posgraduados. Sitio web: <u>http://www.sagarpa.gob.mx/desarrolloRural/Documents/fichasaapt/Utilizaci%</u> <u>F3n%20de%20esti%E9rcoles.pdf</u> [Consultado el 23 de marzo del 2013].
- Sonnemann G. R. and Grygalashvyly. 2014. Global annual methane emission rate derived from its current atmospheric mixing ration and estimated lifetime. Ann. Geophys., 32, 277-283.
- Stockwell W. R., Middleton P. and Chang J. S. 1990. The Second Generation Regional Acid Deposition Model Chemical Mechanism for Regional Air Quality Modeling. Journal of Geophysical Research. 95(10):16,343-16,367.
- Stockwel W. R., Kirchner F., Kuhn M., Seefeld S. 1997. A new mechanism for regional atmospheric chemistry modeling. Journal of Geophysical Research. 102:25,847-25,879.
- Skamarock W., Klemp, Dudhia, Gill, Barker, Wang, Powers, 2005, A Description of the Advanced Research WRF Version2. NCAR/TN-468+STR. NCAR Technical Note. Mesoscale and Microscale Meteorology Division. National Center for Atmospheric Research. Boulder, Colorado, USA.

- Skamarock W. C., Klemp J. B., Dudhia J., Gill D. O., Barker D. M., Duda M. G., Huang X. Y., Wang W., Powers J. G. 2008. A Description of the Advanced Research WRF Version 3. NCAR/TN-475+STR. NCAR Technical Note. Mesoscale and Microscale Meteorology Division. National Center for Atmospheric Research. Boulder, Colorado, USA.
- Swenson S., Wahr J. (2005). Estimating Large-Scale Precipitation Minus Evapotranspiration from GRACE Satellite Gravity Measurements. Journal of Hydrometeorology. 7, 252-270.
- Torres J. R. 1991. Modelos de dispersión en la atmósfera. Sitio web: <u>http://www.cridlac.org/digitalizacion/pdf/spa/doc11068/doc11068.htm</u> [Consultado el 26 de Agosto del 2014]
- Tukimat N.N.A., Harun S., Shahid S. 2012. Comparison of different methods in estimating potential evapotranspiration at Muda Irrigation Scheme of Malaysia. Journal of Agriculture and Rural Developments in the Tropics and Subtropics 113, 77-85.
- UCAR. 2015. MM5 Comunity Model. Sitio Web: <u>http://www2.mmm.ucar.edu/mm5/</u> [Consultado el 27 de Agosto del 2015].
- UNFCCC. 1992. Convención Marco de las Naciones Unidas sobre el Cambio Climático. FCCC/INFORMAL/84*. GE. 05-62301 (S) 220705 220705. *Nueva tirada por razones técnicas. Naciones Unidas.
- UNED. 2015. Química Cuántica: Tema 3: Teoría de perturbaciones. Sitio web: <u>http://portal.uned.es/portal/page?_pageid=93,25467331&_dad=portal&_sche</u> <u>ma=PORTAL&idAsignatura=0109534-&idPrograma=-1&idContenido=2</u> [Consultado el 4 de Septiembre del 2015].
- UNEP. 2014. Plan de Acción Regional de Cooperación Intergubernamental en materia de Contaminación Atmosférica para América Latina y el Caribe. XIX Reunión del Foro de Ministros de Medio Ambiente de América Latina y el Caribe.

- Unión Nacional de Cañeros A.C. 2014. Estadísticas de la Agroindustria. Sitio web: <u>http://www.caneros.org.mx/estadisticas.html</u> [Consultado el 12 de Octubre del 2014].
- UNFCCC. 2005. Sexta recopilación y síntesis de las comunicaciones nacionales iniciales de las partes no incluidas en el Anexo I de la Convención. FCCC/SBI/2005/18/Add.2. Convención Marco sobre el Cambio Climático. Naciones Unidas.
- UNFCCC. 2014a. Global Warming Potentials. Sitio web: http://unfccc.int/ghg_data/items/3825.php [Consultado el 12 de junio del 2014].
- UNFCCC. 2014b. Greenhouse data from UNFCCC. Sitio web: <u>http://unfccc.int/ghg_data/ghg_data_unfccc/items/4146.php</u> [Consultado el 18 de junio del 2015].
- UNFCCC. 2014c. Datos de los inventarios nacionales de gases de efecto invernadero correspondientes al periodo 1990-2012. FCCC/SBI/2014/20. Convención Marcos sobre el Cambio Climático. Naciones Unidas.
- USDA. 2011. U.S. Agriculture and Forestry Greenhouse Gas Inventory. 1990-2008. United States Department of Agriculture. U.S.A.
- van der Werf, G. R., J. T. Randerson, G. J. Collatz, and L. Giglio. 2003. Carbon emissions from fires in tropical and subtropical ecosystems, Global Change Biol., 9, 547–562.
- van H.J., Baede A. P. M., Meyer L. A. and Ybema R. 2000. Non-CO₂ Greenhouse Gases: Scientific Understanding, Control and Implementation. Earth Sciences
 & Geography. Environmental Sciences. 425-432 DOI: 10.1007/978-94-015-9343-4
- Vilaboa A. I. y Barroso L. A. 2013. Contaminación ambiental por quema de caña de azúcar: Un estudio exploratorio en la región central del estado de Veracruz. Memoria de ponencias Think Green 2013: Crecimiento verde, retos y oportunidades para México. Instituto Tecnológico y de Estudios Superiores de

Monterrey. Campus Central Veracruz. Arizona State University. Veracruz, México.

- Winiwarter W. 2007. National Greenhouse Gas Inventories: Understanding Uncertainties versus Potential for Improving Reliability. Springer Science + Business Media B.V. Water Air Soil Pollut: Focus (2007) 7:443-450 DOI 10.1007/s11267-006-9117-3.
- Wicker L. J. and Skamarock. 2002. Time-Splitting Methods for Elastic Models Using Forward Time Schemes. Monthly Weather Review 130: 2088 - 2097.
- WRF. 2015. The Weather Research & Forecasting Model. Sitio web: <u>http://www.wrf-model.org/index.php</u> [Consultado el 28 de Agosto del 2015].
- WRF-Tutorial. 2015. WRF ARW Online Tutorial. Sitio web: <u>http://www2.mmm.ucar.edu/wrf/OnLineTutorial/</u> [Consultado el 21 de Septiembre del 2015].
- WRF/Chem. 2013. WRF/Chem. Version 3.5. Users Guide. NOAA. CIRES. UCAR. Pacific Northwest National Laboratory. Max-Planck-Gesellschaft. Universidad de Chile. Centro de Previsão Tempo e Estudios Climaticos.
- WRF/Chem. 2014. WRF/Chem Emissions Guide. NOAA. CIRES. UCAR. Pacific Northwest National Laboratory. Max-Planck-Gesellschaft. Universidad de Chile. Centro de Previsão Tempo e Estudios Climaticos.
- WRF-HYDRO. 2015. WRF-HYDRO MODELING SYSTEM. Sitio web: <u>https://www.ral.ucar.edu/projects/wrf_hydro</u> [Consultado el 28 de Agosto del 2015].
- Zafranet. 2015. CONAFOR se reúne con ingenios en SLP para la prevención de incendios. 24 Diciembre, 2013. Sitio web: <u>http://www.zafranet.com/2013/12/conafor-se-rene-con-ingenios-en-slp-para-la-prevencin-de-incendios/</u> [Consultado el 18 de agosto del 2015].

Anexos

A. Fundamentos físicos, matemáticos y espaciales del modelo WRF

La solución dinámica ARW (Advanced Research WRF) es la que se utiliza en este proyecto de investigación e integra los módulos físicos, químicos y espaciales necesarios para el correcto funcionamiento del modelo (ARW, 2015). Los grandes grupos que contienen su información detallada son: 1) El solucionador ARW, que contiene las ecuaciones, variables de pronóstico, coordenadas verticales, malla horizontal, tiempo de integración y condiciones de frontera (laterales, límite y de profundidad) entre otros; 2) el Modelo Físico, que está conformado por condiciones microfísicas, parametrización de las nubes cúmulus, superficie física, capas físicas de frontera planetaria y radiación sobre la atmósfera; 3) WRF-Chem, que considera la ecuación de conservación del transporte que es consistente con las condiciones meteorológicas, la deposición seca acoplada a los tipos de suelo y vegetación y emisiones biogénicas entre otros; y 4) el Marco del Software WRF, que contiene programas de interface con el usuario, soporta múltiples modelaciones dinámicas y es portable en diversos sistemas operativos entre otros (Skamarock et al., 2008).

El WRF, a partir de su solución dinámica ARW, está conformado por ecuaciones No-Hidrostáticas, esto significa que el aire puede acelerar verticalmente (Jacobson, 2005) debido principalmente a las variaciones del gradiente de presión en distintas altitudes a causa de la topografía del terreno, la presencia de ríos y la cobertura vegetal entre otros factores. También las ecuaciones se clasifican como Eulerianas porque los procesos físicos son observados desde un marco de referencia en reposo.

La interpolación vertical del modelo parte de un sistema coordenado vertical de presión-hidrostática que sigue la forma del terreno definido por la variable η , y quiere decir que la presión de una columna de aire es comparada con la presión real que se tiene en una determinada zona (Ecuación A.1)

$$\eta = \frac{P_{h} - P_{ht}}{P_{hs} - P_{ht}} = \frac{Presión a una cierta altura}{Presión de una columna de masa de aire}$$
(A.1)

donde P_h es la componente hidrostática de la presión, P_{hs} es la presión a lo largo de la superficie y P_{ht} es un valor constante de la presión en la capa límite de la atmósfera (Figura A.1) (Skamarock et al., 2008). Los valores de η varían desde 1 en la superficie hasta 0 en la capa superior de la atmósfera.

Figura A.1. Interpolación vertical que hace el WRF para efectuar el cambio de variable a la coordenada η (Skamarock, 2008).

El sistema de ecuaciones utilizado en el modelo para estudiar la dinámica de la atmósfera contiene parámetros como la velocidad y dirección de vientos horizontal u, y verticales v y w, el geopotencial (temperatura que una parcela de aire saturado alcanza si se trae adiabáticamente desde su altitud hasta una presión de 1000 hPa) $\phi = gz$, la presión p, la inversa de la densidad de aire seco $\propto_d = 1/\rho_d$, la masa de aire seco μ_d y la constante de gas para aire seco R_d entre otros (Skamarock et al., 2008).

El modelo soporta cuatro tipo de proyecciones geográficas: 1) Lambert Conformal, 2) Polar Stereographic, 3) Mercator y 4) proyección latitud-longitud. La transformación para pasar a alguna de las tres primeras es isotrópica, esto significa que las propiedades físicas de un cuerpo no cambian independientemente de la proyección geográfica escogida. Estas ideas también están incluidas dentro de las ecuaciones que se utilizan en el modelo WRF a través de los parámetros m_x y m_y , los cuales se definen como la distancia en un espacio computacional con respecto a la distancia sobre la superficie de la Tierra. Así mismo, también se deben tomar en cuenta la curvatura del planeta y su rotación, a través de la fuerza de Coriolis (Skamarock et al., 2008).

Finalmente, se considera que las ecuaciones construidas con los parámetros mencionados no llevan a soluciones exactas, pero para aproximarlas a la realidad se utiliza lo que se conoce como "Teoría de la Perturbación" (UNED, 2015), que se refiere a la resolución de una ecuación a partir de otra resoluble muy cercana a la original. En el WRF, los parámetros a los que se aplica esta herramienta matemática son la presión ($p = \bar{p}(\bar{z}) + p'$), la densidad ($\rho = \bar{\rho}(\bar{z}) + \rho'$), el geopotencial ($\phi = \bar{\phi}(\bar{z}) + \phi'$), la inversa de la densidad de aire seco ($\alpha = \bar{\alpha}_d(\bar{z}) + \alpha'_d$) y la masa de aire seco ($\mu = \bar{\mu} + \mu'_d$), donde los parámetros con una barra arriba representan los estados de referencia que están en función únicamente de la altitud, mientras que los parámetros con una tilde representan los estados perturbados (Skamarock et al., 2008).

Las ecuaciones obtenidas considerando todos los aspectos mencionados se muestran a continuación, comenzando con las ecuaciones que caracterizan el movimiento del aire, conocidas como "Ecuaciones de momentum" (F_U , F_V y F_W) (Skamarock et al., 2008):

$$\begin{aligned} \frac{\partial U}{\partial t} + m_x \left[\frac{\partial U u}{\partial x} + \frac{\partial V u}{\partial y} \right] + \frac{\partial \Omega u}{\partial \eta} \\ + \left(\frac{m_x}{m_y} \right) \left(\frac{\alpha}{\alpha_d} \right) \left[\mu_d \left(\frac{\partial \phi'}{\partial x} + \alpha_d \frac{\partial p'}{\partial x} + \alpha'_d \frac{\partial \bar{\rho}}{\partial x} \right) + \frac{\partial \phi}{\partial x} \left(\frac{\partial p'}{\partial \eta} - \mu'_d \right) \right] = F_U \end{aligned}$$

Fundamentos físicos, matemáticos y espaciales del WRF

$$\frac{\partial V}{\partial t} + m_{y} \left[\frac{\partial Uv}{\partial x} + \frac{\partial Vu}{\partial y} \right] + \left(\frac{m_{x}}{m_{y}} \right) \frac{\partial \Omega v}{\partial \eta} + \left(\frac{m_{x}}{m_{y}} \right) \left(\frac{\alpha}{\alpha_{d}} \right) \left[\mu_{d} \left(\frac{\partial \phi'}{\partial x} + \alpha_{d} \frac{\partial p'}{\partial x} + \alpha'_{d} \frac{\partial \bar{\rho}}{\partial x} \right) + \frac{\partial \phi}{\partial x} \left(\frac{\partial p'}{\partial \eta} - \mu'_{d} \right) \right] = F_{V}$$
(A.3)

$$\frac{\partial W}{\partial t} + \left(\frac{m_x m_y}{m_y}\right) \left[\frac{\partial Uw}{\partial x} + \frac{\partial Vw}{\partial y}\right] + \frac{\partial \Omega w}{\partial \eta} - \left(\frac{1}{m_y}\right) g\left(\frac{\alpha}{\alpha_d}\right) \left[\frac{\partial p'}{\partial \eta} - \mu_d(q_v + q_c + q_r) + \frac{1}{m_y}\mu'_d g\right] = F_W$$
(A.4)

Así mismo, también se tienen las ecuaciones de conservación de masa (Ecuación A.5) y geopotencial (Ecuación A.6):

$$\frac{\partial \mu_d'}{\partial t} + m_x m_y \left[\frac{\partial U}{\partial x} + \frac{\partial V}{\partial y} \right] + m_y \frac{\partial \Omega}{\partial \eta} = 0$$
(A.5)

$$\frac{\partial \phi'}{\partial t} + \frac{1}{\mu_d} \Big[m_x m_y \left(U \frac{\partial \phi}{\partial x} + V \frac{\partial \phi}{\partial y} \right) + m_y \Omega \frac{\partial \phi}{\partial \eta} - m_y g W \Big] = 0$$
(A.6)

También están las ecuaciones de conservación para el potencial de temperatura (Ecuación A.7) y escalar (Ecuación A.8), donde esta última describe la situación en la cual la diferencia de energías potenciales de un objeto depende únicamente de su posición.

$$\frac{\partial \Theta}{\partial t} + m_x m_y \left[\frac{\partial U \theta}{\partial x} + \frac{\partial V q_m}{\partial y} \right] + m_y \frac{\partial \Omega \theta}{\partial \eta} = F_{\Theta}$$
(A.7)

$$\frac{\partial Q_m}{\partial t} + m_x m_y \left[\frac{\partial U q_m}{\partial x} + \frac{\partial V q_m}{\partial y} \right] + m_y \frac{\partial \Omega}{\partial \eta} = F_{\Theta}$$
(A.8)

Finalmente se toma en cuenta la ecuación de la relación para la presión (que considera la presencia de vapor más aire seco)

$$p = p_0 \left(\frac{R_d \theta_m}{\rho_o \alpha_d} \right)^{\gamma} \tag{A.9}$$

Para poder llevar a cabo los análisis en un cierto periodo, el WRF utiliza un esquema de "integración de división del tiempo" (time-split integration scheme). Esta herramienta se caracteriza por utilizar modos de baja o alta frecuencia ya que inicialmente se empleó en ecuaciones para estudiar las vibraciones acústicas, de tal manera que cuando se proyecta al estudio de la atmósfera, en realidad hace referencia a la manera (modo) en que se moverán las masas de aire en una zona de estudio para un intervalo de tiempo (Δt), mejor conocido como "paso de tiempo", es decir, cada cuanto tiempo se hará un nuevo cálculo de pronóstico. En el modelo se utiliza el esquema de integración del tiempo de Runge-Kutta (RK) para modos de baja frecuencia, lo que afectará el valor de Δt y mejorará el rendimiento computacional (Wicker and Skamarock, 2002; Skamarock et al., 2008).

El proceso de advección en la atmósfera, se refiere a la propagación horizontal de los vientos (Jacobson, 2005). En base a esto, la estabilidad de todos los cálculos que realiza el modelo necesita de un parámetro conocido como "número advectivo de Courant" (C_r), que depende del paso de tiempo (Δt) y del movimiento horizontal de los vientos (Δx) de la siguiente manera:

$$C_r = \frac{u\Delta t}{\Delta x}$$
(A.10)

En la teoría, el máximo número de Courant permitido depende del tipo de esquema de integración de tiempo. Como en el WRF se utiliza el esquema RK tridimensional, éste permite un valor de $1/\sqrt{3}$, sin embargo, las adaptaciones que se han hecho al modelo permiten trabajar con un máximo C_r que esté entre 1.1 y 1.2, de tal forma que en la práctica se debe escoger un valor de Δt tal que no rebase alguno de estos dos valores (Skamarock et al., 2008).

Por otro lado, el dominio en donde se colocan las condiciones iniciales asignadas a los parámetros mencionados es una malla (grid) horizontal (Figura A.2), cuyas

Fundamentos físicos, matemáticos y espaciales del WRF

cualidades dentro del WRF, permiten hacer simulaciones en memorias distribuidas en paralelo a diferencia de otros modelos atmosféricos. Específicamente, el modelo ocupa la "Malla Escalonada de Arakawa-C" (Figura A.3), donde las componentes de las velocidades en el plano xy se ubican en las fronteras de cada celda de la malla y las variables de masa, termodinámicas y químicas se localizan al centro de cada celda (θ) y son sus valores promedio representativos (Skamarock et al., 2008).

Figura A.2. Representación de una malla horizontal.

Figura A.3. Malla Escalonada de Arakawa-C. El dominio más grande se conoce como "dominio patrón" y el más pequeño como "dominio anidado" (Skamarock et al., 2008).

Las condiciones de frontera para el dominio patrón vienen dadas por los datos globales FNL (Tabla A.1), mientras que para el dominio anidado, dichas condiciones

están dados por el dominio más grande, donde en la mayoría de los casos se trabaja con una relación de 3 a 1 con respecto al primer dominio. Finalmente, el WRF solo permite algunos tipos de anidamiento, en donde básicamente no se permite la intersección entre éstos (Figura A.4) (Skamarock et al., 2008).

Figura A.4. Tipos de configuración permitidos y no permitidos para los dominios madre y anidados:
a) nido telescópico; b) Dominios anidados al mismo nivel con respecto al dominio madre; 3)
Sobreposición de dominios: no permitido; y 4) Tener un dominio anidado con respecto a más de un dominio de referencia: No permitido (Skamarock et al., 2008).

Finalmente, cabe mencionar que el módulo químico fue adaptado para trabajar de manera simultánea con los demás apartados del WRF, lo que favorece el análisis de procesos atmosféricos que suceden a escalas de tiempo menores a los propios procesos meteorológicos (Grell et al., 2005).

B. Coordenadas geográficas y hectáreas consideradas por cada polígono en las zonas de abasto cañero de México para el cálculo de emisiones con la metodología de Seiler y Crutzen

En la tabla 13 se mencionan las 56 zonas de abasto cañero en el país, sin embargo, para poder incorporar las fuentes emisoras al modelo WRF, fue necesario clasificarlos geográficamente, de tal forma que cada cañaveral está conformado por uno o varios polígonos cuyas coordenadas centrales (longitud y latitud) y hectáreas que abarca cada uno se presentan en la siguiente tabla.

Polígono(s) por zona de abasto cañero	Longitud Central	Latitud Central	Hectáreas de los polígonos
Central Progreso	-96.656732	18.983914	42811.634
Cuatotolapan1	-95.30967	18.262802	1062.191
Cuatotolapan2	-94.988248	18.053665	174.533
Cuatotolapan3	-94.906959	18.039037	3182.750
Cuatotolapan4	-95.20442	18.196517	18167.661
El Carmen1	-96.370806	18.805484	200.494
El Carmen2	-96.295916	18.628724	229.451
El Carmen3	-96.237045	18.591044	215.450
El Carmen4	-96.244912	18.545312	126.391
El Carmen5	-96.262542	18.511827	340.883

 Tabla B.1. Coordenadas centrales y hectáreas de cada zona de abasto cañero.

Polígono(s) por zona de abasto cañero	Longitud Central	Latitud Central	Hectáreas de los polígonos
El Carmen6	-96.146433	18.589969	1447.830
El Carmen7	-97.038741	18.917566	13716.523
El Carmen8	-97.00884	18.829338	235.336
El Carmen9	-97.070236	19.105579	200.685
El Carmen10	-96.589095	18.806797	330.308
El Carmen11	-96.504834	18.664724	922.143
El Carmen12	-96.390035	18.628724	509.474
El Carmen13	-96.332882	18.74412	324.935
El Carmen14	-96.168579	18.733915	985.005
El Higo	-98.4415	21.678564	25780.063
El Modelo1	-96.315243	19.230776	720.957
El Modelo2	-96.346073	19.446227	1007.797
El Modelo3	-96.369335	19.325768	14245.500
El Potrero	-96.743905	18.851685	35771.819
La Independencia1	-96.913739	20.141265	121.101

Polígono(s) por zona de abasto cañero	Longitud Central	Latitud Central	Hectáreas de los polígonos
La Independencia2	-97.111379	20.149658	24.899
La Independencia3	-97.071224	20.100758	64.804
La Independencia4	-97.083048	20.045975	204.369
La Independencia5	-96.836585	20.072102	97.417
La Independencia6	-96.816887	20.056929	49.285
La Independencia7	-96.843058	20.084514	46.581
La Independencia8	-96.627593	20.023202	1166.519
La Independencia9	-96.827293	20.044223	36.964
La Independencia10	-96.820286	20.116045	37.508
La Independencia11	-96.833615	20.166581	66.196
La Independencia12	-96.855652	20.197482	34.248
La Independencia13	-96.820792	20.196521	194.688
La Independencia14	-97.127909	20.03162	68.660
La Independencia15	-97.141575	20.053312	53.761

Polígono(s) por zona de abasto cañero	Longitud Central	Latitud Central	Hectáreas de los polígonos
La Independencia16	-97.144359	20.075755	48.859
La Independencia17	-97.10063	20.048179	80.459
La Independencia18	-97.085717	20.075789	40.185
La Independencia19	-97.085375	20.117452	55.023
La Independencia20	-96.989884	20.105091	18326.479
La Concepción1	-96.817303	19.615048	7972.501
La Concepción2	-96.751701	19.565846	237.398
La Constancia1	-96.175429	18.623838	427.561
La Constancia2	-96.210301	18.62719	104.194
La Constancia3	-96.248139	18.663132	738.191
La Constancia4	-96.743865	18.483661	9503.070
La Constancia5	-96.689551	18.649515	321.037
La Constancia6	-96.707836	18.581123	581.950
La Gloria1	-96.429822	19.406253	40126.365
La Gloria2	-96.428851	19.635098	708.272

Polígono(s) por zona de abasto cañero	Longitud Central	Latitud Central	Hectáreas de los polígonos
La Gloria3	-96.386202	19.612874	308.352
La Gloria4	-96.348832	19.192454	1960.930
La Gloria5	-96.281097	19.122384	227.716
La Gloria6	-96.368083	19.109042	54.297
La Gloria7	-96.330146	19.082678	141.581
La Gloria8	-96.320086	19.115798	124.711
La Gloria9	-96.808242	19.195405	104.415
La Gloria10	-96.820636	19.220482	148.916
La Gloria11	-96.822972	19.241503	128.939
La Providencia	-96.626827	18.704216	23971.386
Mahuixtlan1	-96.876469	19.396311	12284.470
Mahuixtlan2	-96.841807	19.573687	1632.674
Mahuixtlan3	-97.022353	19.361385	293.757
Motzorongo1	-96.650039	18.653084	9605.906
Motzorongo2	-96.314799	18.440319	300.868
Polígono(s) por zona de abasto cañero	Longitud Central	Latitud Central	Hectáreas de los polígonos
--	------------------	-----------------	-------------------------------
Motzorongo3	-96.366524	18.536931	510.121
Motzorongo4	-96.426662	18.534598	2394.088
Motzorongo5	-96.441694	18.478842	475.893
Motzorongo6	-96.41918	18.432613	196.944
San Cristobal (Papaloapan)	-95.79	18.314	123354.846
San Gabriel	-95.886869	18.373649	44857.814
San José1	-96.759381	18.780391	5804.311
San José2	-96.673687	18.706688	1108.761
San José3	-96.631428	18.711029	83.896
San José4	-96.64888	18.734678	95.908
San José5	-96.782022	18.732393	150.522
San Miguelito	-96.947355	18.900205	19239.691
San Nicolas1	-96.378748	18.795804	318.575
San Nicolas2	-96.920253	18.817532	2517.103
San Nicolas3	-96.788849	18.819089	116.971

Polígono(s) por zona de abasto cañero	Longitud Central	Latitud Central	Hectáreas de los polígonos
San Nicolas4	-96.712468	18.789844	90.994
San Nicolas5	-96.724309	18.952412	185.825
San Nicolas6	-96.724879	18.998424	488.189
San Nicolas7	-96.77799	19.011259	219.941
San Nicolas8	-96.58194	19.028055	141.544
San Nicolas9	-96.513341	19.022999	241.768
San Nicolas10	-96.669375	18.719676	4731.348
San Nicolas11	-96.530697	18.748074	508.890
San Nicolas12	-96.216872	18.634922	1637.822
San Nicolas13	-96.186447	18.756783	5421.741
San Nicolas14	-96.189787	18.332207	2003.201
San Nicolas15	-96.096222	18.376085	528.761
San Nicolas16	-96.049765	18.356241	234.520
San Nicolas17	-96.428908	18.532529	4453.163
San Nicolas18	-96.467726	18.627713	559.431

Polígono(s) por zona de abasto cañero	Longitud Central	Latitud Central	Hectáreas de los polígonos
San Pedro1	-95.500934	18.588028	3885.476
San Pedro2	-95.456906	18.488514	5477.780
San Pedro3	-95.390904	18.58626	6508.457
San Pedro4	-95.268699	18.531923	876.647
San Francisco	-95.153965	18.939978	12293.259
Tres Valles1	-96.319845	18.306948	486.077
Tres Valles2	-96.356504	18.295174	130.127
Tres Valles3	-96.302469	18.447973	407.219
Tres Valles4	-96.120396	18.298996	54080.699
Zapoapita (Fomento Azucarero del Golfo)	-98.192	22.004	46837.475
AA Saenz Xico1 (Guayalejo)	-99.149	23.115	28.051
AA Saenz Xico2 (Guayalejo)	-99.109	23.119	75.765
AA Saenz Xico3 (Guayalejo)	-98.972	22.931	36008.853
El Mante1	-99.116664	22.867492	201.105
El Mante2	-98.961892	22.767946	29699.408

Polígono(s) por zona de abasto cañero	Longitud Central	Latitud Central	Hectáreas de los polígonos
Pte. Benito Juárez1	-93.621476	18.187182	57.833
Pte. Benito Juárez2	-93.710001	18.106567	278.232
Pte. Benito Juárez3	-93.684219	18.094209	175.413
Pte. Benito Juárez4	-93.555659	18.123176	2158.988
Pte. Benito Juárez5	-93.545987	18.017518	29639.507
Santa Rosalía1 (La Chontalpa)	-93.336	18.08	396.916
Santa Rosalía2 (La Chontalpa)	-93.426	18.111	14491.333
Azsuremex Tenosique1	-91.372749	17.564577	427.763
Azsuremex Tenosique2	-91.352255	17.612336	156.263
Azsuremex Tenosique3	-91.471304	17.55045	289.080
Azsuremex Tenosique4	-91.228331	17.510986	367.927
Azsuremex Tenosique5	-91.411802	17.457734	212.284
Azsuremex Tenosique6	-91.404466	17.425915	305.772
Azsuremex Tenosique7	-91.367375	17.503462	807.187
Azsuremex Tenosique8	-91.340915	17.457686	1848.579

Polígono(s) por zona de abasto cañero	Longitud Central	Latitud Central	Hectáreas de los polígonos
El Dorado1	-107.36163	24.511574	234.591
El Dorado2	-107.43236	24.427318	158.165
El Dorado3	-107.25692	24.246694	262.930
El Dorado4	-107.35199	24.365063	12145.511
El Dorado5	-107.29388	24.320002	8098.132
La Primavera1	-107.38741	24.302716	1071.263
La Primavera2	-107.30279	24.29096	2230.212
La Primavera3	-107.32204	24.372874	279.848
La Primavera4	-107.84479	24.787894	223.137
La Primavera5	-107.82702	24.822087	195.202
La Primavera6	-107.70602	24.818462	1007.235
La Primavera7	-107.76977	24.790975	2555.005
La Primavera8	-107.61693	24.694053	20072.298
La Primavera9	-107.58529	24.562073	697.932
La Primavera10	-107.39615	24.671768	2932.604

Polígono(s) por zona de abasto cañero	Longitud Central	Latitud Central	Hectáreas de los polígonos
Los Mochis1	-108.72441	26.292968	642.981
Los Mochis2	-108.76502	26.193596	446.701
Los Mochis3	-108.66117	25.700098	3309.719
Los Mochis4	-109.30004	25.926417	1768.267
Los Mochis5	-108.88795	25.980016	1419.693
Los Mochis6	-109.03392	25.786411	70125.302
Alianza Popular1	-99.389082	21.986654	51.240
Alianza Popular2	-99.271522	21.759257	2360.361
Alianza Popular3	-99.181795	22.021257	1098.964
Alianza Popular4	-99.404386	21.929811	246.063
Alianza Popular5	-99.215786	21.996909	497.008
Alianza Popular6	-99.248428	22.10753	246.730
Alianza Popular7	-99.408013	21.87722	113.951
Alianza Popular8	-99.385641	21.89855	40.787
Alianza Popular9	-99.27019	21.971521	10563.529

Polígono(s) por zona de abasto cañero	Longitud Central	Latitud Central	Hectáreas de los polígonos
Alianza Popular10	-99.13418	21.833697	1458.455
Alianza Popular11	-99.392965	22.009017	20.132
Alianza Popular12	-99.210345	21.947946	54.009
Plan de Ayala1	-98.767883	21.983229	352.269
Plan de Ayala2	-98.993888	21.701138	417.736
Plan de Ayala3	-98.970032	22.067306	30.999
Plan de Ayala4	-98.960087	22.15468	21.054
Plan de Ayala5	-98.965834	22.122919	95.576
Plan de Ayala6	-99.036846	21.894562	35.784
Plan de Ayala7	-98.921584	21.728287	953.299
Plan de Ayala8	-99.126383	22.270671	567.112
Plan de Ayala9	-98.992375	21.931534	28474.778
Plan de San Luis1	-99.313556	22.146971	1079.080
Plan de San Luis2	-99.278263	22.189139	27.711
Plan de San Luis3	-99.238243	22.243111	16121.388

Polígono(s) por zona de abasto cañero	Longitud Central	Latitud Central	Hectáreas de los polígonos
San Miguel del Naranjo1	-99.319104	22.580683	151.556
San Miguel del Naranjo2	-99.082125	22.440659	111.056
San Miguel del Naranjo3	-99.051571	22.433807	271.770
San Miguel del Naranjo4	-99.097304	22.58919	14251.697
San Miguel del Naranjo5	-99.16213	22.701417	279.611
San Miguel del Naranjo6	-99.103404	22.707288	25.056
San Miguel del Naranjo7	-99.26719	22.604045	390.356
San Miguel del Naranjo8	-99.365828	22.566621	22438.168
San Miguel del Naranjo9	-99.121486	22.740903	393.881
San Miguel del Naranjo10	-99.378596	22.852283	15371.824
San Miguel del Naranjo11	-99.314948	22.376472	1260.994
San Miguel del Naranjo12	-99.416453	22.484764	1353.043
San Miguel del Naranjo13	-99.206911	22.507261	6798.186
San Rafael del Pucte (Agregarlo a ArcGis)	-88.636746	18.381101	0.0618016

Polígono(s) por zona de abasto cañero	Longitud Central	Latitud Central	Hectáreas de los polígonos
San Rafael del Pucte (Agregarlo a ArcGis)	-88.466778	18.557418	0.000064214
San Rafael del Pucte (Agregarlo a ArcGis)	-88.458547	18.540864	0.000139876
San Rafael del Pucte (Agregarlo a ArcGis)	-88.375424	18.505347	0.000176514
Atencingo1	-98.656772	18.692505	123.692
Atencingo2	-98.780429	18.571886	79.785
Atencingo3	-98.684087	18.474775	466.941
Atencingo4	-98.624727	18.515284	1174.391
Atencingo5	-98.580405	18.504189	873.064
Atencingo6	-98.585307	18.537406	108.350
Atencingo7	-98.555336	18.571512	99.892
Atencingo8	-98.566469	18.597974	71.097
Atencingo9	-98.552671	18.629644	83.306
Atencingo10	-98.395299	18.60146	156.124
Atencingo11	-98.728571	18.456927	149.712

Polígono(s) por zona de abasto cañero	Longitud Central	Latitud Central	Hectáreas de los polígonos
Atencingo12	-98.713143	18.505458	114.539
Atencingo13	-98.733417	18.582624	129.765
Atencingo14	-98.557541	18.551315	101.567
Atencingo15	-98.47755	18.58348	6231.759
Atencingo16	-98.364276	18.649125	765.091
Atencingo17	-98.452304	18.711057	892.338
Calipam1	-97.116312	18.113787	239.958
Calipam2	-97.084916	18.097442	40.638
Calipam3	-97.096984	18.148291	445.563
Calipam4	-97.051307	18.078238	26.492
Calipam5	-97.210154	18.230862	463.274
Calipam6	-97.215146	18.253385	51.835
Calipam7	-97.242836	18.218147	62.504
Calipam8	-97.255091	18.28378	401.275
Calipam9	-97.220626	18.303827	58.139

Polígono(s) por zona de abasto cañero	Longitud Central	Latitud Central	Hectáreas de los polígonos
Calipam10	-97.230777	18.343795	913.367
Calipam11	-97.262314	18.392793	273.891
Calipam12	-97.287605	18.337171	88.434
Calipam13	-97.306187	18.311337	52.794
Calipam14	-97.326942	18.300959	124.396
Calipam15	-97.366436	18.3311	85.400
Calipam16	-97.350162	18.403538	52.009
Calipam17	-97.327794	18.419664	38.624
Calipam18	-97.286622	18.411911	204.009
Calipam19	-97.134674	18.174852	40.928
Calipam20	-97.151868	18.186672	28.946
Adolofo López Mateos1	-96.18	18.157918	1815.482
Adolofo López Mateos2	-96.177341	17.998542	2700.718
Adolofo López Mateos3	-96.182691	17.918513	722.347
Adolofo López Mateos4	-96.084815	18.057959	213.028

Polígono(s) por zona de abasto cañero	Longitud Central	Latitud Central	Hectáreas de los polígonos
Adolofo López Mateos5	-96.034556	18.041933	3012.106
Adolofo López Mateos6	-96.08152	18.02537	139.006
Adolofo López Mateos7	-95.978229	18.117368	3071.291
Adolofo López Mateos8	-96.008498	17.964337	239.259
Adolofo López Mateos9	-96.089878	17.972741	3927.335
Adolofo López Mateos10	-96.008444	17.901372	296.473
Adolofo López Mateos11	-95.96309	17.862575	76.968
Adolofo López Mateos12	-96.070687	18.131904	636.073
Adolofo López Mateos13	-96.270585	18.150588	9978.354
Adolofo López Mateos14	-96.309533	18.270586	672.271
El Refugio1	-96.475345	18.614384	399.750
El Refugio2	-96.66022	18.679657	252.158
El Refugio3	-96.287181	18.501779	31.244
El Refugio4	-96.301003	18.499653	118.946
El Refugio5	-96.299293	18.358839	1058.487

Polígono(s) por zona de abasto cañero	Longitud Central	Latitud Central	Hectáreas de los polígonos
El Refugio6	-96.306658 18.284956		737.439
El Refugio7	-96.561668	18.515332	552.566
El Refugio8	-96.611292	18.415283	288.114
El Refugio9	-96.645667	18.460278	216.100
El Refugio10	-96.561054	18.621963	4669.474
El Refugio11	-96.44837	18.514839	234.800
El Refugio12	-96.620453 18.567302		1836.958
El Refugio13	-96.639772 18.503608		166.630
Pablo Machado1 (La Margarita)	-96.303 18.419		3616.44
Pablo Machado2 (La Margarita)	-96.476	18.458	23859.271
El Molino1	-104.90741	21.539252	90.313
El Molino2	-104.85689 21.5126		699.309
El Molino3	-104.60218	21.321215	980.952
El Molino4	-104.61687	21.438654	3691.676
El Molino5	-104.9167	21.463806	383.317

Polígono(s) por zona de abasto cañero	Longitud Central	Latitud Central	Hectáreas de los polígonos
El Molino6	-104.98939	21.5432	836.667
El Molino7	-104.80874	21.40711	17555.647
Puga1	-104.90741	21.539252	90.313
Puga2	-104.85689	21.5126	699.309
Puga3	-105.22771	21.837253	2335.956
Puga4	-105.241	21.678682	3247.986
Puga5	-104.91631 21.573112		500.732
Puga6	-104.60218 21.321215		980.952
Puga7	-104.61687 21.438654		3691.676
Puga8	-104.9167	21.463806	383.317
Puga9	-104.98939	21.5432	836.667
Puga10	-104.80582	21.45429	24231.976
Casasano1	-98.939932	18.700931	31.270
Casasano2	-98.909944	18.724127	170.564
Casasano3	-99.013385	18.857107	5789.484

Polígono(s) por zona de abasto cañero	Longitud Central	Latitud Central	Hectáreas de los polígonos
Casasano4	-99.031824 18.799262		174.614
Casasano5	-98.92878	18.836735	86.832
Emiliano Zapata1	-99.396749	18.739093	29.759
Emiliano Zapata2	-99.375171	18.714835	255.808
Emiliano Zapata3	-99.348507	18.75315	70.241
Emiliano Zapata4	-99.352542	18.729476	73.292
Emiliano Zapata5	-99.372241 18.762556		195.603
Emiliano Zapata6	-99.279729 18.738619		275.151
Emiliano Zapata7	-99.223669 18.791631		597.044
Emiliano Zapata8	-99.165562	18.662577	12203.520
Emiliano Zapata9	-99.264384	18.565128	108.346
Emiliano Zapata10	-99.279029 18.53225		16.223
Emiliano Zapata11	-99.3019	18.631696	1579.968
Emiliano Zapata12	-98.973137	18.767268	107.808
Emiliano Zapata13	-98.993165	18.736012	2147.110

Polígono(s) por zona de abasto cañero	Longitud Central	Latitud Central	Hectáreas de los polígonos
Emiliano Zapata14	-98.953054	18.651599	83.243
Emiliano Zapata15	-99.027817	18.615635	1991.818
Santa Clara1	-102.61278	19.790628	4404.344
Santa Clara2	-102.50438	19.579693	8493.760
Pedernales1	-101.49141	19.213918	24.864
Pedernales2	-101.51817	19.207912	22.448
Pedernales3	-101.42993 19.182182		1477.861
Pedernales4	-101.47064 19.140814		1433.888
Pedernales5	-101.42974 19.065418		21.322
Pedernales6	-101.39115	19.064895	183.821
Pedernales7	-101.46707	19.082898	243.602
Pedernales8	-101.51632	19.088378	257.128
Pedernales9	-101.55787	19.078707	660.578
Lázaro Cárdenas	-101.9417	19.292988	402.629
Lázaro Cárdenas	-101.93157	19.381393	356.339

Polígono(s) por zona de abasto cañero	Longitud Central	Latitud Central	Hectáreas de los polígonos
Lázaro Cárdenas	-101.9315 19.347494		77.028
Lázaro Cárdenas	-101.95869	19.330595	98.427
Lázaro Cárdenas	-101.89454	19.298266	263.046
Lázaro Cárdenas	-101.86055	19.292737	423.645
Lázaro Cárdenas	-101.85158	19.236911	44.272
Lázaro Cárdenas	-101.90141	19.193826	1252.764
Lázaro Cárdenas	-101.95973 19.174319		125.048
Lázaro Cárdenas	-102.03306 19.113146		357.865
Bellavista1	-103.62267 20.309325		557.965
Bellavista2	-103.59731	20.258937	155.120
Bellavista3	-103.63352	20.579198	221.604
Bellavista4	-103.76646 20.325055		242.922
Bellavista5	-103.50713	20.472621	199.762
Bellavista6	-103.60156	20.519924	1033.191
Bellavista7	-103.72276	20.424923	259.991

Polígono(s) por zona de abasto cañero	Longitud Central	Latitud Central	Hectáreas de los polígonos
Bellavista8	-103.7758	20.414525	11991.623
Bellavista9	-103.63223	20.432514	2831.463
José María Morelos1	-104.5506	19.744455	53.343
José María Morelos2	-104.5911	19.681674	54.312
José María Morelos3	-104.57404	19.64628	97.513
José María Morelos4	-104.51999	19.405662	1701.251
José María Morelos5	-104.52779 19.560517		10990.885
José María Morelos6	-104.43352 19.446321		4583.060
Melchor Ocampo1	-104.13909 19.812521		510.225
Melchor Ocampo2	-104.25409	19.764458	17517.983
San Francisco Ameca1	-104.05275	20.480189	329.463
San Francisco Ameca2	-103.9544	20.54483	15700.747
José María Martínez Tala1	-103.53482	20.744826	332.447
José María Martínez Tala2	-103.6416	20.536234	2943.269
José María Martínez Tala3	-103.73734	20.783859	360.080

Polígono(s) por zona de abasto cañero	Longitud Central	Latitud Central	Hectáreas de los polígonos
José María Martínez Tala4	-103.93159	20.688129	8627.966
José María Martínez Tala5	-103.74315	20.648652	15277.349
José María Martínez Tala6	-104.05257	20.828698	8743.353
Tamazula1	-103.32187	19.505488	1562.995
Tamazula2	-103.38341	19.486837	1129.721
Tamazula3	-103.3413	19.624111	22669.874
Quesería1	-103.74501 19.469052		862.047
Quesería2	-103.58959 19.331255		26367.338
Quesería3	-103.84129 19.190392		34.597
Quesería4	-103.46814	19.215182	2652.961
Quesería5	-103.42886	19.353229	9664.537
Quesería6	-103.78777 18.770137		57.229
Quesería7	-103.89218	18.858809	176.321
Quesería8	-103.84544	18.86465	67.396
Quesería9	-103.84241	18.892418	48.841

Polígono(s) por zona de abasto cañero	Longitud Central	Latitud Central	Hectáreas de los polígonos
Quesería10	-103.83997	18.953503	117.866
Quesería11	-103.76226	19.132235	40.938
Quesería12	-103.80615	19.245524	58.371
Quesería13	-103.76368	19.222506	401.496
Quesería14	-103.72385	19.182125	1094.288
Quesería15	-103.38776	19.131828	129.050
Quesería16	-103.80157 19.374675		21.307
Quesería17	-103.75803 19.40705		423.453
Quesería18	-103.37271	19.488285	1111.617
Quesería19	-103.45406	19.484435	305.571
Huixtla1 (Belisario Dominguez)	-92.762	15.277	691.683
Huixtla2 (Belisario Dominguez)	-92.707 15.317		103.390
Huixtla3 (Belisario Dominguez)	-92.707 15.23		1049.177
Huixtla4 (Belisario Dominguez)	-92.658	15.18	222.281
Huixtla5 (Belisario Dominguez)	-92.691	15.146	40.036

Polígono(s) por zona de abasto cañero	Longitud Central	Latitud Central	Hectáreas de los polígonos
Huixtla6 (Belisario Dominguez)	-92.383 14.863		386.795
Huixtla7 (Belisario Dominguez)	-92.592	15.2	538.363
Huixtla8 (Belisario Dominguez)	-92.458	14.914	473.225
Huixtla9 (Belisario Dominguez)	-92.514	14.89	681.597
Huixtla10 (Belisario Dominguez)	-92.518	14.928	469.155
Huixtla11 (Belisario Dominguez)	-92.64	15.11	293.963
Huixtla12 (Belisario Dominguez)	-92.504 15.086		20973.341
Huixtla13 (Belisario Dominguez)	-92.368 14.828		488.691
Huixtla14 (Belisario Dominguez)	-92.497 14.85		622.947
Pujiltic (La Fé)	-92.357	16.247	267.009
Pujiltic (La Fé)	-92.407	16.349	24.887
Pujiltic (La Fé)	-92.397 16.223		15470.906
La Joya	-90.447773	19.562252	476.948
La Joya	-90.445323	19.529469	8.468
La Joya	-90.575938	19.631902	175.397

Polígono(s) por zona de abasto cañero	Longitud Central	Latitud Central	Hectáreas de los polígonos
La Joya	-90.652775	19.600005	1.143
La Joya	-90.537162	19.481799	815.296
La Joya	-90.45874	19.510081	82.500
La Joya	-90.702189	19.545889	3.534
La Joya	-90.637128 19.61443		1953.125
La Joya	-90.542189 19.454245		128.579
La Joya	-90.740298	19.260422	1216.725
La Joya	-90.613772	19.340487	1516.307
La Joya	-90.482902	19.468963	215.196
La Joya	-90.578409	19.40443	499.875
La Joya	-90.640619	19.4442	4340.484
La Joya	-90.637782	19.653807	141.787

C. Instalación del modelo Weather Research and Forecasting Model (WRF)

Los pasos de instalación del WRF que se mencionarán a continuación son aplicables en los sistemas operativos de Linux Fedora 17 y 2. Los compiladores que se necesitan para realizar una correcta instalación son: Fortran 90 o 95, perl 5.04, MPI y OpenMP.

Los programas preliminares, los cuales se pueden instalar desde los repositorios de manera gráfica, se mencionan a continuación con el comando para ser instalados desde la terminal:

yum install gcc yum install gcc-c++ yum install gcc-gfortran yum install perl yum install autoconf yum install automake yum install libtool yum install patch yum install tcsh yum install flex bison yum install byacc yum install flex-devel yum install libpng yum install libpng-devel yum install grads yum install libjpeg-turbo-devel yum install freeglut yum install freeglut-devel

yum install mpich (la versión que esté disponible en repositorio)

yum install curl (la versión que esté disponible en repositorio)

Posteriormente se debe asegurar de tener instalado las librerías de zlib y szlib y el programa hdf5. En caso de no poder instalarlas de manera gráfica desde los repositorios, entonces descárguelos de la red para el SO mencionado y siga los siguientes comandos:

Para zlib:

./configure --prefix=/usr/local/lib

make

make check

make install

Para szlib:

./configure --prefix=/usr/local/lib

make

make check

make install

hdf5

./configure --prefix=/usr/local CC=mpicc FC=mpif90 --enable-fortran --enablefortran2003 --enable-parallel --enable-build-all --enable-shared=yes --withzlib=/usr/local/lib --with-szlib=/usr/local/lib

make

env HDF5_Make_Ignore=yes make check-p

make install

Ahora se debe instalar el programa netcdf, que contiene la nomenclatura matemática con la cual saldrán los archivos de salida del WRF en /usr/local:

export CC=gcc

export FC=gfortran

export F77=gfortran

export F90=gfortran

./configure -disable -netcdf4

make

make test

make install

Los archivos meteorológicos globales que puede leer el WRF vienen en format GRIB1 y GRIB2, por lo que para leer el segundo mencionado, se recomienda instalar Jasper en /usr/local habiéndolo descargada previamente de la red:

make

make install

Debido al interés en ocupar el módulo químico en el WRF, se debe descargar la carpeta desde la página de dicho modelo e incluirla dentro de la carpeta del WRF con el nombre de "chem". Posteriormente se aplican los siguientes comandos desde la terminal:

export NETCDF=/usr/local/netcdf

export WRFIO_NCD_LARGE_FILE_SUPPORT=1

export EM_CORE=1

export NMM_CORE=0

export WRF_CHEM=1

export WRF_KPP=1

export YACC="/usr/bin/yacc -d"

export FLEX_LIB_DIR=/usr/lib64

./configure --prefix=/usr/WRF/WRF-3.6

Nota:

./compile # marca error y se resuelve así:

cd chem/KPP/util/write_decomp

vi Makefile # buscar la linea: integr_edit.exe \$(MECH) y agregar al inicio: ./ -> ./integr_edit.exe \$(MECH)

./compile

./compile em_real

./compile emi_conv

Finalmente se instala el módulo del WPS en /usr/local con los siguientes comandos:

export NETCDF=/usr/local/netcdf

export JASPERLIB=/usr/local/lib

export JASPERINC=/usr/local/include

export LD_LIBRARY_PATH=/usr/local/lib:\$LD_LIBRARY_PATH;

./configure

./compile

D. Requerimientos de programación para la generación de archivos preliminares de emisiones

En el Inventario Nacional de Emisiones de Estados Unidos (NEI, por sus siglas en inglés) viene un programa de Fortran llamado "emiss_v04.F" a partir del cual se incorporan las emisiones contenidas en el dominio de estudio. A continuación se muestran las secciones originales de dicho algoritmo que tuvieron que ser modificadas para generar los archivos binarios de emisiones que leerá convert_emiss.exe (ver Capítulo IV, Figura 31).

 Inicialmente se debe indicar la cantidad de celdas o puntos físicos (áreas) que están contenidos en el dominio de estudio a partir del siguiente apartado del código:

```
PARAMETER(IX=1332,JX=1008,IP=IX+1,JP=JX+1,IM=IX-1,JM=JX-1)
!
! - Output emissions data dimensions (user specified)
```

```
PARAMETER(IX2=99,JX2=99,KX=19,KP=KX+1)
```

Los valores de IX y JX representan la cantidad máxima de puntos que puede tener el dominio, mientras que a IX2 y JX2 se les deben asignar las dimensiones horizontal y vertical respectivamente para indicar la cantidad de celdas en el dominio. KX indica la cantidad de niveles verticales que habrá en el dominio (debe coincidir con el valor asignado en namelist.input).

2. En la siguiente sección se muestran las instrucciones propias del código donde explica el significado de los parámetros que delimitarán geográficamente el dominio de estudio:

!	
! Map information	on for output grid
! IPROJ	=1 if Lambert Conformal, =2 if Polar Stereographic
! DX	horizontal grid spacing (m)
! REKM	Earth radius (km)
! XLATC	Center latitude of mother doamin projection
! XLONC	Center longitude of mother domain projection (-180->180E)
! CLAT1	Northern most reference latitude of mother domain projection
! CLAT2	Southern most ref. lat. of mother domain for Lambert Conformal, not used for
Polar Stereo (TR	UELAT1 > TRUELAT2)
! INEST1	=0 if emissions in mother domain, =1 if a nest within mother domain
! XNESSTR	X value of southwestern most (dot) point of nested domain in mother (=1. if
mother)	
! YNESSTR	Y value of southwestern most (dot) point of nested domain in mother (=1. if
mother)	
! DXBIGDO	horizontal grid spacing (m) of mother domain (=DX if emissions in mother)

! ILX (west-east) stagger dimension of mother (=IX2+1 if emissions in mother)! JLY (south-north) stagger dimension of mother (=JX2+1 if emissions in mother)! HEMI1 for Northern Hemisphere, -1 for Southern Hemisphere! STARTHR1 for starting at 00z , 12 for starting at 12z! MAXHRNumber of hours the emissions data is to be generated for (e.g., maxhr=3 for 3 hours of data)

En el siguiente apartado se asignan los valores correspondientes a los parámetros indicados:

! Following for WRF/Chem 60 km domain (Polar Stereographic), no nest, continental U.S. (July 2008)

INTEGER :: iproj = 1:: rekm = 6371.REAL REAL :: dx = 6.E3REAL :: dxbigdo = 6.E3REAL :: xlatc = 22.000REAL :: xlonc = -98.783REAL :: clat1 = 24.57REAL :: clat2 = 19.43INTEGER :: inest1 = 0REAL \therefore xnesstr = 1 REAL :: ynesstr = 1INTEGER :: il = 101INTEGER :: jl = 101INTEGER :: starthr = 01INTEGER :: maxhr = 24INTEGER :: endhr

Las palabras con mayúsculas indican el tipo de número a incorporar para cada variable. Además iproj sirve para especificar el tipo de proyección geográfica a utilizar (Lambert Conformal, polar, etc.); rekm es el radio de la tierra en kilómetros; dx indica el tamaño de cada celda del dominio en metros; dxbigdo representa lo mismo que dx siempre y cuando haya un solo dominio; xlatc es la latitud central del dominio; xlonc es la longitud central; clat1 es la latitud máxima superior del dominio; clat1 es la latitud máxima inferior del dominio; inest1 indica si hay o no dominios anidados; xnesstr y ynesstr representan las coordenadas de la esquina inferior izquierda del dominio y deben dárseles el valor de 1 si solo hay un dominio; il y jl representan la cantidad de puntos a lo ancho y largo respectivamente del dominio madre, es decir IX2 +1 y JX2 + 1 respectívamente; starthr, maxhr y endhr sirven para definir el tiempo inicial, máximo y final en el que se incorporarán emisiones en el sitio de estudio.

 En la siguiente sección del código se debe indicar la ubicación en la computadora donde se encuentra el Inventario Nacional de Emisiones de Estados Unidos (NEI): DATA POINDIR / '/home/algara/Emission_data/em05v2_file1/point/' / DATA AREADIR / '/home/algara/Emission_data/' /

4. Finalmente, a continuación se muestran las especies de gases y partículas contenidas en el NEI y que reconoce el WRF. Se podrá observar que el último de la lista es el CH₄.

. Special	lion prome			
! CO	e_co	1.00	28	1
! NOX	e_no	1.00	46	1
! SO2	e_so2	1.00	64	1
! NH3	e_nh3	1.00	17	1
! HC02	e_eth	1.00	00	Ethane kOH<500 /ppm/min
! HC03	e_hc3	1.00	00	Alkane 500 <koh<2500 c2h2,<="" exclude(c3h8,="" td=""></koh<2500>
organic a	acids)			
! HC04	e_hc3	1.11	00	Alkane 2500 <koh<5000 exlude(butanes)<="" td=""></koh<5000>
! HC05	e_hc5	0.97	00	Alkane 5000 <koh<10000 exlude(pentanes)<="" td=""></koh<10000>
! HC06	e_hc8	1.00	00	Alkane kOH>10000
! HC07	e_ol2	1.00	00	Ethylene
! HC08	e_olt	1.00	00	Alkene kOH <20000 /ppm/min
! HC09	e_oli	1.00	00	Alkene kOH >20000 /ppm/min
! HC10	e_iso	1.00	00	Isoprene
! HC12	e_tol	1.00	00	Aromatic kOH <20000 /ppm/min exclude(benzene
and tolue	ene)			
! HC13	e_xyl	1.00	00	Aromatic kOH >20000 /ppm/min exclude(xylenes)
! HC14	e_hcho	1.00	00	Formaldehyde
! HC15	e_ald	1.00	00	Acetaldehyde
! HC16	e_ald	1.00	00	Higher aldehydes
! HC17	e_ald	1.00	00	Benzaldehyde
! HC18	e_ket	0.33	00	Acetone
! HC19	e_ket	1.61	00	Methylethyl ketone
! HC20	e_ket	1.61	00	PRD2 SAPRAC species (ketone)
! HC21	e_hc3	0.40	00	Methanol
! HC22	e_ald	1.00	00	Glyoxal
! HC23	e_ald	1.00	00	Methylglyoxal
! HC24	e_ald	1.00	00	Biacetyl
! HC25	e_csl	1.00	00	Phenols
! HC26	e_csl	1.00	00	Cresols
! HC27	e_ald	0.50	00	Methacrolein
! HC27	e_olt	0.50	00	Methacrolein
! HC28	e_ket	0.50	00	Methylvinyl ketone
! HC28	e_olt	0.50	00	Methylvinyl ketone
! HC29	e_ket	1.00	00	IPRD SAPRAC species (Isoprene product) ketone
! HC31	e_olt	1.00	00	Propylene
! HC32	e_hc3	0.40	00	Acetylene
! HC33	e_tol	0.29	00	Benzene
! HC34	e_hc3	1.11	00	Butanes

! Speciation profile for AL emissions into RADM2, SAM and GF 6/17/04

! HC35	e_hc5	0.97	00	Pentanes
! HC36	e_tol	1.00	00	Toluene
! HC37	e_xyl	1.00	00	Xylenes
! HC38	e_hc3	0.57	00	Propane
! HC39	e_oli	1.00	00	Dienes
! HC40	e_olt	1.00	00	Styrenes
! HC40	e_tol	1.00	00	Styrenes
! HC41	e_ora2	1.00	00	Organic Acids
! PM01	e_pm25i	0.20	01	Unspeciated primary PM2.5 - nuclei mode
! PM01	e_pm25j	0.80	01	Unspeciated primary PM2.5 - accumulation
mode				
! PM02	e_so4i	0.20	01	Sulfate PM2.5 - nuclei mode
! PM02	e_so4j	0.80	01	Sulfate PM2.5 - accumulation mode
! PM03	e_no3i	0.20	01	Nitrate PM2.5 - nuclei mode
! PM03	e_no3j	0.80	01	Nitrate PM2.5 - accumulation mode
! PM04	e_orgi	0.20	01	Organic PM2.5 - nuclei mode
! PM04	e_orgj	0.80	01	Organic PM2.5 - accumulation mode
! PM05	e_eci	0.20	01	Elemental Carbon PM2.5 - nuclei mode
! PM05	e_ecj	0.80	01	Elemental Carbon PM2.5 - accumulation mode
PM10-PRI e_pm10		1.00	01	Unspeciated Primary PM10
! HC01	e_ch4	1.00	00	Methane