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On the Complexity of Boolean Networks

Edgar Alberto Zúñiga Pérez

Abstract

The Boolean Networks are a model which has proven to be useful to model real-
world systems. The Random Boolean Network model introduced by Kauffman in
1969 has been extensively used to model regulatory genetic networks and other
types of systems. In this thesis, we propose the existence of a correlation between
the complexity of a Boolean Network and the complexity of its constituents, i.e., the
complexity of its topology and its set of updating functions. This hypothesis was
tested by performing a series of experiments with the help of the implementation to
approximate Kolmogorov complexity called Block Decomposition Method (BDM).
First, we present a method to measure the complexity of the individual components
of a Boolean Network and then, we propose a representation which can be used
to measure the complexity of a Boolean Network. The results showed that this
hypothesis was correct for Random Boolean Networks with small topologies given
a sufficiently large set of Boolean Networks. However, it could not be generalized
to larger topologies because of the enormous computational time required by the
implementation of the BDM to approximate Kolmogorov complexity. Finally, the
difficulties to measure the complexities of Random Boolean Networks with larger
topologies inspired us to propose a novel method to measure Kolmogorov complexity.
We have called this method the Block Decomposition Method with Neural Networks
(BDMNN) and is based on the use of Neural Networks to perform a regression that
approximates Kolmogorov complexity. These Neural Networks were trained by using
random sequences for which its complexity was computed using the original BDM
implementation to approximate Kolmogorov complexity. Our implementation was
evaluated by performing some experiments with random sequences of bits. The
results showed that our implementation is faster and requires less computational
power to approximate Kolmogorov complexity than the original implementation.
The only cost to be paid is a decrease in the accuracy of the results, however, we
expect this error can be easily reduced with some little modifications to the method.
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Chapter 1

Introduction

The Boolean Networks are a type of discrete dynamical system which can be used
to model a lot of real-world networks. They have been used especially to model
genetic regulatory networks by means of the Random Boolean Network model in-
troduced by Kauffman in 1969. These models have proven to be worth to model
not only genetic networks but also many other types of systems. It is expected that
the ability of a Boolean Network to model any complex system, like a living system,
must be intrinsically related to the complexity of any of its constituents (its topology
and its set of updating functions). If its constituents are not complex enough, then
the complexity of the Boolean Network also will not be enough. In other words,
there should exist a correlation among the complexity of a Boolean Network and
the complexity of its topology (or its set of updating functions).

In this thesis, we will try to prove the previous hypothesis of correlation. To do
so, in Chapter 2, we will begin by giving a little review to graph theory since this
is the mathematical tool which allows the description of the topology of any type
of network. We will present some basic definitions and the terminology which will
be used extensively in the subsequent chapters. A section will be devoted to the
study of directed digraphs since they are used as the topology for Boolean Networks.
Besides, some distributions of random graphs which will be used later will be studied.

Afterward, in Chapter 3, the model of a Boolean Network will be studied with
an emphasis on the Random Boolean Network model proposed by Kauffman. We
will study how these models are built from randomly choosing a topology and a set
of updating functions. We will talk about the features of these constituents and the
possible updating schemes which can be chosen for the dynamics of the network.
Finally, we will review some real-world applications of this model and the software
which can be used to study them.

In Chapter 4, a review of algorithmic complexity will be given. This chapter is
the cornerstone of this thesis. Here, the definition of Kolmogorov complexity will be
given. Then, we will study some approaches which have been used to approximate
this complexity. Thereupon, we will review some theorems which have been used to
create an implementation which can be used to estimate K-complexity. Following,
some details about this implementation called Block Decomposition Method (BDM)
will be given. This chapter finishes by giving some applications of Kolmogorov com-

1
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plexity.

The second part of this thesis starts with Chapter 5. In this chapter, we will
present the experiments performed to prove our hypothesis about the existence of
a correlation between the complexity of a Boolean Network and the complexity of
its constituents. Firstly, we establish the methods used to measure Kolmogorov
complexity. This is done by performing some previous experiments with random
sequences of bits and random graphs. Then, we move on to measure the complexity
of random digraphs, i.e., the complexity of the topologies of a Boolean Network. We
will check distinct types of representations and its effect in the complexity which
is obtained. After, we will present a method to measure the complexity of a set
of Boolean functions, the other constituent of a Boolean Network. Once we have
learned how to measure the complexity of the individual constituents of a Boolean
Network, we will continue by proposing a way to represent a Boolean Network as
a sequence of bits. This representation is then used to measure the complexity of
Boolean Networks and to test our hypothesis of correlation by performing some ex-
periments with Random Boolean Networks.

The results of these experiments showed that the representations used were able
to capture the features which give complexity to the mathematical objects which
were studied. The hypothesis of correlation was proven to be correct for Random
Boolean Networks with small topologies given an ensemble of random networks suf-
ficiently large.

Unfortunately, these results could not be generalized to Boolean Networks with
larger topologies because of the enormous computational time demanded by the im-
plementation used to approximate Kolmogorov complexity. Inspired by this trouble,
in Chapter 6, we propose a novel method to approximate Kolmogorov complexity by
using Neural Networks. These Neural Networks were used to perform a regression
which approximates Kolmogorov complexity. The Neural Networks were trained
by using random sequences of bits which complexity was computed using the orig-
inal BDM implementation. We have called this method the Block Decomposition
Method with Neural Networks (BDMNN). Therefore, in this chapter, we will give
a brief introduction to Machine Learning and Neural Networks. Then, the method-
ology and the details to create this implementation are presented. Finally, this
implementation is evaluated by performing some experiments to compare its results
with the results of the original implementation. The results showed that our method
is faster and the only cost which must be paid is a little reduction in the accuracy
of the approximation, nevertheless we expect the error can be easily reduced by
enhancing the method through some little modifications which we talk about in the
last part of this chapter.

The codes and algorithms used to perform the experiments of this thesis can be
consulted in the Appendix section.



Chapter 2

Review of Graph Theory

In this chapter, a brief overview of graph theory will be given. This is not an exten-
sive study of the whole subject, and only the basic definitions and terminology will
be presented, especially those that will be useful in the next chapters. This chapter
was written such that it could be used as a brief introduction to graph theory to the
novices in the subject as well. If the reader has a basic background in graph theory,
he can jump to the next chapter.

2.1 What is a Graph?

A graph1 is defined as follows [1]:

Definition 2.1. A graph G with n vertices and m edges consists of a vertex set
V (G) = {v1, ..., vn} and an edge set E(G) = {e1, ..., em}, where each edge is an
unordered pair of vertices. We write uv for the edge {u, v}.

The terminology to refer to the vertices u and v which are the endpoints of an
edge e is the following [2]:

Definition 2.2. If uv ∈ E(G), then u and v are joined by the edge e and they are
said to be adjacent. Furthermore, u and v are said to be incident with e, and e is
said to be incident with u and v.

There are some special types of edges to be considered and that will help us to
classify graphs [2]:

Definition 2.3. Two or more edges joining the same pair of vertices are called
multiple edges, and an edge joining a vertex to itself is called a loop.

1Mathematicians prefer the term graph, although some physicists and engineers often refer to
them simply as networks. In both cases, they are referring to the same type of object. We will
use both terms indistinctly, though the reader should not confuse a Network with the Boolean
Networks or Neural Networks which will be studied later.

3
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(a) G1 = (V1(G1), E1(G1)) where
V1 = {0, 1, 2, 3} and
E1 = {00, 01, 02, 12, 23, 32}

(b) G2 = (V2(G2), E2(G2)) where
V2 = {0, 1, 2, 3, 4} and
E2 = {01, 02, 13, 23, 34}

Figure 2.1: (a) The graph G1 is not a simple graph because it has a loop and two
multiple edges, while in (b) the graph G2 is a simple graph.

We can classify a graph like simple or not [3]:

Definition 2.4. A graph with no loops or multiple edges is called a simple graph.

Definition 2.5. A graph with loops or multiple edges is called a multigraph 2 3.

It is customary to give a visual representation of a graph on paper, drawing a dot
for each vertex and a curve or line for each edge joining its endpoints. The previous
definitions are illustrated in Fig. 2.1.

The way in that the vertices and edges are drawn or labeled is not relevant, what
matters is the information of which pairs of nodes4 form an edge and which not [3].
Although two graphs may look different, they can be equal (see Fig. 2.2):

Definition 2.6. Two graphs are equal if they have equal vertex sets and equal edge
sets. And two graph diagrams are equal if they represent equal vertex sets and equal
edge sets.

A graph can be ”contained” inside another graph. This ”smaller” graph is called
a subgraph which is defined as follows [5]:

Definition 2.7. A graph H is a subgraph of a graph G (written as H ⊆ G), if the
vertex set of H is a subset of the vertex set of G and the edge set of H is a subset
of the edge set of G. If H is a subgraph of G, it is said that G contains H.

2The term graph indicates the more general case of a multigraph, but often simple graphs are
referred just as graphs [1].

3For some authors, the term multigraph refers to graphs with multiple edges or loops, while for
others it refers only to graphs with multiple edges and without loops. See [4].

4Throughout this thesis the words vertex and nodes will be used indistinctly as synonyms.
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Figure 2.2: Two graph diagrams that look different but represent the same graph.

It must be noted that a subgraph is another graph and that every graph is a
subgraph of itself [2] (see Fig. 2.3).

(a) G = (V (G), E(G)) where
V = {0, 1, 2, 3, 4} and E =
{01, 03, 04, 12, 14, 23, 24, 34}

(b) H = (V (H), E(H)) where
V = {0, 1, 2, 3} and
E = {01, 03, 12, 23}

Figure 2.3: (b) is a subgraph of (a).

2.2 The Vertex Degree

In this section, the basic definitions, used to characterize and describe the number
of components of a graph, are given. Then, the handshaking lemma is presented.

2.2.1 Some Basic Definitions

Firstly, it is important to measure how big or small a graph is. The next definitions
are helpful for this purpose [1]:
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Definition 2.8. The order of a graph G, written as n(G) or |V (G)|, is the number
of vertices in G. An n-vertex graph is a graph of order n.

Definition 2.9. The size of a graph G, written as e(G) or |E(G)|, is the number
of edges in G.

When working with graphs it is important to know not only its order or size but
also the ”number of connections” of each node. This parameter is called the degree
of the vertex, and it is defined as [1]:

Definition 2.10. The degree of a vertex v in a Graph G, written dG(v) or d(v), is
the number of non-loop edges containing v plus twice the number of loops containing
v.

In more simple words, the degree of a vertex is the number of lines connected
to it and if the edge is a loop then we count the two connections to it even though
they belong to the same edge.

A special name is given to the graphs which vertices have the same degree [3]:

Definition 2.11. If all the vertices of G have the same degree k, then G is k-regular,
or simply regular.

Examples of regular graphs are shown in Fig. 2.4.

(a) A 3-regular graph. (b) A 4-regular graph.

Figure 2.4: Examples of regular graphs.

Unless we are working with regular graphs, the vertices do not need to have the
same degree. In such cases, a minimum, and a maximum degree are defined as [3]:

Definition 2.12. The number δ(G) := min{d(v)|v ∈ V } is the minimum degree of
G, the number ∆(G) := max{d(v)|v ∈ V } is the maximum degree.

If the graphs studied have many nodes, each one most likely having different
vertex degree, then it is more convenient to describe the graph by specifying only
the average degree of the nodes defined as [3].
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Definition 2.13. The number d(G) := 1
|V |
∑

v∈V d(v) is the average degree of G.

The average degree satisfies the relation δ(G) ≤ d(G) ≤ ∆(G).

This number quantifies globally the number of edges of G per vertex, which is
written as ε(G) := |E|

|V | , and satisfies ε(G) = 1
2
d(G).

2.2.2 The Handshaking Lemma

Lemma 2.14. [2]. In any graph G, the sum of all the vertex-degrees is equal to
twice the number of edges. That is

∑
d(v) = 2|E(G)|.

Corollary 2.14.1. [3]. The number of vertices of odd degree in a graph is always
even.

Corollary 2.14.2. [2]. The sum of all the vertex-degrees is an even number.

Corollary 2.14.3. [2]. A graph which has n vertices and is r-regular has exactly
1
2
nr edges.

All the concepts presented in this section are summarized in an example in Fig.
2.5.

Figure 2.5: An example graph G = (V,E) where V = {0, 1, 2, 3, 4} and E =
{04, 12, 14, 23, 24, 34}. The order of G is n(G) = 5. The size of G is |E(G)| = 6.
The degrees of the vertices are: d(0) = 1, d(1) = 2, d(2) = 3, d(3) = 2 and d(4) = 4.
The handshaking lemma is fulfilled because 1 + 2 + 3 + 2 + 4 = 2 ∗ 6; the number
of vertices of odd degree is 2, so its corollary is also fulfilled. The minimum and
maximum degrees of G are respectively: δ(G) = 1 and ∆(G) = 4. The average
degree of G is d(G) = 2.4 while the number of edges per vertex is ε(G) = 1.2.

2.3 Adjacency and Incidence Matrices

There are many ways to specify or describe a graph. Until this section, for example,
we have been specifying a graph by giving the list of vertices and the list of edges.
Nevertheless, in some situations like when we need to generate random graphs or
when we want to compute their properties, this can be cumbersome. In such situa-
tions, we can rely on more convenient representations using matrices. In this section,
we will study the two most common representations of graphs using matrices, al-
though, we must have in mind that they are not the only possible representations.
We will continue this discussion in Section 2.10.
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2.3.1 The Adjacency Matrix

The adjacency matrix of a graph is built by considering whether the pair of vertices
are adjacent or not (see Definition 2.2). For a simple graph, the adjacency matrix
is defined as follows [3]:

Definition 2.15. The adjacency matrix A = (aij)nxn of a simple graph G is given
by:

aij =

{
1 if ij ∈ E
0 otherwise

(2.1)

This definition is generalized for the case of a multigraph [2]:

Definition 2.16. The adjacency matrix A = (aij)nxn of a multigraph G, is the
matrix in which the entry aij is the number of edges joining the vertices i and j.
The diagonal entries aii count the number of loops of the vertex i.

The adjacency matrix is symmetric. If it does not have any loops, then it has
zeros on the diagonal and the sum of the elements of a column(row) equals the
degree of the vertex that the column(row) represents. Furthermore, if the graph is
simple, then all its entries are 0′s or 1′s.

Finally, it must be remarked that a graph may have many adjacency matrices,
depending on the way we label and order the vertices.

2.3.2 The Incidence Matrix

Instead of considering the adjacency of the vertices, we can specify a graph by saying
if the pairs of vertices are incident or not (see Definition 2.2). The incidence matrix
is defined as follows [3]:

Definition 2.17. The incidence matrix B = (bij)nxm of a simple graph G with n
vertices and m edges is given by:

bij =

{
1 if vi ∈ ej
0 otherwise

(2.2)

If we wish to consider multigraphs with loops, then we will generalize this defi-
nition as:

Definition 2.18. The incidence matrix B = (bij)nxm of a multigraph G with n
vertices and m edges is given by:

bij =


1 if vi ∈ ej
2 if vi is doubly incident with the loop ej

0 otherwise

(2.3)

As in the case of the adjacency matrix, the incidence matrix also depends on
the way the edges and vertices are labeled. Some examples of the adjacency and
incidence matrices of three different graphs are shown in Fig. 2.6.
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(a) (b) (c)

Figure 2.6: Three different graphs with their respective adjacency matrix A and
incidence matrix B. (a) A simple Graph. (b) A multigraph without loops. (c) A
multigraph with two loops.

2.4 Isomorphic Graphs

In Definition 2.6, we had a first approach to the equality of graphs. However, if we
consider two graphs which only differ in the way their vertex sets have been labeled,
then our definition is not able to capture that kind of ”sameness” (see Fig. 2.7 ) [5].
For such situations, we ought to have a suitable definition that does not depend on
the name of the vertices [3].

Definition 2.19. Let G = (V,E) and G′ = (V ′, E ′) be two graphs. We call G
and G′ isomorphic, and write G ∼= G′, if there exists a bijection f : V → V ′ with
xy ∈ E ⇔ f(x)f(y) ∈ E ′ for all x, y ∈ V . Such a map f is called an isomorphism5;
furthermore, ifG = G′, it is called an automorphism. We do not normally distinguish
between isomorphic graphs. Thus, we usually write G = G′ rather than G ∼= G′.

Thus, we can say that an isomorphic graph G′ can be obtained from G by rela-
beling its vertices in such a way that there is a one-to-one correspondence between
the vertices of G and G′ such that the number of edges joining each pair of vertices
in G is preserved for the corresponding pair of vertices in G′. Therefore, an easy
way to construct isomorphic graphs of a graph G, is just using permutation matrices
to permute the rows and columns of its adjacency matrix A(G) to get an adjacency
matrix corresponding to a graph G′ which only differs from G in the order we have
labeled the vertices. Evidently, isomorphic graphs present transitivity, that is, if
G ∼= G′ and G′ ∼= G′′ then G ∼= G′′.

The collection of isomorphisms f of a graph G which are also automorphisms
(graph isomorphisms with themselves) form a group called the automorphism group

5The reader must not confuse the concepts of isomorphism and isomorphic. Isomorphism refers
to a bijection f while isomorphic refers to an object G′ which can be obtained by applying such
bijection f to an object G.
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and denoted as Aut(G). This automorphism group preserves the incidence matrix
of G, i.e., the incidence matrix is an invariant of this group [6].

2.5 Paths and Cycles

Firstly, we define what we understand when we talk about a walk [2]:

Definition 2.20. A walk of length k in a graph G is a succession of k edges of G
of the form ab, bc, cd, ..., ef. We denote this walk by abcd...ef and refer to it as a
walk between a and f. 6

This definition allows the repetition of edges and vertices. A particular type of
walk is a trail, and a particular case of a trail is a path. We define them as follows
[2]:

Definition 2.21. If all the edges (but not necessarily all the vertices) of a walk are
different, then the walk is called a trial. If, in addition, all the vertices are different,
then the trail is called a path.

Now, we will define the case when the walk has the restriction that it starts and
finishes at the same vertex [2]:

Definition 2.22. A closed walk in a graph G is a succession of edges of G of the
form ab, bc, cd, ..., ef,fa. If all those edges are different, then the walk is called a
closed trail. If, in addition, the vertices a,b,c,d,...,e,f are all different, then the trail
is called a cycle.

In closed walks, the vertex of beginning can be anyone. An example of a walk is
shown in Fig. 2.8.

Using the concept of path, we can define a new class of graph G, which have the
particularity that any two of its vertices are connected by a path [2]:

Definition 2.23. A graph G is connected if there is a path in G between any given
pair of vertices, and disconnected otherwise. Every disconnected graph can be split
up into several connected subgraphs, called components.

In Fig. 2.9, examples of connected and disconnected graphs are shown.

2.6 Some Families of Graphs

There exist many families and ways to classify graphs based on different properties,
like the number or degree of the vertices, symmetries, etc. Even there are graphs
so interesting that they can have their own special name. Indeed, we have already
found some families of graphs in definitions 2.11 and 2.23.

For the sake of completeness, in this section, a few of the most important families
of graphs will be presented. Although we will have to leave out of discussion some

6Since in simple graphs the direction of the edges is not specified, we could refer to this walk
as a walk between f and a.
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(a)

(b)

(c)

Figure 2.7: (a) Labeled graphs that are the same. (b) Labeled graphs that are
not the same but are isomorphic. (c) Unlabeled graphs that are isomorphic (they
are not labeled to highlight the fact that they are isomorphic independently of the
labels chosen).

Figure 2.8: A walk of length 4 between vertices 3 and 8. All the edges are different,
so we can consider this walk as a trail. Furthermore, all the vertices are different so
we can consider it as a path.
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(a) A connected graph. (b) A disconnected graph.

Figure 2.9: Examples of connected and disconnected graphs.

Figure 2.10: The first six null graphs.

families as the Platonic graphs, the planar graphs or the Petersen graph, a complete
reference about the names and families of graphs can be found in the literature
compiled by the Documentation Center of the Wolfram Language & System in [7]
or in the references given at the end of this thesis.

2.6.1 Null Graphs

The null graph on n vertices, denoted as Nn, is the graph which has the vertex set
V = {v1, v2, v3, ..., vn} and no edges [5]. Obviously, Nn is zero regular. The first six
null graphs are shown in Fig. 2.10.

2.6.2 Complete Graphs

A more interesting family is the family of complete graphs. A complete graph on n
vertices, denoted as Kn, is the graph having vertex set V = {v1, v2, v3, ..., vn} and
all possible edges, i.e., every two distinct vertices are joined exactly by one edge [5].
The complete graph Kn is (n − 1)-regular and has 1

2
n(n − 1) edges, following the

handshaking lemma in 2.14. The first six complete graphs are shown in Fig. 2.11.

Figure 2.11: The first six complete graphs.
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Figure 2.12: The first six cycle graphs.

Figure 2.13: The first six path graphs.

2.6.3 Cycle Graphs

The cycle graph or cyclic graph on n vertices, denoted as Cn, is the graph consisting
of a single cycle (see Definition 2.22). It has the vertex set V = {v1, v2, v3, ..., vn}
and the edge set E = {vivi+1|i = 1, ...n− 1}

⋃
{v1vn}. 7 The cycle graph Cn has n

edges and is 2-regular [2]. The first six cycle graphs are shown in Fig. 2.12.

2.6.4 Path Graphs

This family as the name indicates is the family which graphs consist of only a
single path. A path graph on n vertices, denoted as Pn, is the graph which has the
vertex set V = {v1, v2, v3, ..., vn} arranged in a sequence such that the edge set is
E = {vivi+1|i = 1, ...n − 1}. We can obtain the path graph Pn which has n − 1
edges, from the cycle graph Cn by removing any edge [2]. The first six path graphs
are shown in Fig. 2.13.

2.6.5 Bipartite Graphs

In this family, we found the graphs whose vertex set V admits a partition into two
classes V1 and V2 such that every edge uv ∈ E joins a vertex in V1 to a vertex in V2,
i.e., u ∈ V1 and v ∈ V2. Two examples of bipartite graphs are shown in Fig. 2.14.

Furthermore, the complete bipartite graph, denoted as Kn,m, is the bipartite
graph in which each vertex in V1 is joined to each vertex in V2 by exactly one edge,
where |V1| = n and |V2| = m. The special case K1,m is called a star graph [3].

The graph Kn,m has n+m vertices (where n are of degree m and m are of degree
n) and nm edges. Finally, it must be noted that Kn,m = Km,n, so we usually put the
smaller number in the first index [2]. Some examples of complete bipartite graphs
are shown in 2.15.

7For some authors, an additional requirement when defining the cycle graph on n vertices is
that n must be equal or greater than 3.
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Figure 2.14: Two examples of bipartite graphs. As can be seen, the vertex sets
of both graphs have been divided into two sets (of a different color) in such a way
that they satisfy the definition of a bipartite graph.

Figure 2.15: Examples of complete bipartite graphs. The first graph on the left is
also a star graph.

2.6.6 Cube Graphs

The n-cube graph, also known as n-hypercube graph and denoted as Qn, is the graph
whose vertices are the 2n possible binary words (sequences of 0′s and 1′s) of length n
of which two vertices are adjacent (are joined) if the two corresponding binary words
are the same except for one element [8]. We note that Qn has n ·2n−1 edges following
the handshaking lemma 2.14. This type of graphs has applications in coding theory
[2]. The first four cube graphs are shown in Fig. 2.16.

2.6.7 Trees

If a graph does not have any cycles or circuits (see Definition 2.22), it is called a
forest. If a forest is connected (see 2.23), then it is a tree, or in other words: A tree
is a connected graph which is acyclic, and a forest is a graph whose components
are trees, as shown in Fig. 2.17. This definition means that in a tree we found
no multiple edges and that there is a unique arc or branch connecting any pair of
vertices. Following the analogy, the vertices of degree 1 in a tree are called leaves
[3]. A tree with n vertices has n− 1 edges [9].

Figure 2.16: The first four cube graphs.
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Figure 2.17: Two examples of tree graphs.

Figure 2.18: On the left, we can see a connected graph and on the right one of its
subgraphs (highlighted) which is a spanning tree.

Let G be a connected graph, then we define a spanning tree in G as a subgraph
of G which includes every vertex in G and which is also acyclic [2]. An example of
a spanning tree is shown in Fig. 2.18.

Trees have many applications in computer science, especially in data storage and
communication. For instance, these graphs are used in the Huffman coding, a type
of coding that is used for lossless data compression and that is part of the algorithm
used in the ZIP compression method [1]. Another application is the k-dimensional
tree, a type of space-partitioning data structure for organizing information which
then can be used to access data in a more efficient way in algorithms of search such
as the algorithm of the k-nearest neighbors which is used in machine learning or the
depth-first search (DFS) and the breadth-first search (BFS) which are used when a
particular piece of information in the random-access memory (RAM) of a computer
file is needed [2].

2.6.8 Circulant Graphs

These graphs are defined as follows [10]:

Definition 2.24. A circulant graph is a graph of n vertices in which the ith graph
vertex is adjacent to the (i+ j)th and (i− j)th graph vertices for each j in a list of
jumps {j1, j2, ...}. The circulant graph Cin(1, 2, ..., bn/2c) is equal to the complete
graph Kn and the graph Cin(1) gives the cyclic graph Cn.

Some examples of these types of graphs are shown in Fig. 2.19.

2.7 Counting Graphs

A natural question arises when generating graphs with certain given properties: how
many different graphs of a certain kind there exist? For instance, we could ask: How
many different graphs of a given number of vertices there exist? We would find that
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Figure 2.19: Circulant graphs of 10 vertices and only one jump. The jumps are
1, 2, 3, 4, and 5 respectively.

in general, the number of possible graphs with some given characteristics increases
fast with the number of vertices and that in certain situations the problem to find
this number is yet open [2]. To illustrate it, let us see what happens with two of the
simplest cases.

2.7.1 Labeled Graphs

We will consider labeled simple graphs which are not isomorphic, so we say that we
are counting up to isomorphism. The problem is to find the number of this kind
of graphs given the number n of vertices. If we first take into account the (n − 1)-
regular graph of n vertices which has all the possible edges for the type of graphs we
are considering, thus by means of the corollary 2.14.3 it has 1

2
n(n − 1) edges. The

rest of the graphs will have or not each of these edges (there are two possibilities),

then the number of possible graphs is 2
1
2
n(n−1). For instance, for n = 4 the number

of labeled graphs is 64, while for n = 7 the number increases up to 2097152.

2.7.2 Unlabeled Graphs

Here, we treat with non-isomorphic unlabeled graphs. This problem is not as easy
to solve as it was for labeled graphs. Usually, we will have to invoke formulas (if
they exist) as the general formula found by George Pólya in 1935 to count graphs
with any number of vertices and edges [2]. As a reference we can see the Table
2.1, which also contains the number of unlabeled connected graphs and unlabeled
regular graphs up to 8 vertices, and presents the same behavior stated previously,
the number of graphs increases fast with the number of vertices n.

As stated before, there exist formulas like the general formula of George Pólya to
count other types of graphs. An example is the Caley’s Theorem which states that
the number of labeled trees with n vertices is nn−2. However, this is not always the
case and sometimes the problem remains unsolved for both labeled and unlabeled
graphs or just for one of these cases. In general counting problems for labeled graphs
are much easier to solve [2].

2.7.3 Counting Adjacency Matrices

We can also try to count the number of possible adjacency matrices of a given
graph. First, we have to remember that we can permute the labels of a graph
without changing its structure, that is, we could permute the corresponding rows
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n 1 2 3 4 5 6 7 8

graphs 1 2 4 11 34 156 1044 12346
connected graphs 1 1 2 6 21 112 853 11117

regular graphs 1 2 2 4 3 8 6 20

Table 2.1: Number of unlabeled graphs for n ≤ 8.

and columns of the adjacency matrix in order to achieve a permutation of the labels
of the graph and get a matrix which still refers to the same graph.
Let G be a graph of order n(G) with an automorphism group of order |Aut(G)|,
then the number of distinct adjacency matrices NA is given by NA = n(G)!

|Aut(G)| where

n(G)! is the number of permutations of vertex labels [11].

2.8 Directed Graphs

Up to this point, in our notation for edges, we have made no distinction between uv
and vu, i.e., an edge is defined only as a pair of vertices but not as an ordered pair of
vertices. Graphically our usual notation for uv or vu means that we are connecting
the vertices u and v using a line with no preferential direction. However, in some
applications, we would like to give a direction to each edge in a graph, or graphically,
we would like to draw each edge as an arrow starting in a vertex and finishing in the
other. In fact, this kind of graphs will be used extensively throughout this thesis
because they will allow us to define a Boolean Network in the next chapter, thus we
define a directed graph also called digraph [1]:

Definition 2.25. A directed graph or digraph D consists of a vertex set V (D) and
an edge set E(D), where each edge is an ordered pair of vertices. We write uv for
the edge (u, v), with u being the tail and v being the head. We write u → v when
uv ∈ E(D) meaning ”there is an edge from u to v”.

The difference between a graph and a digraph is shown in Fig. 2.20.
In the same way, following Definition 2.4, a directed graph can be simple or not. In
the most general case, a directed graph which is not simple (called directed multi-
graph or multidigraph 8) can have multiple edges between two vertices. These mul-
tiple edges can be parallel if they have the same direction or can be a loop if they
start and finish in the same vertex [3].

We will continue giving some basic definitions for digraphs. They usually are
only extensions of the corresponding definitions for graphs; therefore, we could de-
fine again all the concepts given for graphs, but we shall only present the most
important for our needs.

8In the next chapters, we will refer to simple and not simple digraphs just as digraphs unless
we need to make a distinction.
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(a) Edges treated as un-
ordered pairs of vertices

(b) Edges treated as ordered pairs
of vertices

Figure 2.20: Difference between a graph and a digraph.

2.8.1 The Underlying Graph

As we can see in Fig. 2.20, we can obtain a graph from a digraph [2].

Definition 2.26. Let D be a digraph. The underlying graph of D is the graph G
obtained by replacing each directed edge by the corresponding undirected edge. We
say that D is an orientation of G called an oriented graph. In the same way we
can obtain an oriented graph D from a graph G by choosing an orientation for each
edge.

2.8.2 Subdigraphs

We can also construct the subdigraphs of a digraph D [2]:

Definition 2.27. Let D be a digraph with vertex-set V (D) and edge set E(D).
A subdigraph of D is a digraph all whose vertices belong to V (D) and all whose
directed edges belong to E(D).

An example of a digraph and a subdigraph is shown in Fig. 2.21.

(a) D = (V (D), E(D)) where
V = {a, b, c, d} and E =
{ba, bc, cb, cd, dc}

(b) C = (V (C), E(C)) where
V = {a, b, c} and
E = {ba, bc, cb}

Figure 2.21: (b) is a subdigraph of (a).

2.8.3 Local Degrees in a Digraph

In Definition 2.10, we saw that we can regard the degree of a vertex as the number
of lines or edges connected to it, counting by two if the corresponding edge is a
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loop. Due to the nature of digraphs, we can consider two distinct types of degrees
depending in if the edge is going in or going out of the vertex, i.e., we have two local
degrees [1]:

Definition 2.28. Let v be a vertex in a directed graph. The vertex out-degree d+(v)
of v is the number of outgoing directed edges from it, that is, the number of edges
with tail v. The vertex in-degree d−(v) of v is the number of incoming directed edges
from it, that is, the number of edges with head v.

For instance, for the digraph in Fig. 2.20b, the in and out degrees of the ver-
tices are: {d−(0) = 0, d−(1) = 1, d−(2) = 2, d−(3) = 1} and {d+(0) = 1, d+(1) =
2, d+(2) = 0, d+(3) = 1}. It must be noted that if a vertex in a digraph has a loop,
this will contribute by one to the count of both degrees, the vertex out-degree and
the vertex in-degree.

2.8.4 Adjacency and Incidence Matrices for a Digraph

We will define the adjacency matrix for the most general type of digraph, that is a
digraph that can have multiple edges and loops (a multidigraph) but we will continue
referring to them just as digraphs. We define [2]:

Definition 2.29. Let D be a digraph with n vertices labeled 1, 2, 3, ..., n. The
adjacency matrix A(D) is the n× n matrix in which the entry in row i and column
j is the number of directed edges going from vertex i to vertex j.

If we sum the row(column) elements of A(D) for a given row(column) we will
obtain the out-degree(in-degree) of the corresponding vertex. This property is very
useful, and in fact, we will make use of it in the next chapters to compute random
digraphs with a given in-degree.

Let v and w be vertices of a digraph. If v and w are joined by a directed edge,
then v and w are said to be adjacent. If the directed edge is directed from v to w,
then the arc is said to be incident from v and incident to w. Then, the incidence
matrix of a digraph is defined as follows [2]:

Definition 2.30. Let D be a digraph with n vertices and m directed edges. The
incidence matrix B(D) is the nXm matrix in which the entry in the row bij is given
by:

bij =


1 if the directed edge j is incident from vertex i

−1 if the directed edge j is incident to vertex i

0 otherwise

(2.4)

An example of the adjacency and incidence matrices for a digraph is shown in
Fig. 2.22. It can be noted, that the adjacency and incidence matrices of a digraph
depend in the way we have labeled the vertices. Just as we did for graphs, we can
use this fact to find isomorphic digraphs which we define next.

2.8.5 Isomorphic Digraphs

Another important concept we must extend for digraphs is the concept of isomor-
phism:
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Figure 2.22: An example digraph and its adjacency and incidence matrices labeled
as A and B respectively.

Definition 2.31. Two digraphs C and D are isomorphic if D can be obtained from
C by relabeling the vertices- that is if there is a one-to-one correspondence between
the vertices of C and those of D, such that the number of edges joining any pair
of vertices in C is equal to the number of edges joining the corresponding pair of
vertices (in the same direction) in D.

Thus, we can ignore the labels of the vertices of digraphs in some applications,
e.g., if we are checking if two digraphs are isomorphic or not, we can consider the
corresponding unlabeled graphs, because we can relabel them as necessary (see Fig.
2.23).

As was said in Section 2.4, we can easily construct isomorphic digraphs in an
analogous way to the one proposed for graphs by using permutations matrices to
permute the rows and columns of the adjacency matrix in such a way that we are
changing the order the vertices are labeled (see Fig. 2.24).

2.8.6 Counting Digraphs

As was said in Section 2.7.1, there are 2
1
2
n(n−1) simple labeled graphs with vertices

v1, ..., vn. In the case of digraphs, there exist 2n
2

with these same vertices such that
each ordered pair of them appears at most once as an edge. If we consider digraphs
without loops and admit only one of the two possibilities u → v or v → u for each
of them, then there are 3

1
2
n(n−1) different digraphs of this type [1].

2.9 Random Graphs

Sometimes, for some reasons, we will need to randomly create graphs that are dif-
ferent, but such that they all share some features in common. These features can be
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(a)

(b)

(c)

Figure 2.23: (a) Labeled digraphs that are the same. (b) Labeled digraphs that
are not the same but are isomorphic. (c) Unlabeled digraphs that are isomorphic.

the number of vertices, edges, connections, etc. Thereby, we define a random graph
as follows [12]:

Definition 2.32. A Random Graph G(n, p) is a probability space of all labeled
graphs on n vertices {1, ..., n}, where for each pair 1 ≤ i ≤ j ≤ n, ij is an edge of
G(n, p) with probability p = p(n), independently of any other edges. Equivalently,
the probability of a graph G = (V,E) with V = {, 1, ..., n} in G(n, p) is Pr[G] =

p|E(G)|(1− p)(
n
2)−|E(G)|.

Once the edge distribution is chosen, a random graph is obtained by picking
out one graph within this distribution. There have been proposed different edge
distributions to attack different problems, following we will present some of them
which we will use afterward, though strictly speaking they should be named pseudo-
random graphs (see [12] for a broader discussion).

2.9.1 The Watts-Strogatz Small-World Graph Distribution

This graph distribution is composed of graphs which are built using the following
random procedure. We start with a circulant graph of n vertices and jump list
{1, 2, ..., k}. Then, we introduce disorder to this graph by rewiring each edge with a
probability p, making sure that no loop or multiples edge is created. Evidently,
p satisfies 0 ≤ p ≤ 1. For p = 0 we have graphs which show regularity and
order, meanwhile as we increase the value of p we increase the disorder until we
reach p = 1 where the graph edges are totally disordered [13]. In Fig. 2.25 three
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Figure 2.24: A digraph which vertices have been labeled in two different orders
(they are isomorphic) and their corresponding adjacency matrices. The adjacency
matrix A′ is obtained from A by permuting the rows and columns of A following
the rules: 1 7→ 2, 2 7→ 4, 3 7→ 1 and 4 7→ 3

.

random graphs generated using this distribution by means of the built-in function
WattsStrogatzGraphDistribution of Mathematica are shown.

2.9.2 The Barabási-Albert Graph Distribution

The graphs generated by this distribution are useful since they can describe networks
of complex and possibly unknown topology such as the topology of web pages where
nodes are individual web pages and the edges are the hyperlinks or the peer-reviewed
scientific literature where the nodes are the publications and the edges are citations
[14]. These graphs are also known as scale-free networks and their construction is
based on preferential attachment since they expand by adding vertices which attach
preferentially to high degree vertices. They have the property that the probability
of a given vertex v of having a vertex degree d(v) decays as a power-law P (d(v)) ∼
d(v)−γ where γ > 0. The preferential connectivity is achieved with the following
procedure [15]. Starting from a graph of (n − m) vertices we add at each step a
vertex with k edges. These new k edges are randomly attached to vertices at random
with the probability of linking a node vi given by [14]:

P (linking to node vi) ∼
d(vi)∑
j d(vj)

(2.5)

This procedure is performed m times, i.e., until we have a graph with n vertices.
In Fig. 2.26 three random graphs generated using this distribution by means of the
built-in function BarabasiAlbertGraphDistribution of Mathematica are shown.
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Figure 2.25: Three random graphs of 20 nodes generated by using the Watts-
Strogatz graph distribution with increasing p value. The starting graph chosen was
the circulant graph Cin(1, 2, 3, 4, ), i.e., the complete graph K4 as can be seen for
p = 0. The graphs like the middle one with regular lattices and small characteristic
path lengths are known as ”small-world” networks [13].

Figure 2.26: Three random graphs of 100 nodes generated by using the Barabási-
Albert graph distribution. They were constructed starting from a cycle graph with
3 vertices. At each step was added a vertex with 1, 3 and 5 edges respectively.

2.9.3 The Uniform Graph Distribution

This is perhaps the simplest graph distribution. The sample space is made up
just of all the simple graphs of n vertices and k edges. This graph distribution is
implemented in Mathematica by means of the built-in function UniformGraphDis-
tribution. Alternatively, the sample space can consider all the directed graphs of n
vertices and k directed edges, or even we can be more specific and consider all the
directed graphs of n nodes with vertex out-degree d+ and vertex in-degree d−.

2.10 Other Ways of Representing Graphs

Throughout this chapter, we have used diverse ways to represent a graph. For
instance, we began describing a graph using lists, then we moved to matrices, even
we could consider the graphical representations as another type of representation.
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To finish this chapter, it must be mentioned that in addition to the ones used here,
there are many other ways to encode or represent a graph. For instance, we could
continue using lists, but instead of giving the list of vertices or edges of the graph,
we could give a nested list with the list of vertices adjacent to each vertex in the
graph, this is known as the adjacency list. Another option could be to give a list
with the vertex degree of each vertex in the graph. Or we could use other types of
matrix representations, for example, we could use the Laplacian Matrix which we
did not define here.

It must be remarked, that each representation, encodes or is focused on a feature
or information of the graph, so when we work with graphs, we have to use the rep-
resentation that best fits our needs for a particular application. The representation
used will have to allow us to perform calculations without the loss of the information
we care about. Often, the adjacency matrix will satisfy our requirements, but other
times it will not.



Chapter 3

Boolean Networks

This chapter will be devoted to an introduction of Random Boolean Networks. First,
we will begin by defining what a Boolean Network is, then we will present the Ran-
dom Boolean Network Model. We will talk about the topology of these networks
and the updating functions used. We will continue by discussing the dynamics of
Random Boolean Networks and we will present an example. Afterward, we will
briefly review the different dynamical phases and other possible updating schemes.
We will finish by commenting on some applications and the software available to
simulate Random Boolean Networks.

The model we are interested in was originally proposed by Stuart Kauffman in
1969 [16] [17]. He proposed a mathematical model to simulate genetic regulatory
networks in which each gene was represented by a node which can only take the two
values 0 or 1, i.e., every gene could only be in an ”on” state or in an ”off” state.
There are N nodes in the network, and the state of each node is controlled by the
information it receives from k randomly1 chosen nodes (itself included) which are
connected to it. Once the connections are established in a random way, they stay
fixed during the dynamics of the network. Each node has associated with it one
updating function which is also chosen in a random way from the set of all possible
Boolean functions of k inputs and stays fixed during the dynamics as well. This
logic function establishes the next state of the node in every time step according to
the states of its input nodes.

3.1 Boolean Networks and The Random Boolean

Network Model

3.1.1 Boolean Networks

Formally we can define a Boolean Network as follows [18]:

Definition 3.1. A Boolean Network, is composed by a set of N nodes, σ1, σ2, ..., σN .
At each time t (t = 0, 1, 2, ...), a node has only one of two different values: 1 or 0.
The state of each node is controlled by a set of k nodes (possibly including itself)

1It is supposed that we are using some probability distribution which can be for example a
normal distribution.

25
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in a synchronous manner. Thus, the network can be described by a set of equations
as follows: 

σ1(t+ 1)= f1(σni,1
(t),σni,2

(t),...,σni,k
(t))

σ2(t+ 1)= f2(σni,1
(t),σni,2

(t),...,σni,k
(t))

...

σ3(t+ 1)= fN(σni,1
(t),σni,2

(t),...,σni,k
(t))

(3.1)

where fi(i = 1, 2, 3, ..., N) is a k-bit function with k ≤ N , and ni,k are the indices
of the nodes which act as inputs of node i.

Hence, the set of equations 3.1 can be written in a short form as [19]:

σi(t+ 1) = fi(σni,1
(t), σni,2

(t), ..., σni,k
(t)) (3.2)

We can consider this system of equations as a discrete dynamical system starting
from the input state (σ1(t = 0), σ2(t = 0), ..., σN(t = 0))T which is evaluated syn-
chronously [18], though this is not the only possible updating scheme and certainly
is not the more general or closest to the updating schemes of real-world genetic
regulatory networks. In this thesis, we will only work with Boolean Networks with
a synchronously updating scheme.

3.1.2 Random Boolean Networks

In the random Boolean Network model originally proposed by Kauffman, also known
as N −k model or Kauffman network, the functions fi and the connections between
nodes are chosen randomly following some probability distribution. We will refer to
a Boolean Network which functions and links between the nodes have been chosen
randomly as a Random Boolean Network or RBN for short.

A Random Boolean Network is entirely described by its topology, i.e., the con-
nections between the nodes, and the dynamical rules, i.e., the functions fi, to-
gether, they give the dynamics of the network [20]. We will continue discussing
these Boolean Networks features with a little more detail.

3.1.3 Topology

When we say topology of the RBN, we mean the nodes and the links between them.
We represent the topology of an RBN by means of a directed graph (see Section
2.8). Unless we mention something else, the number k of input links for each node is
chosen to be the same for all of them2. Or in other words, the vertex in-degree d−(i)
has the same value k for each node (i is the index of the node). Although the vertex
in-degree is fixed for all the nodes by the parameter k, the vertex out-degree d+(i)
is not fixed and every node can have a different value of output directed edges3.

Once the number N of nodes is known, the links between these nodes are cho-
sen randomly for each node. Again, unless we say something else, we will consider
that we are using a uniform probability distribution which means that it is equally
probable to link a node with all the other nodes including itself. If we consider the

2In the special case where N = k, the RBNs are also known as random maps [21].
3It has to be clear that indeed we are dealing with multidigraphs.
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Figure 3.1: Ensemble of possible topologies for N = 2 and k = 1. The topologies
a) and b) have the same statistical weight 1/4. The topologies c) and d) are the
same (we consider unlabeled digraphs) so its probability is 1/2. If we would have
assigned updating functions to the nodes, though the topologies of c) and d) are the
same their updating functions would not have been necessarily the same.

possible topologies as unlabeled digraphs, then when generating an ensemble of di-
graphs with a sufficient amount of elements, eventually all of the possible topologies
will appear, although their probabilities of apparition will be different, i.e., in gen-
eral, the statistical weights are different for each possible topology [20]. Nonetheless,
we must be aware that once we have assigned an updating function to a node, we
have labeled it, see Fig. 3.1.

The topologies generated by this model are known as homogeneous random
topologies because in the thermodynamic limit N → ∞, the number of outgoing
links, i.e., the vertex out-degree d+ of each node follows a Poisson distribution [20]:

Pout(d
+) =

kd
+

d+!
e−k (3.3)

This means that every element of the network is statistically equivalent to any
other, thus, we can characterize the topology of the network by the average connec-
tivity k, as we can expect all the nodes to have a connectivity value close to this value
[22]. Nonetheless, the reader must have in mind that the probability distribution of
Eq. 3.3 is not the only possible type of distribution which can be used to generate
the topology. In fact, we could use any other probability distribution to generate
the topology of the network. For instance, one of the most famous topologies is
the so-called scale-free topology4 which considers the habitual feature of complex
networks of having few elements with many links and many elements with few links
[21]. This type of behavior is present in molecular networks, genetic networks, social
networks, etc. and is generated by the following probability distribution [22]:

Pout(d
+) = [ζ(γ)(d+)γ]−1 (3.4)

Where γ > 1 and ζ(γ) =
∑∞

j=1 j
−γ is the Riemann Zeta function. This time

the parameter which will characterize the topology will be the scale-free exponent γ
[22]. Throughout this work, we will not consider Boolean Networks with scale-free
topologies or topologies with a probability distribution different to the probability
distribution given by Eq. 3.3.

4Compare with the scale-free graphs described in Section 2.9.2.
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σ1 σ2 f0 f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Table 3.1: Truth table with all the possible Boolean functions for k = 2.

3.1.4 Updating Functions

3.1.4.1 Boolean Functions

The two possible states of each node in an RBN are Boolean values, i.e., σi ∈ {0, 1}.
These states are updated by means of an updating function, i.e., a logic function,
Boolean function or Boolean expression which output is another Boolean value which
depends in the k Boolean variables used as inputs:

f : {0, 1}k → {0, 1} (3.5)

Thus, an alternative definition to Eq. 3.1 and 3.2 for a Boolean Network and
which highlights it as a function is as follows [18]:

Definition 3.2 (Alternative Definition). A Boolean network of N nodes can be
seen as a Boolean function:

f : {0, 1}N → {0, 1}N (3.6)

where f = {f1, f2, ..., fN}T and each fi is of the form shown in Eq. 3.1.

Now, we must know how to represent the functions fi. The easiest way to
describe a Boolean function is through a truth table which is ([23], page 26):

Definition 3.3 (Truth Table). A list of all possible input states to a Boolean func-
tion, listed in ascending binary order, and the output response for each input com-
bination.

It can be easily seen that there are 2k possible input states and therefore there
are 22k possible Boolean functions for a given k. For instance, for k = 2 there are
22 = 4 possible input states and 222 = 16 possible logic functions. The truth table
for k = 2 is shown in Table 3.1.

Some Boolean functions receive a special name and symbol which was inherited
from their use in digital electronics where they are better known as gates. We will
review some of these special logic functions since they are the Lego bricks to build
more complex Boolean functions.

The first of these functions is the NOT function which is usually represented as
!σ, ¬σ, σ̄ or ∼ σ [24]. The truth table of this logic function is shown in Table 3.2.



3.1. BOOLEAN NETWORKS AND THE RANDOM BOOLEAN NETWORK
MODEL 29

σ !σ

0 1
1 0

Table 3.2: Truth table for the NOT function.

σ1 σ2 σ1 ∧ σ2

0 0 0
0 1 0
1 0 0
1 1 1

Table 3.3: Truth table for the AND function.

The next function is the AND function, which is usually represented as σ1 ∧ σ2,
σ1 · σ2, σ1.σ2, σ1σ2, σ1&σ2 or σ1&&σ2 [24]. The truth table of this logic function is
shown in Table 3.3.

Finally, we have the OR function, which is usually represented as σ1∨σ2, σ1 +σ2,
σ1|σ2 or σ1 ‖ σ2 [24]. The truth table of this logic function is shown in Table 3.4.

σ1 σ2 σ1 ∨ σ2

0 0 0
0 1 1
1 0 1
1 1 1

Table 3.4: Truth table for the OR function.

The Boolean functions AND, OR and NOT are the Lego bricks from which any
other Boolean function can be built ([23], page 34). Indeed, some other special gates
are derived from these three gates: the NAND, NOR, XNOR, and XOR functions.

The NAND (contraction of NOT AND) function inverts the output of an AND
function. It is usually represented as σ1∧̄σ2, or σ1 · σ2 [24]. The truth table of this
logic function is shown in Table 3.5.

The NOR (contraction of NOT OR) function inverts the output of an OR func-
tion. It is usually represented as σ1∨̄σ2, σ1 ↓ σ2, or σ1 + σ2 [24]. The truth table of
this logic function is shown in Table 3.6.

The XOR (contraction of exclusive OR) is usually represented as σ1∨σ2, or σ1⊕σ2

[24]. The truth table of this logic function is shown in Table 3.7.
The XNOR (contraction of exclusive NOR) is usually represented as σ1 ⊕ σ2.

The truth table of this logic function is shown in Table 3.8 [25].
Using these derived functions, and the symbols we have introduced, we can

rewrite the truth table with all the possible Boolean functions for k = 2 as in Table
3.9.

The reader must had noticed up to this point that logic functions can be written
as different compositions of distinct functions, for instance, ((σ1&&!σ2)||(!σ1&&σ2))
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σ1 σ2 σ1∧̄σ2

0 0 1
0 1 1
1 0 1
1 1 0

Table 3.5: Truth table for the NAND function.

σ1 σ2 σ1∧̄σ2

0 0 1
0 1 0
1 0 0
1 1 0

Table 3.6: Truth table for the NOR function.

and ((!σ1||!σ2)&&(σ1||σ2)) are equivalent ways of representing the function σ1 ⊕ σ2,
since all of them share the same truth table. One question arises: is there any
preferred combination of functions when trying to represent a Boolean function
besides its Boolean table? The answer will depend on the context, in general, the
preferred representation will rely on our needs. However, we must know that between
the derived functions we talked about above two of them highlight: the NAND and
the NOR functions. These functions are known as universal logic gates since any
other logic function can be implemented using only combinations of one of these
functions [26]. We will use this property in chapter 5 to represent Boolean functions
in a systematic way, so we define:

Definition 3.4 (Universal Boolean Functions). The NAND and NOR functions are
universal Boolean functions since any other Boolean function can be represented
just by combinations of one of them.

Therefore, we only need to use repeatedly one of these functions to build any
other logic function.

3.1.4.2 Choosing the Updating Functions

There are diverse ways to choose the set of functions for a Boolean Network, i.e., the
function assigned to each node. Some techniques try to give biological meaning to
this assignment (see [20]). For example, one usual technique which tries to resemble
the behavior of neural networks is that in which only threshold functions are used.
Thus, the state of each node is given by [20]:

σi(t+ 1) =

{
1 if

∑N
j=1 (cij(2σj + 1)+h) ≥ 0

0 else
(3.7)

Where cij = ±1 with equal probability if the node i receives an input from node
j, otherwise cij = 0.

Nevertheless, in this work, we will use standard logic functions and we will choose
the Boolean functions of each node in the following way: as was said before, there
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σ1 σ2 σ1 ⊕ σ2

0 0 0
0 1 1
1 0 1
1 1 0

Table 3.7: Truth table for the XOR function.

σ1 σ2 σ1 ⊕ σ2

0 0 1
0 1 0
1 0 0
1 1 1

Table 3.8: Truth table for the XNOR function.

are 22k possible Boolean functions for a given k value, thus we will choose with a uni-
form probability distribution5 a function from the set of possible Boolean functions
for each node, this means that the probability of choosing each possible Boolean
function is 1/(22k), e.g., for k = 2 all the 16 possible functions have the same prob-
ability of 1/16 of being chosen in each node.

In the case where we assign the same function to all the nodes, we have what is
known as a cellular automaton or finite state machine with random wiring. Thereby,
a Boolean Network is a more general model [20].

A generalization to the original Kauffman model introduces a bias parameter p
when the Boolean functions are chosen [27]. This parameter gives the probability
of the values in the truth table of being 1 given a uniformly distributed input, and
thereby the probability of being 0 is (1− p). Therefore, the probability of choosing
a function with n times the output value 1 and (M − n) times6 the output value 0
is given by pn(1− p)M−n. Therefore, the method which we will use in this work to
choose the logic functions is the special case with p = 1/2, which means that all the
possible functions have the same probability of being chosen [20].

3.1.5 Counting RBNs

Since the RBNs are generated in a random way it is useful to give us an idea of
how many different RBN is possible to create given the number of nodes N and the
parameter k of each digraph. First, we must remember that there are 22k possible
logic functions for a given k. Thus, for a digraph with N nodes we can assign to
each node one of these possible Boolean functions which gives [18]:

22k × 22k × · · · × 22k︸ ︷︷ ︸
N Times

= 2N×2k (3.8)

5More specifically it is a discrete uniform distribution.
6Where M = 2k, i.e., the number of possible input states.
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Function Symbol

f0 0
f1 σ1 ∧ σ2

f2 σ1∧!σ2

f3 σ1

f4 !σ1∧!σ2

f5 σ2

f6 σ1 ⊕ σ2

f7 σ1 ∨ σ2

f8 σ1∧̄σ2

f9 σ1 ⊕ σ2

f10 !σ2

f11 σ1∨!σ2

f12 !σ1

f13 !σ1 ∨ σ2

f14 σ1∧̄σ2

f15 1

Table 3.9: Truth table with all the possible Boolean functions for k = 2 rewritten
by using symbols.

This is the number of possible RBNs once we have fixed the topology of the
digraph. This number increases so fast, e.g., for N = 4 and k = 2 the number of
possible RBNs for a given topology is 65, 536 and for N = 6 and k = 2 this number
is 16, 777, 216.

Nevertheless, we do not only assign the Boolean functions randomly, but we also
wire the nodes of the digraph randomly, thus we must consider these combinations. If
every node has the same vertex in-degree d−(i) = k, then each node has N !/(N−k)!
possible ordered combinations for k different links [20]. Consequently, combining this
result with Eq. 3.8 the number of possible RBNs generated randomly is:

(
22kN !

(N − k)!
)N (3.9)

This number is even bigger than our initial estimation, e.g., for N = 4 and k = 2
the number of possible RBNs for a given topology is 1, 358, 954, 496 and for N = 6
and k = 2 this number has an order of magnitude of 1016. Hence, the universe of
possible RBNs is immense and moreover there exists a very high variance in the
statistical studies within this enormous set. However, it is possible to focus on
representative features and extract some general properties [20].

3.1.6 Dynamics: The State Space and Some Basic Defini-
tions

As was mentioned before, throughout this work, we will only consider the syn-
chronous updating scheme, which means that the state of all the nodes is updated
at the same time in a parallel way. Every node can have two possible states, thus
the number of possible states for an RBN of N nodes is 2N . Consequently, the
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number of possible initial states is also 2N . We will usually study all the possible
initial states of every RBN since the dynamics of a Boolean Network is in general
different depending on the initial state we have chosen. The configuration state of
a Boolean Network at time t can be represented by the vector [19]:

σ(t) ≡ Σt+1 = {σ1(t), σ2(t), ..., σN(t)} (3.10)

With this notation the dynamics of the system can be further abbreviated as
[22]:

Σt+1 = F [Σt] (3.11)

Where F represents the action of the updating functions {f1, f2, ..., fN} on the
configuration state Σt.

To visualize the dynamics of an RBN we represent its possible states in a 2N -
dimensional state space where we assign to each state a point. If a state flows
to another state according to the updating functions, we use a directed edge to
join both states with the head of the directed edge pointing to the newer state.
Therefore, the state space can be represented by means of a directed graph7 of 2N

nodes where the vertex out-degree d+(i) of each node is 1 (since every state has a
unique successor state8). On the other hand, the vertex in-degree d−(i) of each node
is not fixed which means many states can drive to the same state.

The trajectory in state space has some features. First, because the state space
is finite and the dynamics is deterministic, when starting from any initial state,
eventually a state or a sequence of states will be repeated, which means we have
reached an attractor [21]:

Definition 3.5. A periodic sequence of states (which we also call cycle) is an at-
tractor if there are states outside the attractor that lead to it [20].

Definition 3.6. If an attractor consists of only one state it is called a point attractor
or steady state, but if it consists of two or more states, it is called a cycle attractor
or state cycle [27].

Thus, a point attractor can be visualized as a loop in the digraph representation
of the state space. Some other interesting definitions are the following:

Definition 3.7. The size or length of an attractor is the number of different states
on the attractor. [20].

Definition 3.8. The basin of attraction or attractor basin of an attractor is the set
of all states that eventually end up on this attractor, including the attractor states
themselves. The size of the basin of attraction is the number of states belonging to
it.

Those states which are not reachable beginning from any other state are called
garden-of-Eden states:

7The reader must not confuse the digraph which represents the topology of the Boolean Network
and the digraph which represents the state space.

8It is said that the RBNs are dissipative systems [21].
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Definition 3.9. States without predecessors are called garden-of-Eden states [21].

The dynamics flows from these garden-of-Eden states and converges in an at-
tractor:

Definition 3.10. The time it takes to reach an attractor is called transient time
[21].

Now, it is time to see a Boolean Network in action. We will study a network
of N = 4 nodes with parameter k = 2. The truth table for the functions in each
node is shown in Table 3.10. The digraph used in our example is shown in Fig.
3.2. Now, once we have established the topology and the dynamical rules, our
Boolean Network is entirely described, and its state space can be seen in 3.3. Note
that, to label the nodes in the state space diagram we have replaced the states
{0000, 0001, · · · , 1111} by their corresponding decimal representation {0, 1, · · · , 15}.
This convention allows us to abbreviate and make more understandable our diagram,
especially when dealing with large state spaces.

σ1 σ2 fNode1 fNode2 fNode3 fNode4

0 0 1 1 0 1
0 1 1 1 1 1
1 0 0 0 1 0
1 1 0 1 0 0

Table 3.10: Truth table with the functions assigned to a Boolean Network of 4
nodes and parameter k = 2. These functions were chosen with a uniform probability
from the set of all the possible Boolean functions of 2 variables.

Figure 3.2: Topology of a Boolean Network of 4 nodes and vertex in-degree 2.
This topology was randomly chosen with the help of a uniform distribution among
all the possible topologies with the given parameters.

We finish this section by commenting that the study of the mean number of
attractors of the RBNs is of interest, though that discussion is out of the purposes
of this work.
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Figure 3.3: The state space of the Random Boolean Network whose topology
is shown in Fig. 3.2 and whose dynamical rules are shown in Table 3.10. This
Boolean Network has a cycle attractor of length 2 made up of the states 4 and
13. Moreover, the size of the basin of attraction is 8 and is made up of the states
{0, 2, 4, 6, 9, 11, 13, 15}. Finally, the states {0, 1, 3, 5, 6, 7, 8, 9, 10, 11, 12, 14} are the
garden-of-Eden states.

3.2 The Dynamical Phases

Since in the end, the RBNs are dynamical systems, we can expect their dynamics
will have distinct phases. To visualize them, we must plot the states of each node of
the network in a grid such that every square represents a node and neighbor squares
depend topologically as in the original network [21]. If the state of a node is ”on”
we can color it black and if it is ”off” we can color it white. Then, we choose an
initial state and let the dynamics flow. In this way, it is possible to distinguish three
phases with unique features: the ordered, chaotic and critical phases.

The ordered or frozen phase is characterized because when we choose a random
initial state, initially many states will be changing, however, it will be stabilized
quickly and most of the nodes will be static, i.e., almost all nodes are frozen. Also,
in this regime attractor cycles are short [27]. Another feature is that when we intro-
duce small perturbations to the network, such as changing the connection between
two nodes or flipping the states of a node, this damage usually will not be spread,
i.e., the perturbation dies out and the behavior of the perturbed network is similar
to the normal network. The final feature is that similar states tend to converge to
the same state [21].

The chaotic phase is characterized because when we choose a random initial
state, states are not stabilized and most of them stay changing, i.e., states have
fluctuating values. Besides, in this regime attractor cycles can be long [27]. When
we introduce small perturbations to the network this phase is highly sensitive and
small changes tend to propagate through the network, i.e., perturbations have strong
effects making these networks not robust9. This is the well-known butterfly effect
which is exhibited by chaotic systems. Moreover, in this phase similar states tend
to diverge [21].

9We say that a system is robust if it continues functioning after a perturbation [28]
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Figure 3.4: The critical curve which shows the border between the chaotic and
ordered regimes as a function of the parameters k and p. Reprinted from [27] by
permission from Springer Nature (adapted from [22] by permission from Elsevier).

The critical phase is at the border between the ordered and chaotic phases [20].
Between these two phases occurs a phase transition called the edge of chaos. At this
transition phase, perturbations can propagate, though not necessarily through all
the network. Besides, similar states perform a trajectory that neither diverges nor
converges [21]. The networks within this regime are of biological interest because
it is thought they are complex enough to allow biological processes but also flexible
enough to deal with changes [27].

Apart from the visualization approach, there exist methods more standard to
identify these phase transitions. The idea behind them is to measure the effect of
perturbations, the sensitivity to initial conditions, or the damage spreading [21],
i.e., the main idea is to distinguish the features of each phase by computing some
statistical or analytical measurements.

It is known that in the limit N →∞ the phases are controlled by the parameter
k and the bias parameter p we mentioned in Section 3.1.4.2 [27]. The system is
chaotic for k · 2p · (1 − p) > 1 and ordered for k · 2p · (1 − p) < 1. In the uniform
case p = 0.5, we have the ordered regime for k < 2, the chaotic regime for k < 2
and the edge of chaos at k = 2. In Fig. 3.4 can be seen the critical curve showing
the boundary between these regimes for different values of k and p.

Though we will not delve into the subject and we will not further analyze the
properties of these phases, we can mention, for instance, that for critical networks
with parameter k = 2 and N nodes Kauffman originally found by computer sim-
ulations that the number of attractors goes as

√
N , although more recently it was

shown that this number grows greater than any power law with N , i.e., it grows
superpolynomially [27]. Meanwhile, in scale-free topologies, the transition from or-
der to chaos occurs at the vale of the exponent γc which solves the transcendental
equation [22]:

2p(1− p)ζ(γc−1)

ζ(γc)
= 1 (3.12)
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3.3 Other Updating Schemes

Coming back to the original paper of Kauffman, he focused his study on critical
networks since as we argued before, they seem to be more robust to the life features.
It is well known that different type cells from the same individual share the exact
same genetic information, but they differ in their genetic activity, which differen-
tiates them. In this way, Kauffman thought that having the same DNA equals to
having the same network, i.e., each gene is a node of a network and thereby its
number of attractors must be equal to the number of different cell types and the
attractor’s length to the cell cycle time [20]. As we mentioned, he found that the
average number of attractors and their length was proportional to

√
N . He argued

that the number of attractors found in the RBNs compared with the number of
possible states is analogous to the number of cell types compared with the number
of genes [21]. His idea was backed because in those years available data pointed out
that the number of cell types seems to be proportional to the square root of the
number of genes for distinct species [20]. At that time, the number of genes which
forms the human genome was believed to be around 8000, thus agreeing with the
number of human cell types [21]. Nevertheless, once the Human Genome Project se-
quenced human DNA, we knew it consists of around 25, 000 genes ([29], page 1239).
This discrepancy is due mainly10 to the assumption of synchronicity in the genes’
activity. There is no reason to think genes change their state at the same time.
Some genes change their state before others, i.e., their dynamics is asynchronous
[21].

As was said at the beginning, the updating scheme which we will be considering
is synchronous, which means states of nodes at time t+ 1 are determined by states
of nodes at time t, so states in all the nodes must be updated at the same time.
However, this model is not realistic, so for the sake of completeness, we will briefly
define some variations which can be introduced to the original N−k model by means
of different updating schemes. We will name the original Kauffman network model
as Classical Random Boolean Networks (CRBN).

3.3.1 Asynchronous RBNs

In the Asynchronous Random Boolean Networks (ARBNs), unlike CRBNs, at each
step, only one randomly chosen node is updated. This asynchronous updating de-
stroys the deterministic behavior of the network. There are no cycle attractors only
point attractors can exist, though once the system falls into a point attractor it
cannot escape from it. Also, there exist loose attractors, which are regions of the
state space which capture the dynamics of the network, even though their order is
not repeated deterministically due to the random updating order of the nodes [30].

3.3.2 Generalized Asynchronous RBNs

The Generalized Asynchronous Random Boolean Networks (GARBNs) are a gener-
alization of the ARBNs. In this model, at each step, the nodes to be updated are

10Among other loopholes of this model, we can cite: the lack of consideration of scale-free
topology and biased functions and the existence of non-coding DNA without any functionality
[21].
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chosen randomly, i.e., unlike ARBNs, in the GARBNs the number of randomly cho-
sen nodes to be updated can be a number between one or all of them, even updating
none is a possibility at each step. This model also is non-deterministic and lacks
cycle attractors. Only point and loose attractors can exist [31].

3.3.3 Deterministic Asynchronous RBNs

In the model of Deterministic Asynchronous Random Boolean Networks (DARBNs),
we associate two parameters to each node: p and q such that p,q ∈ N and q < p.
These parameters control the frequency of the update of each node. If the modulus
of p over time equals q, then the node is updated. If two or more nodes are to be
updated at the same step, then they are updated one after the other in an arbitrary
order. This model does allow the existence of both point and cycle attractors,
allowing the model of asynchronous but not random phenomena [30].

3.3.4 Deterministic Generalized Asynchronous RBNs

The model of Deterministic Generalized Asynchronous Random Boolean Networks
(DGARBNs) is like the model of DARBNs, with the difference that nodes are up-
dated if they fulfill the condition (pmod t) == q and there is no arbitrary restriction
to update them one after the other because all of them are updated at the same
time, i.e., in a synchronous way [31].

3.3.5 Mixed-context RBNs

The Mixed-context Random Boolean Networks (MxRBNs) are like the DGARBNs,
with the difference that each T time steps the values of p and q are randomly chosen
from the sets P̄ and Q̄. These sets contain different values for p and q respectively
which are called the contexts of the network [31].

All the random Boolean Networks previously discussed are classified as Discrete
Dynamical Networks (DDN’s) since they all have discrete-time, states, and values
[30]. A diagram showing the classification of the RBNs discussed in this section can
be seen in Fig. 3.5. The model of DDN’s includes the Multi-Valued Networks in
which nodes can take more than two discrete values (if they were continuous, they
would be real-valued networks which study is up to dynamical systems theory)[30].

3.4 Applications of The RBNs

As we have mentioned, Random Boolean Networks were originally conceived by
Kauffman as an abstract model of gene regulatory networks. Using these networks,
we can model the causal link between genes by means of a directed edge, the ex-
pression or not expression of a gene by assigning to them a Boolean value, or even
the stability of the cell (to damage, mutations, etc.) by means of the examina-
tion of the sensibility of attractors to perturbations, like a change in the network
topology, a change in an updating function, a change in the state of a node, etc
[32]. In this sense, Random Boolean Networks have been used to study the tran-
scriptional network and the network regulating the cell cycle in the budding yeast
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Figure 3.5: Classification of Random Boolean Networks according to their updat-
ing scheme [30].

Saccharomyces cerevisiae [33] [34]. The use of Saccharomyces cerevisiae had a great
advantage because it is an organism well studied and thereby, we know or have an
idea about the topologies of its regulation networks. If we know the topology of
the network, half of our work is done, and we only must vary the random updating
functions. Nevertheless, even if the topology is unknown, it is possible to infer it
by means of experimental data (see [35]). When the genetic data is incomplete or
insufficient, then probabilistic Boolean Networks are usually used [21]. The objective
of modeling genetic networks with RBNs is to describe regulations at a system level,
analyze and predict genomic interactions but also intervene in the network [36]. For
instance, with the current knowledge about protein-protein interactions in cancer, it
was possible to develop a topology to evaluate by means of the RBNs some possible
molecularly targeted cancer therapies [37]. Among other applications of the RBNs
to genetic modeling, we can cite the study of the cell cycle of the fission yeast S.
pombe [38], the prediction of the expression pattern of the segment polarity genes
in Drosophila melanogaster [39], the analysis of the mammalian cell cycle [40], etc.

Nonetheless, the field of application of the RBNs is not restricted to genetic
networks. It has also been applied for example, to the study of Neural Networks
[41], social segregation modeling [42], music generation [43], statistical physics [44],
and due to the robustness and rich dynamics of the critical RBNs, their study
represents an abstract study of the evolution of life [28]. Even an application to
implement logic functions by Kauffman networks has been proposed [32]. Since the
RBNs are a generalization of cellular automata, the number of possible applications
is immense. Even though the RBNs could represent only a first step to the more
realistic modeling of real-world networks, they already have proved to be of value
in several different areas.
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3.5 Software to Study RBNs

To study the properties, visualize the dynamics and simulate in an easy way the
RBNs, we can resort to The BoolNet R package [27] or to The PyBoolNet package
written for being used in python language [45]. Other software tools are The DD-
Lab, The RBNLab, and the Matblab implementations RBN Toolbox and BN/PBN
Toolbox [21].

Despite the existence of different software implementations to study the RBNs
for various platforms, in the next chapters, we will use our own algorithms. This
will allow us to better understand the functioning of the RBNs. Moreover, since
we are only interested in the study of a few properties of the Random Boolean
Networks, the creation of our own algorithms will enable us to focus on the features
we need with the advantage that it is easier to debug the code that we have written
ourselves. This flexibility does not exist when we use the software created by anyone
else and we must adapt our needs to whatever the program offers us. What is more,
these algorithms will be developed in the Wolfram Language, a powerful platform
for which we have not found any implementation to analyze Boolean Networks. The
algorithms used throughout this work to study the RBNs are presented at the end,
in the Appendix section.



Chapter 4

Algorithmic Complexity

In this chapter, we will give a small revision of Kolmogorov complexity (K-complexity).
The main objective is to explain how the library that we will use in the next chapter
to measure the K-complexity works. Firstly, we will motivate the idea behind an
algorithmic type complexity, suddenly the Turing machine device will be reviewed
in order to be able to define this complexity, then we will discuss the former ap-
proaches to try to measure it. We will continue with some important theorems and
definitions concerning the algorithmic complexity. Finally, we will describe with
more detail the methodology behind the library which measures the K-complexity
including some applications.

4.1 The Kolmogorov Complexity

Before we try to measure the complexity of something, we must ask: what is com-
plexity? what makes something more complex than other things? is it possible to
find a systematic way to measure complexity? but even more important, in the
first place, we have to decide which kind of things we are interested to compute
its complexity. A quick search in the literature will reveal that there exist different
types of complexities such as the algebraic, the computational, the linear, etc. each
one with its own features and not necessarily useful for the same purposes, more-
over, there is no guarantee that their measurements will coincide or be proportional
when applied to the same object. There is not a universal definition of complexity,
and if there were any, it would be so ambiguous, that it would not be possible to
state it mathematically, and it would look almost like the definition of the Oxford
dictionary which defines something which is complex simply as: ”connected of many
different parts. Not easy to analyze or understand; complicated or intricate” [46].
Depending on the kind of object or process we are interested, we will have to choose
(or build if it does not exist) a definition of complexity that suits our interests, that
allows our object or process to be measured and that fits our intuition about how the
complexity of that thing should increase or decrease. Therefore, although it should
be possible, for instance, to measure if one car is more complex than other, we are
not interested in that specific kind of objects and complexity because it does not
make any sense for our purposes. Neither we are interested, for example, in knowing
if the computation of the solution of an algebraic expression is more complex than
another. In this chapter, the kind of objects we want to measure its complexity are
the objects that can be stored in a computer, and when we say stored, we mean that

41
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they can be represented in some way as information. So, in this kind of category, we
could find an image, a text file, an audio file, etc. All these objects have in common
that they are stored in a computer as sequences of bits, that is, sequences of 0′s and
1′s. Therefore, we seek a complexity that can work with any object which can be
represented as a sequence of bits.

Now, what should we expect about the complexity of a sequence of bits? Let’s
consider the following sequences:

x1 = 01010101010101
x2 = 00101110100101
x3 = 00000000000000
x4 = 11111111111111

x5 = 0000000

The sequence x1 is a repetition of 01 seven times, thus it could be written just as:
x1 = ”repeat 01 seven times”, making it simpler than it looks. On the other hand,
the sequence x2 has no evident repetition pattern that allows us to compress it as we
did with x1, therefore it seems x2 is more complex than x1. The sequences x3 and x4

repeat the same digit fourteen times, therefore they are highly compressible, and we
should expect they are less complex than x1. Between them, these sequences should
be equally complex because they can be described by the same sentence: ”repeat α
fourteen times”, where α is one element of the alphabet {0, 1}. Finally, the sequence
x5 is shorter than the former sequences and is highly compressible. Then it must be
less complex than x3. In summary:

C(x5) < C(x3) = C(x4) < C(x1) < C(x2)

where C(xi) denotes the complexity of sequence xi. Thus, the type of complexity
we are looking for must be sensitive to the next aspects:

1. Between two sequences of the same length, the sequence more complex will
be the less compressible sequence, or in other words the sequence with fewer
regularities.

2. This complexity must be symmetric, that is, it must be insensitive to a reflec-
tion of the alphabet elements, which means that 0101 and 1010 are equally
complex.

3. Between two sequences of different length containing just repetitions of a
shorter sequence, the less complex of the two sequences will be the sequence
with the less length.

These observations were made for extreme cases, but our definition of complex-
ity also must be sensitive to cases where there is no evident way to compress two
sequences. For instance, for the sequences 0111011001 and 1101000101, there is no
obvious way to compress them. Thus, we cannot say which one is more complex,
however, we wish a definition of complexity which indeed can answer this question.

We also must remark two words we mentioned above: regularities and compress-
ible. These two concepts are the foundation of two of the initial ways people tried
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Figure 4.1: The Turing Machine.

to measure the complexity we are about to define. We will review these methods
later in this same chapter.

The complexity that fulfills the previously stated needs is the algorithmic com-
plexity also known as Kolmogorov complexity, K-complexity, Kolmogorov-Chaitin
complexity or program complexity 1. The idea behind the algorithmic complexity
is to measure the complexity of an object not by the object itself but by the de-
scription that generates it. This area of study is known as algorithmic information
theory. However, which kind of description should we use? and which kind of object
generates the object we are talking about? A language could make a description
very simple, but others could make it particularly complex. We need a universal
language and a universal device which can construct objects using this universal
language. To answer this question mathematicians had to wait until the advent
of computer science and electronic computers, especially the ideas of Alan Turing.
In fact, the idea of algorithmic complexity was not formally introduced until 1965
by the Russian mathematician Andrei N. Kolmogorov and the American mathe-
matician Gregory J. Chaitin. An interesting historical review of the development of
algorithmic complexity can be found in ([47], pages 86-92). Hence, before we define
K-complexity, we will review the Turing machine.

4.1.1 The Turing Machine

In 1936, Alan Turing proposed the machine which now is named after him to provide
a simple computational model which could be used to prove formal mathematical
statements [48].

It consists of an unlimited linear tape divided into cells which are coupled to a
finite state machine (the machine) through a moving head which can be situated
at each moment in one of the cells of the tape. This tape acts as external memory
or storage where each cell or square can have a symbol from a finite alphabet set.
The head performs three functions in each cycle of the finite state machine: it reads
the symbol in the cell of the tape, erases the cell and writes on it a symbol (it
can be the same previous symbol) according to what it has read and the rules of
the program (in the machine), the machine is moved together with the head to an
adjacent square (to the left or to the right) which then becomes the next cell to be
scanned to continue with the next cycle (see Fig. 4.2) [49].

1We will use indistinctly these names, whenever we use them, we are referring to the same
definition of complexity.
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Hence, we can think of a Turing machine basically as a finite state machine or
finite automaton with the difference that it has unlimited auxiliary memory and the
ability to reread its input and write and erase over it. This gives the Turing machine
more computational power over a finite automaton but also makes it a hypothetical
device[50]. We can think in the Turing machine as the simplest computer that could
exist. Nevertheless, it does not mean this theoretical machine is less powerful than
any modern computer, in fact, any problem that can be solved in a Turing Machine
is also solvable in a modern computer and vice versa. This is known as the Church-
Turing thesis [51].

More formally, we define a Turing machine by means of a septuple [48]:

Definition 4.1. A Turing machine is define by means of a septuple of the form:

M = (Q,Σ,Γ, δ, q0, B, F )

where:

• Q is the finite set of states of the state machine.

• Σ is the finite set of input symbols.

• Γ is the complete set of tape alphabet symbols (Σ is a subset of Γ).

• δ is the transition function.

• q0 is the initial state.

• B is the blank space symbol.

• F is the set of final states or accepting states which is a subset of Q.

An alternative way to define a Turing machine is by describing its actions, that
is by describing the behavior of the transition function δ which can be thought as
the program the machine executes. This can be accomplished by means of a set of
quintuples [50]:

Definition 4.2. Let Q be a finite set of states and Γ a finite set of tape symbols (the
tape alphabet) including a special symbol B. A Turing machine is a set of quin-
tuples of the form (s, i, i′, s′, d) where s, s′ ∈ Q ; i, i′ ∈ Γ ; and d ∈ {R,L} and no
quintuples begin with the same s and i symbols. The symbol s is the present state, i
is the tape symbol being scanned, i′ is the symbol written, s′ is the new state, and d
is the direction in which the head will be moved (R is to the right and L is to the left).

The operation of a Turing Machine can be better understood through an ex-
ample. Consider the Turing Machine defined by the quintuples in Table 4.1. This
transition table defines a parity counter, that is, a program which output will be 0
or 1 depending on whether the number of 1’s in an input string of bits (the input
sequence) is odd or even [49]. The behavior of this machine for a given string is
shown in Fig. 4.2. The end of the input string is indicated to the machine with the
symbol B. The machine can be in two states q0 and q1 which we have denoted 0 and
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1 for simplicity. Likewise, we have simplified the notation for the movement of the
head denoting with a 1 the movement to the right and with a 0 the movement to
the left. The machine starts in the state q0 and halts when it reaches the symbol B
after it has erased the input sequence and printed the answer.

sj ij i′j,k s′j,k dj,k

0 0 0 0 1
0 1 0 1 1
0 B 0 H -
1 0 0 1 1
1 1 0 0 1
1 B 1 H -

Table 4.1: The transition table of a parity counter for a Turing machine. sj is the
initial state of the machine (0 or 1), s′j,k is the final state of the machine (0, 1 or
halt), ij is the initial symbol in the cell of the tape read by the machine (0, 1 or
blank), i′j,k is the symbol printed by the head on the cell of the tape (0 or 1) and
dj,k is the direction to which the head and the machine will be moved (1 means to
the right, 0 means to the left and ”−” means there is no movement).

4.1.2 The Universal Turing Machine

We have said that a Turing Machine is the simplest theoretical example of a modern
computer, although, it has a problem. Modern computers can execute multiple
different programs, we do not have to buy a new computer each time we need to
perform a different computation with a different set of instructions. This is not
the case with a Turing machine, for instance, consider the Turing machine with
the transition table given in Table 4.1. This Turing machine runs a parity counter
program, but what happens if now we want to run a program which computes a
sum? In this case, we would have to build a brand-new Turing machine to execute
this new task and we would have to do this step every time we needed to run a
different program. Obviously, our current model of the Turing machine fails to mimic
the ability of a modern computer to run different instructions. To overcome this
problem, Turing was farther and conceived the idea of a Universal Turing Machine,
a Turing machine which can simulate any other Turing machine. Or in words of
Turing itself [52]:

It is possible to invent a single machine which can be used to compute
any computable sequence. If this machine U is supplied with a tape on
the beginning of which is written the S.D2 of some computing machine
t, then U will compute the same sequence as T.

A universal Turing machine can be defined in simple words as follows [53]:

2S.D stands for standard description and is the set of quintuples which define the transition
table placed in a line one after the other and separated by semi-colons. Although, the conven-
tion originally proposed by Turing to order the elements in a quintuple was (s, i, i′, d, s′) and not
(s, i, i′, s′, d) as we have agreed.
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Figure 4.2: Configurations of the parity counter program shown in Table 4.1 in a
Turing machine. The input sequence is 1011011 which has five 1’s, thus the result
of the computation is 1.

Definition 4.3. A Universal Turing Machine (UTM) is a Turing machine which, by
appropriate programming using a finite length of input tape, can act as any Turing
machine whatsoever.

If we wish a more formal definition, we first ought to define a Turing-computable
function as follows [49]:

Definition 4.4. A function f(x) will be said to be the Turing-computable if its
values can be computed by some Turing machine Tf whose tape is initially blank
except for some standard representation of the argument x. The value of f(x) is
what remains on the tape when the machine stops.

The standard representation used for the argument x does not matter so long as
we are consistent with it [49], so we will use a unary notation were, e.g., x = 1111
means 4 and x = 111 means 3. Thus, we can define a UTM as follows [49]:

Definition 4.5. A single, fixed UTM is a machine with the property that for each
and every Turing machine T , there is a string of symbols dt (which Turing called S.D)
such that: if the number x is written in unary notation on a blank tape, following
the string dt, and U is started in q0 on the leftmost symbol of dt, then when the
machine stops the number f(x) will appear on the tape, where f(x) is the number
that would have been computed if the machine T had been started with only x on
its tape.

The former statements help to give a more formal definition of a universal Turing
machine; however, it is possible to give an even more general definition (see [54],
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Figure 4.3: A universal Turing Machine U . The head of U starts in the state
q0 and begins scanning the leftmost symbol of the standard description (S.D) of
the Turing machine T which U simulates. The S.D of T is created by putting the
quintuples of T one after each other and separating them by semi-colons. After the
S.D of T , the input word x is placed in unary notation. The computation of U will
give f(x), the same result that the computation of T would have given if it had
started only with x on its tape.

page 140-144). An example of a Universal Turing Machine can be seen in Fig 4.3.
An implementation of a UTM can be found in ([49], page 143-144).

4.1.3 The Halting Problem

When we use a Turing machine and a determined tape to perform a computation, in
some situations the process to get a result may take just a few steps but in others,
it could require much more time. In fact, the execution could take a lot of time
that it becomes impractical, or even it could never halt. Thus, for practical reasons,
we would like to have a way to know the time it will take the machine to halt or
just confirm before we start the computation if the execution will ever halt. This is
known as the halting problem and can be formulated as [50]:

Definition 4.6. The halting problem asks, does an algorithm exist to decide, given
any Turing machine T and string x, whether T begun on a tape containing x will
eventually halt?

Unfortunately, the following theorem which can be proved gives an answer to
the halting problem [50] [49]:

Theorem 4.1. The halting problem is unsolvable.

Although the halting problem for a general Turing machine is unsolvable, this
problem is solvable for machines with less than four states, furthermore, the four-
state problem is open, and the five-state problem is almost certainly unsolvable
[55].

A special case of the halting problem is the blank-tape halting problem [49]:

Definition 4.7. Is it possible to build a machine which will decide, for each machine
T , does T halt if started on a blank tape?

Evidently, this special case is also unsolvable for a general Turing machine, how-
ever, this also means that the special cases for machines with just a few states do
have a solution as stated for the general halting problem. Indeed, the Busy Beaver
functions solve the problem, but we will return to this point later when we discuss
the methodology which has been used to measure the Kolmogorov complexity.
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4.1.4 The Formal Definition of K-Complexity

Prior to being able to formally define K-complexity, we ought to build a theoretical
framework to make immediately easy to understand its definition. This is because
this definition was the result of a process which took several years to be completed
and many concepts had to be introduced and clarify before we could reach a satis-
factory universal definition of complexity, see ([47] , pages 86-92 and pages 47-49)
and footnote 3 in ([56], pages 122-123).

We will work with sequences or strings 3 of elements which belong to the nonempty
set B = {0, 1}. The set of all finite strings over B is denoted B∗, where B∗ =
{∅, 0, 1, 00, 01, 10, 11, 000, 001, ...} and ∅ is the empty sequence [47]. There is a widely
used, though not one-to-one4 correspondence of B∗ onto the natural numbers such
that ”100” maps to 4 and 101 maps to 5. It is known as counting in base 2 or binary
representation. These sequences are represented such that [47]:

Definition 4.8. If x is a string of n 0′s and 1′s, then xi denotes the ith bit (binary
digit) of x for all i, 1 ≤ i ≤ n, and xi:j denotes the (j− i+1)-bit segment xixi+1...xj.

For example, for x = 1101, we have x1 = x2 = x4 = 1 and x3 = 0. We will
consider binary strings of different lengths [47]:

Definition 4.9. The length of a binary string s is the number of bits it contains
and is denoted by l(s) or |s|.

We can consider decoding functions which are defined next [47]:

Definition 4.10. If D is any function D : {0, 1}∗ → N , then if we consider the
domain of D as the set of code words, and the range of D as the set of source
words, D(y) = x is interpreted as ”y is a code word for the source word x, and
D is the decoding function. The set of all code words for source word x is the set
D−1(x) = {y : D(y) = x} and E = D−1 is the encoding relation (or encoding
function if D−1 happens to be a function).

Following it is necessary to introduce the concept of prefix-free codes [47]:

Definition 4.11. Let x, y ∈ {0, 1}∗. Then we call x a prefix of y if there is a z such
that y = xz.

For instance, the string 10 is a prefix of 1011010 where x = 10, y = 1011010 and
z = 11010. In addition, we define a prefix-free set as [47]:

Definition 4.12. A set a ⊆ {0, 1}∗ is prefix-free, if no element in A is the prefix of
another element in A.

Furthermore, we have that [47]:

Definition 4.13. A function D : {0, 1}∗ → N defines a prefix-code if its domain is
prefix-free.

3We will use indistinctly these names as synonyms.
4It is not one-to-one because for example both ”100” and ”0101” map to the same number 5.
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Definition 4.14. A code is a prefix-code or instantaneous if the set of code words
is prefix-free (no code word is a prefix of another code word).

With the former definitions in mind we can define a prefix-free Turing machine
[57]:

Definition 4.15. A Turing Machine is said to be prefix-free if the group of its valid
programs forms a prefix-free set (no element is a prefix of any other).

Or in other words:

A prefix-free function is one whose domain is prefix-free. Similarly, a
prefix-free Turing machine is one whose domain is prefix-free. It is usual
to consider such a machine as being self-delimiting, which means that it
has a one-way read head that halts when the machine accepts the string
described by the bits read so far. The point is that such a machine is
forced to accept strings without knowing whether there are any more
bits written on the input tape. This is a purely technical device that
forces the machine to have a prefix-free domain, but it also highlights
how the use of prefix-free machines circumvents the use of length to gain
more information ([56], page 122).

Now we have the framework necessary to present the formal definition of the K-
complexity [57]:

Definition 4.16. The algorithmic complexity K(S) of a string S is the length5

of the shortest program p that outputs the string S, when running on a universal
(prefix-free) Turing machine U. That is:

K(S) = min{|p| : U(p) = S} (4.1)

where |p| is the length of the program p and K(S) =∞ if there are no such p.

Unfortunately, the cost of being a universal definition of complexity 6 is that
it is incomputable, i.e., there is no such function K which accepts a sequence S
and returns the length of the shortest program which produces S. Nonetheless,
the upper bound of Kolmogorov complexity is computable, so it is called upper
semi-computable or lower semi-computable 7 [57]. In the next section, the former
approaches to try to approximate the K-complexity will be reviewed.

4.2 Lossless Compression and Entropy as Approx-

imations to K-Complexity

The concepts of algorithmic information theory were born as problems in the fron-
tiers of probability theory and information theory. In fact, the original purpose of

5See Definition 4.9.
6This measure of complexity is said to be universal because it has been proved to be robust

since several independent definitions converge to it, thus making it reliable [58].
7Upper in the sense that the upper bound can be found and lower in the sense that it is an

approximation.
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the definition of algorithmic complexity was to define randomness: ”If the shortest
program p producing s is larger than |s|, the length of s, then s is considered random”
[58]. Therefore, its origins give a clue in how we can approximate K-complexity by
using compression methods and entropy measurements which can detect regularities
in data sequences. We will begin discussing lossless compression as an approximation
to K-complexity to continue with entropy as another approximation.

4.2.1 The Lossless Compression

Theoretically, a compression function is defined as [59]:

Definition 4.17. A compression function is a computable function q such that
U(q(x)) = x, for all strings x for some fixed universal Turing machine. The trivial
compression function q(x) simply outputs the program ”print x”.

To be called lossless compression it has to exist an inverse function which fully
recovers the original data x from q(x), i.e., the function U , in a process called de-
compression 8. Thus, we can see a compression algorithm as a function which maps
an input string x onto other string y which is written using the same alphabet units
of x. 9. The goal of a compression method is that the length of the resulting string y
plus the length of the instructions needed to reconstruct x (in our definition the in-
structions of the Turing machine) must be less than the original length of x. Among
the most famous lossless compression algorithms, we can cite the Huffman Coding
which creates a compressed code by means of an extended binary tree which takes
into account the relative apparition frequency of sequence elements of a string (we
briefly mentioned it in Section 2.6.7) (see [60], pages 131-133). Other famous meth-
ods are the Lempel-Ziv algorithms (LZ77 and LZ78) which are dictionary-based
methods in which a dictionary of phrases is used to replace elements indicated by
pointers in the string. Nowadays, variations of Lempel-Ziv algorithms are widely
used to get compressed files in well-known extensions such as LHarc, PKZIP, GNU
ZIP (GZIP), Info-ZIP, Portable Network Graphics (PNG), PDF, etc (see [60], page
229). One of the most important derivations is the DEFLATE algorithm which uses
at the same time a combination of the LZ77 and Huffman methods [61].

Nonetheless, it does not matter which compression algorithm we choose, there
will always be at least one file which will not be compressed to a smaller size if we
try to do it [57]:

Proof. Strings of data of length N or shorter are clearly a strict superset of the
sequences of length N − 1 or shorter. It follows therefore that there are more data
strings of length N or shorter than there are data strings of length N −1 or shorter.
And it follows from the pigeonhole principle that it is not possible to map every
sequence of length N or shorter to a unique sequence of length N − 1 or shorter.
Therefore, there is no single algorithm that reduces the size of all data.

8If the information cannot be fully recovered it is called lossy compression (see [60], page 119).
We are only interested in lossless compression so whenever we say compression, we are referring to
it.

9If the resulting string y is written using the same alphabet units, the process is called data
compression otherwise it is called data encoding [57]
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Then it is necessary to have a way to quantify the goodness of compression. One
way is with the compression ratio ([60], page 119):

Definition 4.18.

compressionratio =
|x|
|q(x)|

(4.2)

If the compression ratio is greater than one it means that the compression al-
gorithm worked otherwise it was not helpful. However, we must have in mind that
this ratio does not consider how fast the algorithm works or how many information
was preserved, and furthermore, it says nothing about the length of the instructions
necessary to recover x. Nevertheless, in lossless compression methods, all the infor-
mation is always preserved, and the length of the instructions are usually negligible
([60], page 119).

Initially, the lossless compression methods were mainly used as a measure of
Kolmogorov complexity because compression is enough to test for non-algorithmic
randomness (though the converse is not true) and provides an upper bound to
K-complexity [57]. Therefore, the size of a compressed file is an approximate mea-
surement of K-complexity and the most we can compress a file the less complex it is
[62]. This compressed file can be thought as a program whose size is approximately
the size of the shortest program p that outputs the string s when is decompressed
[63]. With this approximation, it was possible to give practical applications to K-
complexity in text classification, music [63], bioinformatics (genetic sequences) [64]
[65] and clustering [66]. An elegant experiment demonstrating compression capabil-
ities carry out by ants in nature is briefly reviewed in ([47], page 583).

The main problem with compression methods is that as was said, there is no
single algorithm which can compress every string to a shorter size. This problem
is more serious with short sequences since it is common that the result of applying
a compression method to a short sequence will be a larger sequence due to certain
data structures, headers, etc [62]. Besides, there is also a theoretical problem with
this approach to short sequences: there is no way to further compress a single bit,
which would mean that a single bit has maximal complexity. This result does not
make any sense according to the intuition aspects we talk about at the beginning of
the chapter and restricts the use of compression algorithms as an approximation of
Algorithmic Complexity only for large sequences (larger than hundreds of bits)[63].
The main problem is that compression methods, like the LZ algorithms, work look-
ing for repeated sequences 10, i.e., statistical regularities (redundancy) and not for
algorithmic ones which make this approach no better than entropy-based estimations
which we continue discussing in the following section.

4.2.2 The Shannon Entropy

Now we devote to briefly review the concept of entropy in information science. The
branch of mathematics called information theory had its birth with a paper published

10There also exist probabilistic based compression algorithms, though the user usually does not
have a way to update or infer a good statistical model of the source thus making necessary to use
methods like the LZ (see [57] and [60] pages 193-195).
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by the American mathematician Claude Shannon in 1948: ”A mathematical theory
of communication”[67]. Shannon was concerned with the problem of transmitting a
message under the assumption that the ensemble of possible messages is known for
both the sender and receiver no matter which meaning it could have ([47], page 65).
Therefore, its measure of information does not take into account the content of the
message but the action itself of choosing a message to communicate from an ensemble
is what it cares about 11. If the reader has taken a course in statistical physics he
should have started to relate this approach with the notion of an ensemble of particles
and the probability of finding a given state which in one way or another finishes
hooked to the definition of entropy also known as Gibbs or Boltzmann entropy in this
context. In fact, in a particular case, the Gibbs entropy is proportional to Shannon’s
entropy ([47], page 565) 12. Besides the thermodynamics and statistical versions of
entropy, we have a related definition of entropy in information science. Although the
most common definition in computer science is that given by Shannon, there exist
alternative definitions of entropy as the Kolmogorov-Sinai and the Rényi entropies
which measure the amount of information needed to transmit the description of
an object and rely on the assumption that the uncertainty measured by entropy
is a non-decreasing function of the amount of information [69]. Thus, all of them
exhibit the same behavior: Systems with low entropy are those with a little amount
of information available and we can consider them simple [69]. Several other types
of entropy definitions have been developed for specialized and punctual applications
[69]. Despite this zoo of possible definitions, we will only work with the original
statement of Shannon entropy which is defined as [60].

Definition 4.19. Let s be an event or phenomenon with a priory probability P (s)
of occurrence. We define the amount of information disclosed or given off by the
occurrence of and event s as:

I(s) = log(
1

P (s)
) = − logb(P (s)) (4.3)

If P (s) = 0 then I(s) =∞.

Definition 4.20. Let s1, ...sn an ensemble of possible events which are pairwise
mutually exclusive with

∑n
i=1 P (si) = 1, then the average information of an event

in the list ensemble or the Shannon entropy is:

H(s1, ...sn) =
n∑
i=1

P (si)I(si) = −
n∑
i=1

P (si) logb P (si) (4.4)

Although the base of the logarithm usually is taken to be e by convention, some-
times this election depends on the number of alphabet elements we are working with,
e.g., when working with binary sequences we can take the base of the logarithm to
be 2. This election is not a big problem as the only effect it has is to multiply by
a constant the result. If we consider the ensemble of possible events s1, ...sn as a
discrete random variable S with given probabilities P (S = si) = pi we write the
Shannon entropy as:

11Opposite to Kolmogorov approach where we do measure the information contained in an object
([47], page 65)

12The study of entropy has its roots in the sunrise of thermodynamics and its second law in the
nineteenth century with the work of Sadi Carnot, Clausius, et al. (See [68], chapters: 6,7, and 8)
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H(S) = −
n∑
i=1

P (si) log2 P (si) (4.5)

If P (si) = 0 we take log2 to be 0. This definition is generalized in the case of a
continuous random variable [69]:

Definition 4.21. Given a variable S with n possible discrete outcomes such that
in the limit n → ∞ the density of S approaches the invariant measure m(s), the
continuous entropy is given by:

lim
n→∞

H(S) = −
∫
P (s)

P (s)

m(s)
dx (4.6)

Shannon conceived its definition of entropy as a measure of the information
transmitted over a stochastic channel when the alphabet elements are known and
established hard limits to maximum lossless compression rates [57].

Now, we will see how we can use Eq. 4.5 through an example. Consider tossing
a coin with equal probabilities of coming up heads or tails, i.e., P (h) = P (t) = 0.5.
In this case, we have only two possible values or results when tossing the coin hence,
when applying the entropy definition, we get:

H(toss) = −P (h) log2 P (h)− P (t) log2 P (t)

= −0.5 log2(0.5)− 0.5 log2(0.5)

= − log2(0.5) = 1

Therefore, to send a message with the result of tossing a coin we would need to
send one bit of information. In case we need to send the result of tossing the coin 10
times we would need to send 10 bits of information. This is the event with maximal
entropy as the equal probabilities imply maximal uncertainty about the result of
tossing a coin. However, if we now consider a loaded coin with unequal probabilities
of getting heads or tails such that P (h) = 0.2 and P (t) = 0.8 we would get:

H(toss) = −P (h) log2 P (h)− P (t) log2 P (t)

= −0.2 log2(0.2)− 0.8 log2(0.8) ≈ 0.721 < 1

This means to transmit the result of tossing a loaded coin we need less than one
full bit. In case we need to send the result of tossing this loaded coin 10 times we
would need to send in the optimal case with the optimal encoder around only 7 bits
of information13. The unequal probabilities have reduced the uncertainty of tossing
the coin which means the event of getting a result contains less information than
the original coin with equal probabilities, i.e., the event of tossing a loaded coin has
less entropy.

13Of course we can send 10 bits of information with the result of every event, however, less
entropy means that it is possible to encode the result of tossing the loaded coin 10 times in a way
we need less than 10 bits. In this case, with the most optimal encode we would need around 7 bits.
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In the experiment of tossing a coin we only have two possible results, but we can
have events with more results. For instance, consider an event X where the result
can take five different values {a, b, c, d, e} with probabilities: {P (a) = 0.2, P (b) =
0.1, P (c) = 0.5, P (d) = 0.1, P (e) = 0.1}. In this case the entropy is:

H(X) = −P (a) log5 P (a)− P (b) log5 P (b)− P (c) log5 P (c)

−P (d) log5 P (d)− P (e) log5 P (e)

= −0.2 log5(0.2)− 0.1 log5(0.1)− 0.5 log5(0.5)

−0.1 log5(0.1)− 0.1 log5(0.1)

= −0.2 log5(0.2)− 0.5 log5(0.5)− 0.3 log5(0.1)

≈ 1.9 > 1

This means we need almost 2 bits of information to transmit the result of an
event, and in case we need to send the result of 10 events we would need around 20
bits in the most optimal case where we use the optimal encoder.

Nevertheless, it must be remarked, that in the last examples we are not talking
about sending a set of results, i.e., we are not assigning these entropies to a sequence
but rather we are calculating the entropy of a stochastic source.

In the case of a sequence, e.g., the sequence 1110101. First, we count the num-
ber of occurrences of the two possible outcomes. With this information can build
the random variable which generated the sequence, in our case we get S = {s0 =
0.285, s1 = 0.715}. Therefore, applying Eq. 4.5 we get H(S) = 0.863.

However, what happens if we wish to know the amount of information needed
to send the result of tossing two coins at the same time? i.e., the experiment of
getting a result given that we got another result formerly. We could perform a
tossing and send the result and then perform another tossing and again send the
result. However, in some cases is a better and more efficient idea to first perform
the experiments and then transmit the results. For such cases we define the joint
entropy ([47], pages 68-69):

Definition 4.22. Let the joint probability P (X, Y ) of14 the random variables X and
Y be defined by: ”P (a, b) is the probability of the joint occurrence of event X = a
and event Y = b, i.e., the probability of event Y = b occurring at the same time
that event X = a occurs. Hence, the joint entropy is given by:

H(X, Y ) = −
∑
X

∑
Y

P (X, Y ) logb P (X, Y ) (4.7)

Now we can know the entropy of tossing two coins at the same time. Nonetheless,
what if now we wish to toss 1000 coins at the same time? or if we want to know the
entropy associated with a long sequence of events as 101010...10. This sequence is
generated by repetition of the bits 10 and has the same number of 0′s and 1′s, thus

14Some authors use the notation P (X ∩ Y ) for the joint probability of events X and Y and
H(X ∩ Y ) for the joint entropy, this is in conformity with the notation for the intersection of two
event sets X ∩ Y however, we will use the simpler notation P (X,Y ) and H(X,Y )
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given these number of occurrences we have a random variable such that S = {s0 =
0.5, s1 = 0.5}. If we use Eq. 4.5, we will get that this sequence (or more precisely
the source that generated it) has maximal entropy (this is just the example of a
fair coin which discussed before), even though this sequence was generated in a very
simple way. This result represents a problem if we want to use Shannon entropy
to measure Kolmogorov complexity. According to Kolmogorov’s ideas this sequence
has low complexity. This problem arises because with the Eq. 4.5 we can only study
the smallest granularity (1 bit) or 1-symbol block 15 of the sequence. On the other
hand, if we use Eq. 4.7, we could study the entropy associated with blocks of length
two. This could give a result that better captures the complexity of this sequence,
but moreover, there should exist an optimal block length in which the entropy we
get is minimal which would be in accordance with Kolmogorov complexity. Hence,
for our purposes, it is necessary to generalize Eq. 4.7 to consider blocks of length n
[70]:

Definition 4.23. The joint entropy of variables X1, ..., Xn is given by:

H(X1, ..., Xn) = −
∑
X1

· · ·
∑
Xn

P (x1, ..., xn) logb[P (X1, ..., Xn)] (4.8)

where P (x1, ..., xn) is the probability of obtaining the combination of n symbols
corresponding to a given block.

Finally, for infinite or very long sequences originated from a stationary source,
we define the entropy rate of a sequence S as [57]:

Definition 4.24.

lim
n→∞

1

n

∑
|s′|=n

Hn(s′) (4.9)

where |s′| = n indicates we are considering all the generated strings of length n.

As was said before, entropy gives a clue in how much a finite sequence can be
compressed, giving it a useful application for data compression. In fact, we can
consider entropy as a measure of the amount of information that a finite sequence
has [57]. Besides, it has been used as an approximation to Kolmogorov complexity,
even though, it is an imperfect approximation for the simple reason that it is a
computable function [57]. The best performance of Shannon entropy as an approxi-
mation of Kolmogorov complexity is gotten when a given sequence is partitioned in
blocks of increasing size up to half the total length of the string. Then the entropy
of the sequence is calculated for each one of these block lengths by means of Eq. 4.8.
The best measure will be that with the block length that minimizes the entropy of
the sequence, meaning that that partitioning better captures the periodic statistical
regularities of the sequence [57].

The entropy is a bad approximation of Kolmogorov complexity due to the fact
it only considers the frequency of occurrence of the events 0 and 1, i.e., it does

15We are assuming a uniform probability distribution for the 0′s and 1′s and for sequences of
the same finite length.
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not capture algorithmic features of the generative process [63]. Moreover, the value
of Shannon entropy can be different for different invariant representations of the
same object. This is the case of graphs since it has been shown empirically that the
value of the entropy is strongly influenced by the representation used to describe the
graph. Furthermore, entropy cannot consider more than one feature at the same
time. All this gives as result high complexities to some graphs which should be
classified as not complex (for a complete discussion of why entropy is a bad measure
of graph complexity see [69] section 2.2).

4.3 Towards a Better Measurement of K-Complexity

The former discussion of lossless compression and Shannon entropy methods gives
us the conclusion that we must search a better way to approximate Kolmogorov
complexity. Due to the enormous amount of issues they have, both methods fail to
provide a robust estimation to K-complexity.

An implementation which approximates Algorithmic Complexity has already
been published, but before we try to understand how it works, we will present some
definitions and theorems which will pave the road.

4.3.1 The Invariance Theorem

In Definition 4.16, we saw how Kolmogorov complexity is defined by means of a
UTM, however, to which UTM is this definition referring? If we expect this defini-
tion to be robust enough to be considered a universal measure of complexity, this
definition must be independent of the UTM chosen to measure K-complexity. This
behavior is guaranteed by the invariance theorem which states that we can guaran-
tee the convergence of the K-Complexity no matter what universal Turing machine
we are using, this is because, in the end, every lossless description can be translated
to another just by using a program of fixed length, which means the K-complexity
will be equal up to a constant which we hope will be negligible for long sequences,
that is ([57], also see pages 103-104 of [47]):

Theorem 4.2 (Invariance Rate). If U1 and U2 are two UTMs and KU1 and KU2 the
algorithmic complexity of S for U1 and U2, there exists a constant CU1,U2 such that:

|KU1(S)−KU2(S)| < CU1,U2 (4.10)

where CU1,U2 is independent of S and can be considered to be the length (in
bits) of a translating function between universal Turing machines U1 and U2, or as
a compiler between computer programming languages U1 and U2.

The size of the constant CU1,U2 is unknown an can be arbitrarily large, although
we can expect that for long sequences, the approximation with a machine Ua will
converge to the true value [57], i.e., KUa(S) ∼ KU(S). Unfortunately, this theorem
says nothing about the rate of convergence and does not guarantee such convergence
or what conditions a universal Turing machine must satisfy to give a monotonic con-
vergence, even though, it implies that there always can exist a ”natural” universal
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Turing machine UN such that KUN
converges faster than any other UTM [57]. Loss-

less compression methods also are affected by a constant related with which lossless
compression method we choose to use since there is no preferable method. This
is the reason why lossless compression fails to describe the algorithmic complex-
ity of short sequences since the accuracy we can get is directly proportional to the
length of the string. We can expect that the longer the sequence the less impact
of the constant in the approximation of complexity, i.e., the less the impact of the
programming language or UTM we choose [58].

The importance of this theorem is that it allows to approximate Kolmogorov
complexity with the experimental procedure we will discuss later, without having
to worry about which UTM should be used, with the expectation that for long
sequences the approximation with every UTM will converge to the same value, or at
least will only diverge by a constant which is the length of the complier necessary to
translate one program in a UTM to another program in another UTM. Moreover,
it does not forbid an upper bound approximation to K-complexity [57].

4.3.2 The Algorithmic Probability and The Coding Theo-
rem

The next definition is the cornerstone to approximate Kolmogorov complexity. In-
stead of calculating directly K-complexity itself, we will calculate the so-called
Solomonoff-Levin algorithmic probability or just algorithmic probability, Solomonoff’s
semi-measure or Levin’s semi-measure for short, but before we present it, let’s do
a gedankenexperiment. Suppose we sit a monkey in front of a typewriter, and we
make him hit the keys. The monkey, who knows nothing about poetry or English
grammar, the most he can do is hitting the keys in a random way. If we let him do
this for a while, probably its writing will make no sense, however with enough time,
he could be able to type a word. We can expect that short words will appear earlier
as they are more probable. If we give him an enormous amount of time he could be
able to type even an entire book like Moby-Dick. Apparently one of the pioneers of
this idea was the French Mathematician Émile Borel [71]. The main point is what
would happen if we change the monkey by a device which could generate random
codes16 which we then could try to compile in some programming language. Among
all these codes, we surely will find many that will not work, and others which will
be compiled but will do nothing. However, among the codes that can be compiled
there will be programs which will return a string of bits17. As was pointed out in the
original monkey experiment there will be output sequences which will appear more
frequently, i.e., they will have a higher probability of appearance18. For instance,
we can expect to get a sequence such as 00000000 more frequently than a sequence
as 01010111. Hence, it seems to exist a connection between the complexity and
the probability of appearance of a sequence. This probability of appearance is the
algorithmic probability we mentioned before and which we define next [47][58]:

Definition 4.25. The algorithmic probability m(S) of a string S describes the

16For simplicity the random codes could be written as sequences of bits.
17We will not use any ASCII type representation so the output of our programs when it exists,

will always be a sequence of bits.
18We refer to a higher probability of appearing in the sense that there are more programs whose

output will be that sequence.
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expected probability of a random (prefix-free) program p running on a universal
prefix-free Turing machine U producing S and halting:

m(S) =
∑

p:U(p)=S

1

2|p|
(4.11)

The algorithmic probability m(S) satisfies:[ ∑
S∈N∪{0}

m(S)

]
≤ 1 (4.12)

Where S is the binary representation of the natural numbers including the zero.
Thereby, the algorithmic probability m(S) is said to be a semi-measure19 since the
equality in Eq. 4.12 holds exactly only for those UTMs for which each input is a
halting program.

It must be emphasized that a UTM which is prefix-free, as pointed out in Defini-
tion 4.15, is one which group of valid programs forms a prefix-free set. This condition
is necessary to guarantee that this probability can be well-bounded [58], such that
0 < m(S) < 1. The summation runs over programs of all possible lengths, though,
the major contribution is given by the program of shortest length [57], which makes
possible to approximate m(S) and at the same time approximate K-complexity
through the following theorem which connects the Solomonoff’s semi-measure with
algorithmic complexity [58]:

Theorem 4.3 (The Coding Theorem). There exists a fixed constant c, independent
of S such that:

| − log2m(S)−K(S)| < c (4.13)

Thus, according to this theorem, the Kolmogorov Complexity of a string can be
calculated from its frequency of occurrence. The simpler the sequence the larger
number of programs which outputs it and vice-versa. We just must rewrite Eq. 4.13
as (see [56],section 6.9):

K(S) = −log2m(S) +O(1) (4.14)

Where the asymptotic notation means we can write [69]:

K(S) ≈ −log2m(S) (4.15)

The Algorithmic Probability m(S) is said to be a universal semi-measure since it
can be used with any string and can handle missing and multidimensional data [57].
This method of approximating the Algorithmic Complexity is more stable than other
methods, solves the problem of short strings, and besides, it is the best method for
long sequences [63]. Perhaps, the most important reason to use this method is that
the results obtained with it agree with our intuition of what should be considered
complex and what not [63].

19For a definition of semi-measure see [56] section 6.9 and [47] section 4.3.
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4.4 A Library to Measure The K-Complexity

The implementation which we will describe in this section has already proved to
be useful, robust, less dependent to different representations of the same object
and moreover it is in accordance with our intuition on how it should behave. For
instance, when used with evolving graphs it has been able to capture small topo-
logical changes, in opposite to entropy measures, furthermore, the variance in the
results obtained when using different graph representations has been less than that
obtained when using entropy methods (see [69]). For these reasons, between all the
different methods to get an approximation to algorithmic complexity, we have cho-
sen to use mainly this implementation in the next chapter. In this section, we will
briefly review the experimental procedure by which libraries in different languages
with this implementation were created by the Algorithmic Nature Lab group20 and
are available to be downloaded at www.algorithmicdynamics.net/software.html. An
online implementation is available at www.complexitycalculator.com. The complete
details about these implementations can be found in [57] and [58].

4.4.1 Methodology

4.4.1.1 The Coding Theorem Method (CTM)

This method is based in Eq. 4.11 and 4.15. According to them, it is necessary to find
all the possible programs which output is the sequence S. This is impossible to do,
at least we restrict ourselves to study the behavior of a subset of Turing machines,
i.e., the next distribution must be computed [58]:

D(n,m, S) =
|{U ∈ (n,m) : U(p) = S}|
|{U ∈ (n,m) : U(p) halts}|

(4.16)

where (n,m) represents the space of all universal Turing machines with n states
and m symbols with empty input. This function is an estimation of the algorithmic
probability21. Therefore, an estimation of Kolmogorov complexity will be obtained
with the next analogous equation to equation 4.15 [57]:

CTM(S) = −logbD(n,m, S) (4.17)

Where, as before, the base of the logarithm is the number of symbol elements
in the alphabet. Now, according to Eq. 4.16, we only must find a way to know if a
given Turing machine will ever halt to be able to compute D(n,m, S) and CTM(S).
As was mentioned in Section 4.1.3, this problem is unsolvable for the general case,
nonetheless, this problem has solutions for specific Turing machines with small n
and m numbers, through the use of the Busy Beaver functions which are defined as
[58]:

Definition 4.26. If σT is the number of 1′s on the tape of a Turing machine T with
n states and m symbols upon halting starting from a blank tape (no input), then
we define:

20https://algorithmicnature.org
21As mentioned previously, a better approximation to Eq. 4.11 would be D(n,m, S) =

|{U∈(n,m):U(p)=S}|
|{U∈(n,m)}| , however for practical reasons it is a better idea to use Eq. 4.16 (see the discus-

sion in [58]).
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Σ(n,m) = max{σT :∈ (n,m) and T halts} (4.18)

Alternatively, if tT is the number of steps that a machine T takes before halting
from a blank tape, then we can define:

SΣ(n,m) = max{tT :∈ (n,m) and T halts} (4.19)

For instance, for Turing machines of m = 2 symbols, the first SΣ(n, 2) functions
are 1, 6, 21 and 107 [72]. This means, for example, that if a Turing machine of
2 symbols and n = 4 states has not halted after 107 steps, then it will never halt.
This allows to immediately discard such Turing machines, thus saving computational
time. Although, the Busy Beaver value for n = 5 is unknown, experimentally a value
around 500 was used [58]. This method was performed on 5 million strings which
maximum length was 12, and the Turing machines had an alphabet ranging from 2
to 9 symbols [57]. To give us an idea of the computational power needed to obtain
good results, the number of Turing machines with n states is given by (4n + 2)2n,
which means that for m = 4 there are 11, 019, 960, 576 machines to test [58], though,
for n = 5 it was not necessary to run all of them because of symmetry considerations
(see [58]).

4.4.1.2 The Block Decomposition Method (BDM)

As was said in the previous section, the Coding Theorem Method approximates
Kolmogorov complexity from the output distribution of Turing machines. Nonethe-
less, due to the enormous computational power needed to test the gigantic number
of UTMs of 2,3,4 and 5 states, statistics have only been gathered for sequences of
length less than 12. To overcome this problem, it was developed a block decompo-
sition method (BDM) which recycles this information to extend it to sequences of
any length.

When dealing with a sequence S of length larger than 12, this method first
decomposes it into sub-sequences {s1, s2, ..., sk}, of length |si| = l ≤ 12. If the
number l is not a multiple of the length of the original sequence |S|, then there will
be a remainder, i.e., a subsequence of length |si| < l. We can either choose to ignore
it in our computation or we can use overlapping sub-sequences si to cover the entire
sequence. Following we use the next definition to approximate the complexity of S
[57]:

Definition 4.27.

BDM(S, l,m) =
k∑
i

[CTM(si,m, k) + log(ni)] (4.20)

where ni is the multiplicity of the sub-sequence si of length l. The possible
remainder fulfils the condition r < |l|. The overlapping parameter m is such that
1 ≤ m ≤ l. When m = l there is no overlapping while for m < l there will exist
overlapping between the sub-sequences si.

The overlapping parameter defines a sliding window of size l −m. An example
of decomposition of a sequence is shown in Fig. 4.4. Nonetheless, the smaller m the
greater the overestimation of BDM we will get [57].
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Figure 4.4: Decomposition of a sequence of length |S| = 22 into sub-sequences of
length l = 7 through a sliding window of size 2, i.e., m = 5.

Thereby, this method combines a local estimation of Kolmogorov complexity with
a classical entropy like measure in the long-range [57]. Finally, it must be mentioned,
that in the best case this method approaches better algorithmic complexity than
other methods and in the worst case, it behaves just like Shannon-Entropy [57].

4.4.1.3 Generalizations to More Dimensions and Symbols

If we wish to measure the complexity of sequences of bits in two dimensions, i.e.,
matrices of 0′s and 1′s, we can take two approaches. The easiest one is just to
flatten the matrix into a unique sequence, this can be achieved by putting each
row(or column) of the matrix one in front of the other to form a unique string [69].
Another approach is just to generalize our coding theorem and block decomposition
methods. Instead of using Turing machines which work out in a 1D tape, we use
Turing machines which run over a 2D plane divided into cells [62]. In this way, the
matrices less complex will be those with a greater probability of apparition. For
instance, the matrices which are full of zeros or ones must be the less complex. As
we can no gather statistics for matrices of all lengths, we can rely again on the block
decomposition method to decompose matrices of large dimensions into blocks of
matrices of shorter dimensions. An interpretation of this generalized method is that
we are seeking the complexity of reconstructing the adjacency matrix associated
with a graph from scratch [57]. Thereby, there is an immediate application to graph
theory, but also to other objects, such as images, which in the end are matrices.

Finally, this method can be generalized to any dimensions in the exact same
way we discussed for 2-dimensions [57]. Furthermore, the former methods can be
generalized to consider Turing machines with more alphabet elements than just 0
and 1. For example, with four output symbols, the application could be immediately
used to measure the complexity of DNA sequences. Although for the most purposes
what we have discussed with two output symbols suffices.

4.5 Some Applications of Kolmogorov Complex-

ity

We end this section commenting on some applications of the K-complexity. We
find the main applications in areas where is important to measure the amount of
information that an object has because, in the end, this is one of the features that the



62 CHAPTER 4. ALGORITHMIC COMPLEXITY

Kolmogorov complexity allows us to know. Therefore, it has been used in physics,
economy, linguistics, psychology, image treatment, image classification, etc [63] [57].
In the area of biology, it could be particularly important in the area of genetics,
where researchers are interested in using sequences of DNA data to establish the
evolutionary relationship of species [73]. Among others specific applications we
can cite psychometrics [74], cellular automata [75] [76], graph theory [69], machine
learning [77] [78], economic time series [79] [80], dynamical systems [81], computer
network management [82] and general computation theory [83]. A compilation of
applications to theoretical physics, information and computation can be found in
([47], chapter 8). Finally, in the next chapter, we shall present a novel application
of K-complexity to Boolean Networks.



Chapter 5

The Complexity of Random
Boolean Networks

In Section 3.4, some of the many different applications of the Boolean Networks were
mentioned, especially, those for the Random Boolean Networks. These networks are
useful to model and simulate networks that can be found in nature, but also in
areas such as sociology, economics, computer science, etc. Hence, its study is im-
portant since they can be used to elucidate the hidden properties of these systems.
Evidently, the capacity of a network to simulate a system depends on the topology
and in the updating functions used. There are Boolean Networks which are more
powerful than others. One indicator of the power of a Boolean Network must be its
complexity. A network which is simple should not be able to imitate the behavior
of complex networks such as the genetic regulatory ones. Nonetheless, the question
of how to measure the complexity of a Boolean Network is not trivial. The main
problem is that a Boolean Network is defined by two independent components, its
topology, and its updating functions. These components then are brought together
to create a dynamical system. This dynamical system is what we properly know as
a Boolean Network and the object to which it is desirable to measure its complexity.
Thus, measuring the complexity of its components separately may not be the best
approach. We must devise a way to measure the complexity of both components
acting together.

In this chapter, we will propose a way to measure the complexity of Boolean
Networks. This proposal will be tested by using Random Boolean Networks. We
will begin by measuring the complexity of random sequences of bits since they will
be the key for measuring the complexity of Boolean Networks. Later, a procedure to
measure the complexities of the individual components of a Boolean Network will be
proposed. First, a method to measure the complexity of the topology will be studied.
The topology is a directed graph, so this method will be tested firstly with graphs
and then with digraphs. Afterward, the effect of the isomorphic representation
used to represent the network will be studied. Next, a method to measure the
complexity of the updating functions will be proposed. Finally, a method to measure
the complexity of Boolean Networks will be presented and tested.

63
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5.1 Software and Hardware Features

To perform the experiments of this chapter, the implementation described in Section
4.4 to measure Kolmogorov complexity will be used. Specifically, the implementa-
tion written in the Wolfram Language (Mathematica). This library contains the
function StringBDM which measures the complexity of sequences of bits. It accepts
a string of 0′s and 1′s as input and returns the complexity computed by means of
the Block Decomposition Method (BDM) with the help of short sequences for which
K-complexity was computed by means of the Coding Theorem Method (CTM). It
is possible to control the overlapping parameter of the method, though by default
it is set to be 1. We always will use the default parameter.

Additionally, this library contains the function BDM which allows measuring
the complexity of adjacency matrices. These matrices must be composed of only 0′s
and 1′s, and they are introduced to the function as a list of lists. This is the 2-D
generalization of the original Block Decomposition Method. It uses the complexity
computed by means of the CTM for square matrices with sizes ranging from 1×1 to
4×4. In this work, we will only use the 4×4 matrices to perform the 2-dimensional
BDM.

In this chapter, every time we mention Kolmogorov complexity, K-complexity or
algorithmic complexity, we are referring to the approximation computed by means
of the Block Decomposition Method. The codes of this chapter were implemented
in Mathematica 12 (version 12.0.0.0) in a 64-bits system with Windows 10.

5.2 The Complexity of Random Sequences of Bits

We performed this first experiment to be sure that the implementation to measure
Kolmogorov complexity works as expected and to gain some experience in its use.
The idea is simple, we generate a given number of 1-dimensional vectors of the same
size. These vectors are initialized with zeros and we introduce them in a cycle. In
the first iteration, we take the first of these vectors and we introduce it to another
cycle (we have a nested cycle). In this nested cycle, we run over the indices of the
vector, and with a probability p we change the zero in each element of the vector by
a one (the probability that we do not change the zero in each element is 1−p). Once
we have iterated through all the elements of the vector, we measure the Kolmogorov
complexity of the resulting sequence. We also measure the Shannon entropy of the
resulting sequence by means of the Entropy built-in function of Mathematica and
we compress it in GZIP format to measure its file size. To better capture the com-
plexity as a function of the parameter p, we repeat the process of replacing zeros by
ones for each sequence T times, measuring the Kolmogorov complexity, the entropy,
and the file size each time. Finally, we compute the quartiles for each set of mea-
surements and take the mean by only considering the second and third quartiles.
This trimmed mean procedure eliminates possible fluctuations in the results which
can be seen as noise 1. We save the results.

1For instance, it is possible that although the parameter p would have a high value like 0.9, the
sequence obtained can be almost full of zeros, even though it so unlikely. This method allows us
to avoid this problem and better capture the complexity of the sequences as a function of p.
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(a) (b)

Figure 5.1: Complexity measurements for random binary sequences with three
different methods versus the probability of changing a 0 by a 1 in each element of
the sequence. For purposes of comparison, the results have been normalized such
that the maximum value in each method equals 1. (a) Sequences of length 100, (b)
Sequences of length 10000. See the text for more details.

Once we have finished, we take the second vector and repeat the same algorithm,
however this time the probability of changing a zero by a one is p + dp. We do so
until we have used all the vectors, summing dp to the probability parameter in each
iteration. Evidently, the parameter p is such that 0 ≤ p ≤ 1. Therefore, we initialize
p = 0 and make sure that the number of vectors is such that to the last one will
correspond the probability p = 1, i.e., the first vector will be full of zeros, and the
last one will be full of ones.

The result of two experiments is shown in Fig. 5.1. We used sequences of length
100 and 1000. In both experiments, the step size in the probability was dp = 0.01
and the number of random sequences generated with the same p value was 10, from
which the trimmed mean described before was done. As expected, for short se-
quences the lossless compression method failed to describe the complexity of the
sequences since we expected the sequences with p = 0 and p = 1, i.e., sequences
full of zeros and ones, to have a complexity close to zero. Meanwhile, the entropy
and Kolmogorov complexity had a quite similar performance. As can be seen, for
longer sequences the behavior of the entropy was more like the lossless compression
method, which means that compression algorithms describe better the complexity
of long sequences. However, these two methods were far from the result given by
Kolmogorov complexity which as we argued before must be a better measurement
of complexity.

Therefore, we can say that in general, lossless compression techniques are the
worst, particularly for short sequences (around hundreds of bits). For short se-
quences, Shannon entropy has a similar performance to Kolmogorov complexity.
Nevertheless, for long sequences (around thousands of bits) lossless compression
techniques have more acceptable performance and their result is similar to that
given by the entropy, although, both methods have a poor performance when com-
pared with Kolmogorov complexity which we expect to be the nearest value to the
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true complexity value of the sequence, so we always should choose this method, es-
pecially for long sequences, leaving the use of entropy only for short sequences and
avoiding if possible the lossless compression techniques. If we cannot measure Kol-
mogorov complexity, we always should try to use entropy over compression methods,
especially for short sequences.

The code used to carry out this experiment can be found in the Appendix Section
A.1 (Fig. A.1). A similar experiment with similar results was performed by [57]
(section 6).

5.3 The Complexity of Random Graphs

In this section, experiments regarding the complexity of random graphs will be pre-
sented. The main idea is to generate random graphs following a graph distribution.
The complexity of the generated graphs is controlled by a parameter which can in-
troduce order or disorder depending on its value. The experiments presented in this
section are based on the work presented in [69].

5.3.1 Complexity from The Watts-Strogatz Graph Distri-
bution

The first graph distribution which will be used to generate random graphs will be
the Watts-Strogatz graph distribution. This graph distribution can be easily imple-
mented in Mathematica by means of the built-in function WattsStrogatzGraphDis-
tribution. We described how this function works in Section 2.9.1 and Fig. 2.25. A
random graph is randomly chosen from this distribution using the built-in Random-
Graph function.

The algorithm is like that used for measuring the complexity of random sequences
of bits. We use a cycle to generate random graphs. The complexity of each graph
obtained is controlled by the parameter p, i.e., the probability of rewiring. The
initial value of this parameter is p = 0 and at each iteration, we increase its value
using a probability step of size dp. The generation of graphs is stopped until we
have reached the value p = 1.

At each step, the complexity of the generated graphs is measured by using the ad-
jacency matrix as a representation of each graph. This time, only the Kolmogorov
complexity and the Shannon entropy methods are used, since as was seen in the
former section, lossless compression techniques are no better than the entropy to
describe complexity. To do so, the adjacency matrix is flattened, i.e., we create a
unique binary vector which contains the rows of the adjacency matrix one after the
other. In this way, the complexity of each graph can be measured as usual, just
by measuring the complexity of this binary sequence. Additionally, for purposes of
comparison of this approach, we also used the 2D generalization of the BDM method
which allows measuring directly the Kolmogorov complexity of adjacency matrices.

To eliminate fluctuations in the results, we also performed a trimmed mean pro-
cedure as we did for binary sequences, which means that we generate a given number
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Figure 5.2: Complexity measurements using three different methods of random
graphs obtained from the Watts-Strogatz graph distribution versus the probability
parameter p. The graphs generated had 100 nodes and were created starting from
a 10-regular graph following the Watts-Strogatz procedure. The number of random
graphs generated with the same p value was 10 from which the trimmed mean
described before was done. For purposes of comparison, the results obtained with
each method were normalized with respect to the maximum value.

of graphs using the same probability parameter p. Then, we measure their complex-
ity and compute the quartiles of this set of results. Finally, the mean is computed
by considering only the second and third quartiles.

As we saw in Fig. 2.25, graphs generated using the parameter value p = 0 seem
to be highly regular and thereby not complex. On the other hand, graphs with
the parameter value p = 1 seem to be highly random and thereby very complex.
Intermediate p values seem to have a complexity in between. Hence, we expect this
experiment will show this complexity behavior as a function of the parameter p.

The result of this experiment is shown in Fig. 5.2. We can see that the re-
sults obtained by measuring the entropy of the 1-D representation of each graph
remained practically constant, which means that this method is not capable of de-
tecting changes in complexity by varying the parameter p. Meanwhile, the results
obtained by measuring the Kolmogorov complexity with the 1-D representation had
a better performance at the beginning, however, they reached its maximum approx-
imately in p = 0.4 and then the complexity value started to fall. On the other hand,
the measurement of complexity using directly the adjacency matrix representation
captured exactly the expected behavior of the complexity versus the parameter p,
i.e., the complexity at p = 0 is low and it increases until it reaches its maximum at
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p = 1. This increasing seemed to follow a power-law c(G) ∼ pα with 0 < α ≤ 1.

The code used to carry out this experiment can be found in the Appendix Section
A.1 (Fig. A.2).

5.3.2 Complexity from The Barabási-Albert Graph Distri-
bution

This experiment is almost the same as the former, but now we will use the Barabási-
Albert graph distribution to generate random graphs. This distribution is imple-
mented in Mathematica by means of the built-in function BarabasiAlbertGraphDis-
tribution. We have already described how this function works in Section 2.9.2 and
Fig. 2.26. As we mentioned before, this distribution is controlled by the parameter
k, which is the number of edges of the vertex which is added at each step of the
procedure.

According to Fig. 2.26, we expect that the complexity of these graphs will in-
crease with the parameter k. However, this complexity must reach a maximum and
start to fall from it as we continue increasing k, because for a sufficiently large value
of k, the number of available nodes to link these k edges will not be sufficient and
we will end with the case where each node will be linked to every other node, i.e.,
we would get a complete graph which would be highly regular and symmetric, thus
with a low complexity.

The result of this experiment is shown in Fig. 5.3. As can be seen, the results
showed the behavior expected by intuition. The complexity increased with the pa-
rameter k and reached a maximum approximately around k = 30 from which it
began to fall. What was surprisingly in these experiments is that the results ob-
tained using the three different methods to measure the complexity were very similar.

From the results obtained in this experiment and the former, we can see that en-
tropy is not a robust measure of complexity since it had a good performance when
using the Barabási-Albert graph distribution but when using the Watts-Strogatz
graph distribution the results were awful. On the other hand, the results obtained
by using K-complexity agree with our intuition about the complexity of graphs.
Nonetheless, the performance obtained when using the traditional 1-dimensional K-
complexity method seems still depend on the representation chosen for the graphs
since when we tried to measure the complexity of a graph generated from the Watts-
Strogatz graph distribution, we found that its performance can be a little different
from expected, even though the 1-D representation used was lossless. Even so, with
the Barabási-Albert graph distribution, our 1-D representation had no problems, so
even though its performance is not as good as using directly the adjacency matrix
representation, there exist objects which do not have an adjacency matrix represen-
tation, so for those objects we can rely on a 1-D lossless representation to measure
its complexity.

The code used to carry out this experiment can be found in the Appendix Section
A.1 (Fig. A.3).
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Figure 5.3: Complexity measurements using three different methods of random
graphs obtained from the Barabási-Albert graph distribution versus the parameter
k. The graphs generated had 100 nodes and each one was created starting from
a cycle graph of 3 nodes following the Barabási-Albert procedure. The number of
random graphs generated with the same k value was 10 from which the trimmed
mean described before was done. For purposes of comparison, the results obtained
with each method were normalized with respect to the maximum value.
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5.4 The Complexity of Random Digraphs

Now, in this section, we will perform experiments like those shown before but now
with directed graphs. We are interested in measuring the complexity of random
digraphs because they serve as the topology for Random Boolean Networks whose
complexity will be studied later. This time we will use a uniform digraph distri-
bution. Nevertheless, we need to find a parameter or a way to verify that the
complexity we are measuring makes sense.

If we simply use a uniform digraph distribution of n nodes and k edges, picking
out a random digraph and measuring its complexity, then the digraph chosen can
be complex or not since we do not know what to expect. Hence, to control the
complexity of the digraphs chosen, our first approach is to gradually increase the
vertex in-degree d− of the nodes. Another option could have been increasing the
number of nodes n, however, we consider that this approach lacks interest since it
is obvious that for instance, any digraph of 50 nodes will be more complex than
any digraph of 20 nodes, but it is not obvious if any digraph of n with in-degree
d− = 50 is more complex than any other digraph of n nodes with in-degree d− = 20.
On the other hand, the vertex out-degree d+ can take any value. This choice is
also motivated because in Classical Random Boolean Networks the topologies are
chosen with a fixed number of nodes n with a fixed vertex in-degree d− and a vertex
out-degree d+ which can vary. In the same sense, the digraphs generated will be
allowed to have loops, though parallel edges (pointing in the same direction) will
not be allowed. Thus, strictly speaking, we should call them multidigraphs, but we
will continue calling them just as digraphs for simplicity.

5.4.1 The Complexity from Increasing the Vertex In-Degree

In this experiment, we will generate a random digraph of n nodes and d− incoming
directed edges, and as usual, at each iteration its complexity will be measured. To
measure its complexity we will use the three same methods we use in the last section,
i.e., we will measure the Kolmogorov complexity directly from the adjacency matrix
representation of the digraph, but also a 1-dimensional lossless representation will
be created by putting the rows of the adjacency matrix one after the other. Then,
the entropy and K-complexity of this 1-D representation will be measured. The
vertex in-degree d− of the random digraphs will be increased at each iteration while
vertex out-degree d+ can vary. A procedure of trimmed mean to reduce fluctuations
in the results will be performed as before as well.

It is expected that as the vertex in-degree d− is increased, the complexity of the
digraphs also will increase. However, as happened with the experiment in Section
5.3.2, this complexity must reach a maximum and start to fall. This should happen
since the case where the vertex in-degree d− equals the number of nodes and there-
fore also the vertex out-degree (d− = d+ = n) is highly regular and symmetric, and
thus with low complexity.

The result of this experiment is shown in Fig. 5.4. As can be seen, these results
were very similar to the results of the experiment with random binary sequences
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Figure 5.4: Complexity measurements using three different methods of random
digraphs obtained from a uniform digraph distribution versus the number of incom-
ing directed edges d−. The digraphs generated had 100 nodes and the parameter
d− was vary from 1 to 100. The number of random digraphs generated with the
same d− value was 10 from which the trimmed mean described before was done.
For purposes of comparison, the results obtained with each method were normalized
with respect to the maximum value. Compare these results with those shown in
Fig. 5.1b.
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(Fig. 5.1b). In that experiment, we saw how Kolmogorov complexity had a better
performance, showing a characteristic shape on its curve which could not be imitated
by the entropy or compression techniques. If we now try to find this characteristic
curve shape in the results in Fig. 5.4, we find that it is achieved by the Kolmogorov
complexity measurement of our 1-D lossless representation. This is astonishing,
considering that in the former experiments with graphs the adjacency matrix rep-
resentation had a slightly better performance. This means that for directed graphs
the lossless 1-dimensional representation we have proposed works better capturing
the changes in complexity than the adjacency matrix representation, which this time
gives results very similar to the entropy. Nevertheless, the three methods were able
to show the behavior of the complexity that we expected, i.e., there is a maximum
value in the complexity which in this case is found just in the middle (d− = 50)
from which the complexity starts to fall, moreover, the curve is symmetric around
this point.

From this experiment, we can conclude that the 1-D lossless representation we
have proposed works better to describe the features which make a digraph to be
complex or not through the Kolmogorov complexity.

This time the random digraphs were not generated by using a built-in function
because Mathematica does not have any function which can be used to generate
random digraphs with a given vertex in-degree d−, so we had to create our own
algorithm to do so. The code used to carry out this experiment can be found in the
Appendix Section A.1 (Fig. A.4).

5.4.2 The Complexity from The Uniform Digraph Distribu-
tion

In spite of the results obtained in the last experiment, they still not being so in-
teresting if we wish to characterize not only the complexity of digraphs but also
the complexity of the topology of Random Boolean Networks. In this model, both
parameter n and d− remain fixed, so we would like to also maintain fixed these pa-
rameters and see the behavior in the complexity of random directed graphs in this
way. However, once we maintain fix these parameters, we will not be able to con-
trol the complexity of the networks, so the results just will fluctuate, and it will be
impossible to infer anything about its behavior. To solve this problem, we designed
the following approach.

We will generate random digraphs in the same exact way we did before, but now
with both parameters, n (number of nodes) and d− (vertex in-degree) maintained
fixed. The complexity of them will be measured using the exact same procedure we
did in the former experiment. Then, once we have the results, they will be ordered in
increasing order of complexity and some of the digraphs will be drawn. In this way,
it should be possible to visualize characteristics which we expect make the digraphs
to be complex or not, like symmetries or regularities.

Hence, the purpose of this experiment is to verify that the measurements of com-
plexity of digraphs that we perform agree with our visual intuition of what should
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be considered as complex or not, especially in the extreme cases, just as we easily
can say that the sequence 100101011 is more complex than the sequence 111110000.

The result of this experiment is shown in Fig. 5.5 and the code used can be
found in the Appendix Section A.1 (Fig. A.5). As can be seen in Fig. 5.5a, the
complexity for random digraphs with fixed parameters n and d− was bounded and
did not vary much with the methods of entropy and K-complexity with an adjacency
matrix representation. The method which again seemed to have better performance
is the K-complexity with our 1-dimensional representation since it captured a much
rich amount of complexity values, which means it can detect slight changes in com-
plexity which the other methods cannot. This confirmed our previous observation
that this method is better to describe the complexity of digraphs.

Since the measure of complexity with the K-complexity method and a 1-D repre-
sentation increases gradually, it should be possible to reaffirm the difference between
the complexity of extreme cases by using the visual representation, although due to
the low variation in the values this could be no possible to do for intermediate cases,
where the slope of the curve is not so high. This is exactly what is shown in Fig.
5.5b. For digraphs with intermediate complexity, it is hard to try to guess which
one is more complex, however, for extreme cases, the situation is not as expected.
For example, between the most complex and the less complex digraphs shown in
Fig. 5.5b, the difference in complexity is yet not clear, even though their computed
complexities say there is a big difference.

A possible explanation for the above results is that we are not considering iso-
morphisms when measuring the complexity of the digraphs, i.e., the complexity of
the digraph could be affected by the order the nodes are labeled since labeling the
nodes in a different order gives a different representation of the object. Hence, it is
possible that measuring the complexity of random digraphs is not enough and it is
also needed to consider the complexity of its isomorphisms. In the next section, we
will try to answer this question.

5.5 The Complexity of Isomorphic Networks

In this section, we will try to answer whether for the same graph or digraph the
complexity measurement depends on the isomorphic representation used. First, an
experiment using graphs will be performed followed by an experiment using digraphs.

5.5.1 The Complexity of Isomorphic Graphs

The experiment is quite simple. A random graph with a given number of nodes
n and a given number of edges k will be generated by means of a uniform graph
distribution which is easily implemented in Mathematica by means of the integrated
function UniformGraphDistribution. Then, the rows and columns of the adjacency
matrix of the randomly generated graph will be permuted such that this process
corresponds to a reorder in the labeling of the nodes, e.g., if the nodes of a graph
are labeled as {1, 2, 3, 4} this process will permute the labels to a different order as
can be {3, 4, 1, 2} or {4, 3, 2, 1}. Clearly, the number of possible permutations in the
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(a)

(b)

Figure 5.5: (a) Complexity measurements for random digraphs. The results were
ordered by increasing complexity value. The number of random digraphs generated
was 100, 000 and all they had 6 nodes and vertex in-degree 3. For purposes of
comparison, the results obtained with each method were normalized with respect
to the maximum value. (b) Some directed graphs plotted by increasing complexity
value. The complexity increases from left to right and from up to down. The order
was obtained from the complexity measurements from the K-complexity method
using a 1-D representation. The digraphs plotted were chosen from regular intervals
of complexity, such that the digraph at the upper left corner is the less complex and
the digraph at the lower right corner is the most complex digraph generated in the
experiment.
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(a) (b)

Figure 5.6: Complexity measurements for isomorphic graphs. (a) The random
graph of 8 nodes and 7 edges for which the isomorphisms were generated. (b)Results
obtained from measuring the complexity of the same graph with different isomorphic
representations. The number of random permutations in the labels of the nodes used
to generate the isomorphisms was 400, but only the 375 which were not repeated
were considered. For purposes of comparison, the results obtained with each method
were normalized with respect to the maximum value.

labeling order of the n nodes is n!. Thus, as the number of permutations increases
fast for large networks, in general, it will not possible to use all the possible per-
mutations. Therefore, we will work with a fixed number of permutations randomly
chosen from a uniform distribution containing all the possible permutations. If two
or more permutations are repeated, we will simply ignore these repetitions. To mea-
sure the complexity of the isomorphisms we will use the same three methods which
we have been using lately.

The result of this experiment is shown in Fig. 5.6 and the code used can be
found in the Appendix Section A.1 (Fig. A.6). As can be seen, the complexity of
the same graph fluctuated depending on the order we labeled the nodes, i.e., which
isomorphism was used to measure the complexity. This result is astonishing and at
first, it was not expected since the Kolmogorov complexity had shown to be robust
to different representations (see [69]). However, this experiment proved that it is
not robust for isomorphic graphs. Therefore, when trying to measure the complex-
ity of a graph it is imperative to also consider its isomorphisms. According to the
ideas of algorithmic complexity theory, which we reviewed in Chapter 4, the true
Kolmogorov complexity must be the complexity obtained with the representation
which gives the minimum value. Evidently, the Shannon entropy method also is
subjected to this problem.

As was mentioned, for large graphs with many nodes, the number of isomor-
phisms increases fast and becomes impractical to try to find the representation with
the minimum value of complexity. Therefore, we would like to know if given a graph,
is there a complexity value which is more probable to measure? Or in other words,
we are interested in knowing the distribution of complexities for the isomorphisms
of a given graph. Thus, we used the results of the experiment in Fig. 5.6b and with
the help of the built-in function FindDistribution of Mathematica we found the
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Figure 5.7: The probability distribution which best fits the data shown in Fig.
5.6b (K-complexity of the 1-D representation). The distribution found is a normal
distribution with parameters µ = 0.847 and σ = 0.071.

probability distribution which best fitted the data. The distribution fitted is shown
in Fig. 5.7. This distribution is a normal distribution with parameters µ = 0.847
and σ = 0.071. Therefore, the most probable value for the complexity of the graph
shown in Fig. 5.6a when choosing a random isomorphism was µ = 0.847 and the
probability of measuring a complexity value in the interval [−σ+µ, σ+µ] was 68.2%.

5.5.2 The Complexity of Isomorphic Digraphs

Now, the former experiment will be repeated, but this time instead of a random
graph, a random digraph of n nodes and k edges will be generated. The process to
generate it will be again through the built-in function Random Graph of Mathemat-
ica, but this time the option DirectedEdges → True will be used to indicate that
the k edges must be directed. Then, the same procedure used before will be used to
generate the isomorphisms, i.e., a fixed number of random permutations will be used
to permute the order of the labels of the nodes. Finally, the complexity of the iso-
morphisms will be measured by using the three methods we have been implementing.

The result of this experiment is shown in Fig. 5.8 and the code used can be
found in the Appendix Section A.1 (Fig. A.6). The results showed, as they did for
graphs, that the complexity of the digraphs also depends on the isomorphic repre-
sentation used to measure its complexity. The fluctuations indicated that there are
isomorphisms which representation gives a low complexity value while others give a
high complexity value no matter what method was used to measure the complexity.



5.5. THE COMPLEXITY OF ISOMORPHIC NETWORKS 77

(a) (b)

Figure 5.8: Complexity measurements for isomorphic digraphs. (a) The random
digraph of 7 nodes and 10 directed edges for which the isomorphisms were gener-
ated. (b)Results obtained from measuring the complexity of the same digraph with
different isomorphic representations. The number of random permutations in the
labels of the nodes used to generate the isomorphisms was 500, but only the 361
which were not repeated were considered. For purposes of comparison, the results
obtained with each method were normalized with respect to the maximum value.

Therefore, following the ideas of algorithmic complexity, the true complexity value
must be that obtained with the isomorphic representation which gave the lower
value.

Besides, as was did for isomorphic graphs, the distribution of complexities ob-
tained using different isomorphic representations of the same digraph was calculated.
The distribution which best fits the data in Fig. 5.8b was found using the function
FindDistribution of Mathematica. This distribution is shown in Fig. 5.9. Once
more the distribution which best fitted the distribution of the complexities obtained
by means of isomorphic representations was a normal distribution. This time the
parameters of the distribution were µ = 0.816 and σ = 0.085. Thus, the most prob-
able value for the complexity of the digraph shown in Fig. 5.8a when choosing a
random isomorphic representation was µ = 0.816 and evidently the probability of
measuring a complexity value in the interval [−σ + µ, σ + µ] again was 68.2% since
this is a property of the normal distribution.

From this experiment and the former experiment with isomorphic graphs, we can
conclude that the complexity measurement of a network depends on the specific iso-
morphic representation chosen to describe it. According to the ideas of algorithmic
complexity, the true complexity of the network is the value obtained with represen-
tation which gives the lower complexity. Nonetheless, the number of isomorphisms
increases fast with the number of nodes, so sometimes it will be impossible to tests all
the isomorphism to find this true distribution. Fortunately, the distributions found
in Figs. 5.7 and 5.9 are unimodal and show that there is a value of the complexity
which is most probable to get when using any isomorphism and the probability of
getting another value is not so high. Hence, even if not all the isomorphisms can be
tested, we can use the most probable value of the distribution as an approximation
of the complexity when comparing the complexities of many networks.
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Figure 5.9: The probability distribution which best fits the data shown in Fig.
5.8b (K-complexity of the 1-D representation). The distribution found is a normal
distribution with parameters µ = 0.816 and σ = 0.085.

5.5.3 The Complexity from The Uniform Digraph Distribu-
tion Revisited by Considering Isomorphisms

Coming back to the experiment about the complexity of random digraphs from the
uniform digraph distribution (section 5.4.2), we found in Fig. 5.5 that the random
digraphs ordered by increasing value of complexity do not seem to show the same
complexity increase when they are drawn. We expected a clear visual difference
between the most complex digraph and the less complex digraph; however, this did
not happen. That result took us to think we should consider the isomorphisms
when measuring the complexity of digraphs. Now we have shown that this idea
was correct, thus, the experiment of Section 5.4.2 will be repeated, but now every
time a random digraph is generated, also some of its isomorphisms will be generated
and its complexity will be computed. As was argued before, the true complexity of
the digraph must be the lower value obtained among the complexity values of the
isomorphisms, so this criterion will be applied with the three methods to measure
the complexity we have been using.

The result of this experiment is shown in Fig. 5.10 and the code used can be
seen in the Appendix Section A.1 (Fig. A.7). As can be seen in Fig. 5.10a the
complexity measurements showed the same behavior as in Fig. 5.5a. This is normal
since the digraphs generated had the same number of nodes and the same vertex
in-degree. Nevertheless, in Fig. 5.10b it is possible to note a slightly different result.
This time it is easier and clearer to visualize from the drawn digraphs, that the less
complex digraph is indeed less complex than the more complex digraph. The less
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(a)
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Figure 5.10: (a) Complexity measurements for random digraphs. The results were
ordered by increasing complexity value. The number of random digraphs generated
was 30, 000 and all they had 6 nodes and vertex in-degree 3. The number of ran-
dom permutations in the labels of the nodes used at each iteration to generate the
isomorphisms was 1000, but only which resulted not repeated were considered. For
purposes of comparison, the results obtained with each method were normalized
with respect to the maximum value. (b) Some directed graphs plotted by increasing
complexity value. The complexity increases from left to right and from up to down.
The order was obtained from the complexity measurements from the K-complexity
method using a 1-D representation. The digraphs plotted were chosen from regular
intervals of complexity, such that the digraph at the upper left corner is the less
complex and the digraph at the lower right corner is the most complex digraph
generated in the experiment.
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complex digraph seems to be more symmetrical while the more complex digraph is
totally asymmetrical. Thus, in this experiment, we have reconciled our intuition of
how a complex digraph should look like and how a digraph which is not so complex
should look like.

The results of this experiment are important since any complexity measurement
must agree with our intuition about what should be considered complex otherwise
the method would be useless. We saw in Section 5.2 how the measurements of com-
plexity obtained with several methods agree with our intuition about the complexity
of binary sequences, however, now we have seen that they also agree with our in-
tuition about the complexity of digraphs. This result is what we needed to be sure
the methods we have been using give results which are correct, i.e., they correctly
measure the complexity of digraphs. This approach to verify our measurements was
not needed previously (sections 5.3 and 5.4.1) since there we had a parameter which
controlled the complexity of the networks, so we only had to ensure the agreement
between the complexity measurements and this parameter. Nevertheless, our find-
ings about the complexity of isomorphisms would not have been possible without
this experiment since, until the experiment for the complexity from the uniform
digraph distribution (section 5.4.2), the results seemed to be consistent.

5.6 The Complexity of a Set Boolean Functions

As indicated before, a Random Boolean Network is defined by its topology and its
updating functions. In the last section, we devoted to learned how the complexity
of the topology can be measured. Now, in this section, we will try to establish a
systematic way to measure the complexity of the updating functions.

As it can be remembered, in a Boolean Network of N nodes, we assign to each
node a logic function of k inputs. We denote this set of Boolean functions belonging
to a Boolean Network as f = {f1, f2, ..., fN}.

Here, we propose the following method to measure the complexity of a set of
Boolean functions. First, it must be remembered that the behavior of each Boolean
function fi can be described by its truth table. Hence, the behavior of a set of
Boolean functions can be described by a set of truth tables. From this set of Boolean
functions, we can build a unique truth table as a representation of all of them. As
this unique truth table contains all the information about the set of Boolean func-
tions, a measurement of its complexity equals to measure the complexity of the set
of Boolean functions. Finally, this unique truth table is a matrix which can be used
as a lossless representation of the set of Boolean functions.

For instance, in Section 3.1.6, we saw an example of Random Boolean Network
with the assigned logic functions we reproduce again in Table 5.1. From this truth
table, we can build the representation shown in Fig. 5.11. This representation is a
matrix with dimensions 2k ×N , thus we can apply to it the same methods we have
used to measure the complexity of adjacency matrices in sections 5.3 and 5.4.

In the next sections, two experiments will be performed to check out if this
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σ1 σ2 fNode1 fNode2 fNode3 fNode4

0 0 1 1 0 1
0 1 1 1 1 1
1 0 0 0 1 0
1 1 0 1 0 0

Table 5.1: Truth table with the set of Boolean functions assigned to a Boolean
Network of 4 nodes and parameter k = 2 used to write the matrix representation of
the set of updating functions.

Figure 5.11: Matrix representation of the truth table shown in 5.1.

representation of the set of Boolean functions of a Boolean Network delivers results
which makes sense when measuring its complexity.

5.6.1 The Complexity from Sets of Random Boolean Func-
tions with Increasing Number of Inputs

This first experiment is inspired by the experiments of sections 5.3.1, 5.3.2 and 5.4.1.
In those experiments, we had a parameter which controlled the complexity of the
random networks generated at each iteration. In this way, we were able to confirm
that our measurements of complexity had the behavior expected according to the
value of this parameter.

Similarly, in this experiment, at each iteration, a set of N random Boolean func-
tions with k inputs will be generated. The logic functions will be randomly chosen
from the uniform probability distribution of the 22k possible Boolean functions with
k inputs. Thus, the number of possible sets of random functions is given by 2N×2k

as was shown in Eq. 3.8.

Since in any Random Boolean Network model, the number of nodes must remain
fixed throughout the dynamics. In this experiment, the parameter N also will re-
main fixed and the complexity of the randomly generated sets of boolean functions
will be controlled by the parameter k.

At each iteration, the matrix representation for each set of logic functions ran-
domly generated will be built and used to measure its complexity. As was usual
in the previous sections, the K-complexity will be directly measured from the ma-
trix representation2, but also a 1-D lossless representation will be created from this

2The method we have been using was originally created to measure the complexity of adjacency
matrices, i.e., square matrices, nevertheless thanks to the BDM Method, it can be also used to
measure the complexity of non-square matrices.
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Figure 5.12: Complexity measurements using three different methods of random
sets of Boolean functions obtained from a uniform distribution versus the parameter
k (the number of inputs). The sets generated had 10 Boolean functions each one
(N = 10) and the parameter k was vary from 1 to 14. The number of sets of
random logic functions generated with the same k value was 10 from which the
trimmed mean described before was done. For purposes of comparison, the results
obtained with each method were normalized with respect to the maximum value.

matrix to measure the entropy and the 1-dimensional K-complexity. Moreover, as
was did in sections 5.3.1, 5.3.2 and 5.4.1, the fluctuations in the results with a given
value of k will be reduced by means of a trimmed mean which will be made by
generating a given number of sets with the same parameter value, for later compute
the quartiles of the results and finally compute the mean value by considering only
the second and third quartiles. The result of this procedure will be considered the
complexity value we are looking for. At the end of the iteration, the parameter k
will be increased and the algorithm will be repeated.

As the value of the parameter k increases, we expect that the complexity of the
set of Boolean functions will also increase since the information needed to reproduce
the behavior of a Boolean function with larger k value is greater than for a shorter k.

The result of this experiment is shown in Fig. 5.12. The performance of the
entropy method was awful, showing almost a constant behavior. On the other
hand, the results with the K-complexity showed that the complexity increased when
the parameter k increased just as was expected. Nevertheless, the behavior of the
Kolmogorov complexity differed depending on which representation was used. The
results from the 2-D representation (the matrix representation) seemed to be almost
constant from k = 1 to k = 8. Meanwhile, the results from the 1-D representation
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showed a gradual increase in all the range experimented. From these observations,
we could be tempted to conclude that the 1-D representation method is better to
measure the complexity of a set of Boolean functions. However, the range used is
limited and does not allow to infer the behavior for a larger k value, especially the
behavior of the 1-D representation. Though, since the complexity should continue
increasing it is almost sure that the 1-D representation will continue to be the best
method for larger k values.

The code used to generate sets of random Boolean functions and measure its
complexity is shown in the Appendix Section A.1 (Fig. A.8). Maybe the most
interesting part of the code is the generation of random Boolean functions. One
possible approach could have been to generate a matrix with dimensions 2k×N and
initialize it with zeros. Then, given a parameter p, we could have changed the 0′s by
1′s on each column of the matrix (a column corresponds to a logic function). This
procedure would be ideal if we were interested in the generalization of the original
Kauffman model for a Random Boolean Network discussed in Section 3.1.4.2. How-
ever, we are interested only in the original model proposed by Kauffman where for
each node a Boolean function is randomly chosen within all the universe of possible
functions with k inputs, and where all the functions have the same probability to
be chosen, i.e., the probability distribution is uniform. This random choice is easily
implemented in Mathematica by means of the Built-in function BooleanFunction
which immediately allows accessing to all the 22k possible Boolean functions with k
inputs. Then, the Boolean function chosen is represented as a combination of one
of the universal Boolean functions defined in 3.4 by means of the built-in function
BooleanConvert and finally, the truth table is obtained by means of the built-in
function Boole. The truth tables are joined as described before, and in this way, the
matrix representation is built.

5.6.2 The Complexity from Sets of Random Boolean Func-
tions with Fixed Number of Inputs

As happened before, the experiment with increasing parameter k is not so interest-
ing since in the CRBN model the parameter k also remains fixed throughout the
dynamics. Therefore, it desirable to perform an experiment where both parameter
N and k could remain fixed. However, if these parameters are fixed, there will be
no way to control the complexity of the sets of Boolean functions generated. This is
the same problem we faced in sections 5.4.2 and 5.5.3. Thereby, the same approach
used in those sections will be used to measure the complexity of sets of random logic
functions.

The sets of random Boolean functions will be generated as in the last section,
but this time with both parameters k and N fixed. For each set, the matrix repre-
sentation will be built and from it, the complexity will be measured by means of the
three methods we used in the former experiments. From the sections 5.4.2 and 5.5.3
we learned that the complexity of an object depends on the isomorphic representa-
tion used. Thus, it will be necessary to measure again the complexity using different
isomorphic representations and use the minimum value obtained as the true value of
the complexity. An isomorphic representation of our matrix representation is easily
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obtained by permuting its rows. This permutation corresponds to a reorder on the
input states 3. For instance, the truth table in Table 5.1 presented the input states
in a canonical order : {00, 01, 10, 11}. Nevertheless, instead, we could have used the
order {11, 10, 01, 00} or any other, i.e., any other isomorphic representation. The
number of possible permutations of the rows in our matrix representation with di-
mensions 2k ×N is 2k!. Therefore, it could be computationally expensive to try all
the possible permutations every time a set of random Boolean functions is gener-
ated. Thus, in order to measure its complexity, just a given number of permutations
chosen randomly (with a uniform probability distribution) will be considered each
time a set of random Boolean functions is generated.

Once the complexities of the isomorphic representations are measured, the min-
imum value obtained will be considered to be the complexity of the original matrix
representation, i.e., the complexity of the set of Boolean functions. This procedure
will be repeated a given number of times and the results will be ordered from the
less to the greater complexity value. As happened in sections 5.4.2 and 5.5.3, we
need a method to check out if the measurements of complexity we are getting make
sense. In those sections, we relied upon a visual approach by drawing the digraphs
to confirm that the extreme cases show a clear difference in complexity. In this
experiment, as visual confirmation of the results, the matrix representation of every
random set of Boolean functions will be plotted. To do so, we will take advantage of
the fact that the matrix representation is built only by 0′s and 1′s. In this way, the
matrix elements will be represented in a grid where a square will be colored black if
the corresponding matrix element is 1, otherwise, if it is 0, it will be colored white.
This plotting is a visual representation of the set of Boolean functions since all the
rules are contained within it.

It is expected that the less complex set of Boolean functions will be the set made
up only by functions which deliver always a zero(one) for all the possible input
states. Thus, its matrix representation is full of zeros(ones). On the other hand,
the most complex set of Boolean functions must be a set where there is no apparent
order in the distribution of 0′s and 1′s.

The result of this experiment is shown in Fig. 5.13. As can be seen in Fig. 5.13a,
it seems that the three methods are able to measure a gradual increase in the com-
plexity of the sets of Boolean functions. The results of the K-complexity with a 1-D
representation showed a stairway like behavior meanwhile the 2-D representation
showed a smoother curve. Surprisingly, the entropy method this time did not show
a slope almost equal to zero as it did in the former experiments. Nonetheless, the
range of complexity values shown by the entropy and the K-complexity with the 2-D
representation was very limited when compared with the range of complexity val-
ues computed with the method of K-complexity and the 1-D representation, which
means that this last method was able to capture with more detail the changes in

3An alternative would be to consider the permutations on the columns, which corresponds
to a reorder on the labels of the functions, i.e., a reassignment of the functions to the nodes.
Nonetheless, if we were studying the dynamics of an RBN, this type of permutations would give a
Boolean Network with a completely brand-new dynamics and thus the complexity measurements
would correspond to different objects. Hence, even though we are not considering the dynamics of
a Boolean function, this type of permutations will not be considered.
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(a)

(b)

Figure 5.13: (a) Complexity measurements for sets of random Boolean functions.
The results were sorted by increasing complexity value. The number of random sets
generated was 40, 000 and all they had 4 functions (N = 4) each one with k = 2
inputs. At each iteration, the number of randomly generated permutations of the
rows in the matrix representation was 16, but only the permutations which resulted
not repeated were considered. For purposes of comparison, the results obtained with
each method were normalized with respect to the maximum value. (b) Some sets of
Boolean functions plotted by increasing complexity value. The complexity increases
from left to right and from up to down. The order was obtained from the complexity
measurements from the K-complexity method using the 1-D representation. The sets
of logic functions plotted were chosen from regular intervals of complexity, such that
the set at the upper left corner is the less complex and the set at the lower right
corner is the most complex set of Boolean functions generated in the experiment.
Each set is represented by a square whose columns represent the logic functions and
its rows represent the possible input states.
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complexity on the sets of Boolean functions. Thus, this method proved again to be
the best, this time by measuring the complexity of sets of Boolean functions.

Meanwhile, the results in Fig. 5.13b showed as expected, that the less complex
set of Boolean functions is the set whose matrix representation is full of zeros. In
general, among two sets of Boolean functions, it is hard to say which one is more
complex just from the visual representation. However, the correct prediction of the
less complex set of Boolean functions gives confidence in that the method to com-
pute the complexity is working as it should so we do not have to depend on a visual
representation anymore.

The code used to generate sets of random Boolean functions and measure its
complexity is shown in the Appendix Section A.1 (Fig. A.9). It is like the code
shown in Fig. A.8, but this time the parameter k remains fixed and the complexity
is measured with the help of the isomorphic representations as was described before.

5.7 The Complexity of Boolean Networks

In the last sections, we already have studied the complexity of the components of
Boolean Networks, i.e., the topology and the updating functions, though we have
studied them separately. Nonetheless, measuring the complexity of the components
of a Boolean Network separately and then simply adding them up should not be
equal to simply measuring the complexity of a Boolean Network when it acts as
an ensemble. The interaction between the topology and the updating functions is
so intricate that a measurement of these components separately must be a poor
approximation to the real complexity of the system. Of course, it is expected that a
topology which is simple will produce a Boolean Network which also is simple and
the same should happen for the Boolean functions, indeed we are going to investigate
further this hypothesis lately, but the question of how to measure the complexity of
a Boolean Network still exists.

We will try to answer this question by appealing to Definition 3.2 of a Boolean
Network. In this definition a Boolean Network is seen as a logic function which maps
f : {0, 1}N → {0, 1}N and where N is the number of nodes. Therefore, if we wish to
measure the complexity of a Boolean Network, we must measure the complexity of
its behavior when acting as a function, i.e., we must measure the complexity of the
mapping produced by it. The mapping produced by the Boolean Network contains
all the information about its topology and its updating functions, moreover it con-
tains the information of these constituents when acting together, so its complexity
must correspond to the complexity of the Boolean Network.

5.7.1 A Lossless Representation for Boolean Networks

Following the previous arguments, in this section, a lossless representation of the
mapping produced by a Boolean Network is presented. The method will be intro-
duced through an example.
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In Table 3.10 and Fig. 3.2 were shown respectively, the updating functions
and the topology of a Boolean Network. Meanwhile, in Fig. 3.3 was shown the
state-space corresponding to this Boolean Network. This state-space represents the
dynamics of the system, i.e., the mapping of the Boolean Network since it says to
what state the system should move given any input state. From this state space,
the Table 5.2 can be built. This table represents the mapping made by the Boolean
Network.

Input State Output State

0000 1101
0001 1111
0010 1101
0011 1111
0100 1101
0101 1111
0110 1101
0111 1111
1000 0010
1001 0100
1010 0010
1011 0100
1100 0010
1101 0100
1110 0010
1111 0100

Table 5.2: The mapping produced by the Boolean Network presented in Table
3.10 and Figs. 3.2 and 3.3. The input states were placed in canonical order by
considering them as binary numbers.

A lossless representation of the mapping produced by the Boolean Network can
be built just by putting each output state one after the other in the same order
shown in Table 5.2:

S=1101111111011111110111111101111100100100001001000010010000100100

This binary sequence is a lossless representation of the mapping produced by the
system and its complexity should correspond as was argued before to the complex-
ity of the Boolean Network 4. Furthermore, since it is a binary sequence, we can
measure its complexity by using the same methods of Section 5.2.

Now that we have a way to represent a Boolean Network as a simple binary
sequence and thus a way to measure its complexity, some experiments will be per-
formed in the following sections concerning the complexity of Random Boolean
Networks.

4It is not necessary to consider the input states in the representation of the Boolean network
because its effect only would be to add a constant to the complexity of the Boolean Networks.
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5.7.2 The Correlation Between the Complexity of Random
Boolean Networks and The Complexity of Its Topol-
ogy

If we have a given set of Boolean functions and randomly choose a topology for this
set, in order to create an RBN, every different topology chosen will make the RBN
to have a different complexity value. It is expected that a topology which is simple
will render a Boolean Network which also is simple and in the same way, a topology
which is complex should produce a Boolean Network which is complex as well. In
other words, there should exist a positive correlation between the complexity of a
Boolean Network and the complexity of its topology. In this section, this ansatz will
be tried to be verified. To do so, the next procedure is used.

Firstly, a random topology is chosen following the classical Random Boolean
Network model with a given number of nodes and vertex in-degree (see Section
3.1.3). Then, a given number of random sets of updating functions is chosen fol-
lowing the classical Kauffman model as well (see 3.1.4.2). Thereupon, these sets of
Boolean functions are assigned to the topology generated before, which means we
are creating RBNs with the same topology, but with different updating functions.
The dynamics of the RBN is generated by introducing to it all the possible input
states and from this, the lossless representation discussed before is created for each
RBN and its complexity is measured by using the K-complexity implementation,
as was used in Section 5.2 to measure the complexity of random binary sequences.
From the complexities obtained for the RBNs, the quartiles of this set of results
were calculated, and by only considering the second and third quartiles, the mean
complexity was computed, i.e., we computed a trimmed mean. Therefore, we were
interested in knowing the mean complexity of RBNs which share the same topology
and for which only the updating functions were varied among them.

Afterward, the complexity of the topology is measured by considering some of
its different isomorphic representations. In Section 5.5, the true complexity value
of the topology was considered to be the lower value obtained with these isomor-
phic representations. Nevertheless, this time we will consider the mean complexity
of the topology from its isomorphic representations and not the minimum value as
before. The reason is because we will be measuring the mean complexity of Random
Boolean Networks with this same topology, therefore it is desirable to measure also
the mean complexity of the topology since it could happen for example, that we
assign the same set of updating functions to the topology, but with the functions
sorted in different order. That would correspond to Boolean Networks which share
the same set of updating functions, but with isomorphic topologies. Therefore, it is
better to consider the mean of the complexity of the isomorphic topologies and not
just one value (the minimum value).

Thereupon, a new topology is randomly chosen, again with the same parame-
ters, and in the same way, new sets of updating functions are randomly generated to
create RBNs and measure its mean complexity together with the mean complexity
of its topology and so on.
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Once we have all the results, they are plotted, and the correlation between the
two complexities is evaluated by computing the Pearson correlation coefficient to
test a possible linear correlation. Additionally, a linear model is fitted to the data.
However, since we do not know whether the possible correlation between the vari-
ables is linear or not, also the Spearman’s rank correlation coefficient is computed
to evaluate how well the relationship between the two complexities is described by
a monotonic function.

Due to the high computational cost to generate Random Boolean Networks and
compute its complexity, this experiment was performed with small topologies, specif-
ically, a topology with five nodes and other with seven nodes were considered. An-
other reason to consider small topologies is the huge number of possible RBNs with
larger topologies. As was said in Section 3.1.5, the number of possible Random
Boolean Networks increases so fast with the parameters N and k. Hence, it is hard
to perform statistics in this ensemble since larger topologies would make even harder
to get enough data to statistically be able to conclude something. For these reasons,
we will focus on RBNs with just a few nodes.

The results of two experiments performed with different parameters N and k are
shown in Fig. 5.14. As can be seen in both experiments, the data showed a linear
relationship between the mean complexity of the RBNs and the mean complexity of
the topologies used. The Pearson correlation coefficient computed for the complex-
ities in Fig. 5.14a was rP = 0.361, while the Spearman’s rank correlation coefficient
computed was rS = 0.313. These values indicated that there exists a correlation
between these complexities as was expected. Furthermore, the linear correlation is
slightly stronger than a correlation described by a monotonic function. Moreover,
the coefficients are positive which means that a greater mean complexity value for
the RBN corresponds to greater mean complexity for the topology used. The same
happened for the complexities showed in Fig. 5.14b which had a Pearson correlation
coefficient of rP = 0.532 and a Spearman’s rank correlation coefficient of rS = 0.368.
These values were closer to 1 than they were in the first experiment which means
that both correlations were stronger. In fact, the Pearson correlation coefficient is
greater than 0.5 so we can consider that both complexities showed a strong linear
relationship.

According to the previous results, our initial hypothesis was correct, i.e., a simple
RBN indicates a simple topology and a complex RBN indicates a complex topology.
Furthermore, the correlation seems to be linear. Nonetheless, it seems there exist
cases, where this hypothesis is not fulfilled. This can be explained by the fact that
the complexity of a Boolean Network also is determined by the updating functions
which were chosen and not only by the topology used. To see this, just imagine we
assign to a topology very complex the updating functions whose matrix representa-
tion is full of zeros, then no matter which input state we evaluate, since the state of
the network will always be the same. Thus, this type of updating functions spoils
the complexity of the network. This explains why the the Pearson correlation coef-
ficient and the Spearman’s rank correlation coefficients found in these experiments
are positive but not equal to 1. Unfortunately, this experiment is not enough to say
that our hypothesis has been demonstrated empirically for any Boolean Network.
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(a)

(b)

Figure 5.14: The mean complexity of the topology versus the mean complexity
of Random Boolean Networks with this same topology. Both mean complexities
were normalized with respect to its maximum value. A linear model was fitted
to the results and the correlation between the variables was studied. (a) All the
topologies used had five nodes (N = 5) and vertex in-degree 3. The number of
RBNs generated with the same topology at each iteration was 5000 and the number
of random permutations generated to measure the mean complexity of the topology
was 300, though only which resulted not repeated were considered. The model fitted
has an intersection with the vertical axis at −1.658 and a slope of 2.6447 with an
R2 coefficient of 0.13. The Pearson correlation coefficient resulted to be rP = 0.361,
while the Spearman’s rank correlation coefficient resulted to be rS = 0.313. (b) All
the topologies used had five nodes (N = 7) and vertex in-degree 4. The number of
RBNs generated with the same topology at each iteration was 2000 and the number
of random permutations generated to measure the mean complexity of the topology
was 5000, though only which resulted not repeated were considered. The linear
model fitted has an intersection with the vertical axis at −4.2482 and a slope of
5.2215 with an R2 coefficient of 0.282. The Pearson correlation coefficient resulted
to be rP = 0.532, while the Spearman’s rank correlation coefficient resulted to be
rS = 0.368.
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To do so, it it would be necessary to perform more experiments with topologies of
distinct sizes. All we can say is that our hypothesis of correlation was correct for
Random Boolean Networks with small topologies given an ensemble with a suffi-
ciently large number of Boolean Networks.

The code used in this experiment can be found in the Appendix Section A.1
(Fig. A.10). Almost all the code has been recycled from previous experiments. The
only difference is the section which allows testing the output states of the Boolean
Network given all the possible input states, i.e., the section which gives the dynamics
of the network.

5.7.3 The Width of the Distribution of Complexities for
Random Boolean Networks

In the last section, the complexities of Random Boolean Networks which shared the
same topology were calculated, and from them, the mean complexity of these RBN
was computed. Now, we will study the standard deviation in the complexities from
which the mean is calculated, i.e., we will examine the behavior of the width in the
distribution of complexities of RBNs with the same topology. Specifically, we are
interested in figuring out if this width stays constant or almost constant when the
number of nodes is fixed.

We will use the results of the two experiments performed in the last section.
From them, we will compute the standard deviation in the complexities of RBNs
which share the same topology and where all the topologies have the same number
of nodes and vertex in-degree.

The results of these two experiments are shown in Fig. 5.15. Both experiments
confirmed that when the number of nodes is maintained fixed, the width of the
distribution of complexities of RBNs with the same topology fluctuates randomly,
though it seems to be bounded from above and from below. Given this behavior, it
is expected that as the number of nodes increases, the standard deviation also will
increase, i.e., the bounds of the fluctuations in the standard deviation will be moved
according to the number of nodes.

Therefore, to analyze the behavior of the width in the complexity distribution of
Random Boolean Networks against the number of nodes of the topology a modified
version of the experiments shown in Fig. 5.14 was implemented. In this version,
instead of fixing the number of nodes, at every certain number of iterations, this
parameter is increased. The number of nodes starts in 2 and the vertex in-degree
remains fixed all the time. Thereupon, a random topology and a random set of
updating functions are generated and with them, the dynamics of the network is
generated. After, the complexity of the Random Boolean Network is measured as
before. Since this occasion we are only interested in the distribution of complexities
of the RBNs, it is not necessary to measure the complexity of the topology and
the updating functions. Once we have generated and measured the complexity of a
certain number of RBNs the number of nodes of the topologies (and the number of
updating functions in the set of updating functions) is increased and the procedure
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(a)

(b)

Figure 5.15: The standard deviation in the complexities of Random Boolean Net-
works with fixed number of nodes. (a)RBNs whose topology has 5 nodes and vertex
in-degree 3. (b)RBNs whose topology has 7 nodes and vertex in-degree 4.
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Figure 5.16: The width of the distribution of complexities of Random Boolean
Networks versus the number of nodes of the topologies used. The experiment was
performed with three different vertex in-degrees: d− = 1, 2 and 3. The number
of RBNs generated with the same number of nodes, i.e., the size of the ensembles
considered, was 100 for the three parameters. The number of nodes ranged from 2
to 16.

is repeated. The standard deviation is computed for the complexities of each set of
Random Boolean Networks which have the same number of nodes.

The result of this experiment is shown in Fig. 5.16. The experiment was im-
plemented with the vertex in-degrees 1, 2 and 3. In the beginning, the width of
the distribution of complexities increased monotonically with the number of nodes,
however, it started to fluctuate with larger topologies. These fluctuations could
be attributed to the fact that the number of possible RBNs increases fast with the
number of nodes, therefore when the number of nodes of the topology was increased,
the number of RBNs studied was not enough to keep the increasing of the width. It
can be expected that the width will continue increasing with the number of nodes in
an unbounded way with a sufficiently large ensemble of Random Boolean Networks.
This hypothesis is reinforced by comparing the results with different vertex in-degree
values. For topologies with a small number of nodes, the width of the distribution
of complexities increased equally and independent of the parameter d−. The be-
havior started to depend on the value of the vertex in-degree used, only for larger
topologies. Thus, by remembering that the number of possible Random Boolean
Networks increases not only with the number of nodes but also with the parameter
d− (Eq. 3.9), and since the size of the ensembles of Random Boolean Networks used
was the same for the three values of d−, it is expected that the fluctuations would
be significantly more important for d− = 3 than for the other values since our finite
sample is less representative in this case due to the larger number of possible RBNs
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Figure 5.17: The expected behavior of the width of the distribution of complexities
of Random Boolean Networks versus the number of nodes of the topologies used for
ensembles sufficiently large. The value of σ increases monotonically with the number
of nodes and does not depend on the value of the parameter d−, i.e., σ = σ(N).

which were not considered. By following the same reasoning, the fluctuations for
d− = 2 would have to be more important than for d− = 1. The previous can be
checked in Fig. 5.16, as can be seen from the results, when the value d− = 3 was
used, the increase in the width was stopped and started to fluctuate earlier than
for the other values. Moreover, for d− = 2 the increase was stopped earlier than
for d− = 1. Hence, as was mentioned before, we expect that by considering ensem-
bles of Random Boolean Networks sufficiently large, the width of the distribution of
complexities will continue increasing monotonically with the number of nodes and
independently of the vertex in-degree of the topologies used, i.e., we can expect a
monotonically increasing behavior as the one shown in Fig. 5.17.

This experiment can be performed with the code shown in Fig. A.10 or Fig. A.11
(Appendix Section A.1). The only change necessary is to increase the parameter N
every determined number of iterations at the beginning of the first iteration loop.
For better performance, the parts which measure the complexities of the topology
and the updating functions can be ignored.

5.7.4 The Correlation Between the Complexity of Random
Boolean Networks and the Complexity of its Set of
Updating Functions

In the last sections, the correlation hypothesis between the mean complexity of the
RBNs and the mean complexity of its topology was tested. Nonetheless, a Boolean
Network is not defined by its topology but also by its updating functions. Hence,
it is also expected that if the set of updating functions assigned to the network is
simple, then the complexity of the Boolean Network also will be simple. This can
be seen by testing the dependence of the variables as was did before.

The experiment is very similar to the one of Section 5.7.2. However, this time a
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random set of updating functions was generated firstly. Then, some given number
of topologies were randomly generated, and we assigned to all of them the same
set of updating functions generated before. The complexity of the resulted Random
Boolean Networks was measured and from the results, the mean complexity was
computed by only considering the second and third quartiles of the data (trimmed
mean). For the same reasons argued in Section 5.7.2, the mean complexity of the
set of updating functions was computed by considering its isomorphic representa-
tions and by discarding the first and fourth quartiles to compute the mean com-
plexity (trimmed mean) instead of considering the minimum value of complexity.
Thereupon, another set of updating functions was generated and the procedure was
repeated.

Due to the same reasons for the experiment in Section 5.7.2, this experiment was
performed with topologies of only a few nodes. To be consistent, it was decided to
perform again two experiments with the same parameters used before, i.e., the first
experiment uses topologies with five nodes and vertex in-degree 3 and the second
experiment uses topologies with seven nodes and vertex in-degree 4.

The results of these experiments are shown in Fig. 5.18. In both experiments, the
linear relationship between the mean complexities was observed. The linear models
fitted showed a positive slope which suggested that the linear correlation between
the complexities exists. However, to confirm this we had to check the correlation
tests. These dependence tests between the variables also indicated the existence of
a correlation which was stronger when it was considered to be a linear correlation.
The previous is because for the experiment shown in Fig. 5.18a, the Pearson cor-
relation coefficient computed was rP = 0.537 while the Spearman’s rank correlation
coefficient computed was rS = 0.443. On the other hand, for the experiment shown
in Fig. 5.18b the Pearson correlation coefficient computed was rP = 0.460 while the
Spearman’s rank correlation computed was rS = 0.367. In both experiments the
linear correlation was stronger than a correlation described by a monotonic func-
tion, moreover, the Pearson correlation coefficients were around 0.5 which indicated
that both complexities are strongly related. Finally, both correlation coefficients
were positive which means that when the set of updating functions is complex, the
resulted Boolean Network also will be complex.

From these results can be seen that our initial hypothesis was correct. We be-
lieve that the correlation coefficients are not closer to 1 because of the presence of
Random Boolean Networks whose atypical behavior spoils the correlation as was
argued for the experiment in Section 5.7.2. In this case, could happen that even
if the set of updating functions is complex, a simple topology can end spoiling the
complexity of the network. For instance, a topology whose nodes are insulated and
poorly connected can cause the Boolean Network to have simple dynamics even
though the complexity of the set of updating functions. Unfortunately, once more
these results cannot be generalized to larger topologies and all we can say is that
the hypothesis was correct for small Random Boolean Networks given a sufficiently
large ensemble of Boolean Networks.

The code used in this experiment is shown in the Appendix Section A.1 (Fig.
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(a)

(b)

Figure 5.18: The mean complexity of the updating functions versus the mean
complexity of Random Boolean Networks with this same set of updating functions.
Both mean complexities were normalized with respect to its maximum value. A
linear model was fitted to the results and the correlation between the variables was
studied. (a) Each set of updating functions was composed by 5 logic functions of 3
variables. The number of RBNs generated with the same set of updating functions
at each iteration was 2000 and the number of random permutations generated to
measure the mean complexity of the updating functions was 5000, though only which
resulted not repeated were considered. The model fitted has an intersection with the
vertical axis at −0.2709 and a slope of 1.253 with an R2 coefficient of 0.2885. The
Pearson correlation coefficient resulted to be rP = 0.537, while the Spearman’s rank
correlation coefficient resulted to be rS = 0.443. (b) Each set of updating functions
was composed by 7 logic functions of 4 variables. The number of RBNs generated
with the same set of updating functions at each iteration was 1000 and the number
of random permutations generated to measure the mean complexity of the updating
functions was 5000, though only which resulted not repeated were considered. The
model fitted has an intersection with the vertical axis at −0.357 and a slope of
1.311 with an R2 coefficient of 0.2121. The Pearson correlation coefficient resulted
to be rP = 0.460, while the Spearman’s rank correlation coefficient resulted to be
rS = 0.367.
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A.11). It is very similar to the code shown in A.10 since it also recycles pieces of
codes we have been using throughout this chapter.

We finish this series of experiments by commenting again that, even though,
the experiments performed here showed that the method proposed to represent and
measure the complexity of Boolean Networks seems to be useful since the results
make sense. It is still necessary to repeat the experiments with larger topologies
and with larger ensembles. This was not possible to do in this study since the com-
putational power needed was out of our reach. The main problem is the method to
approximate the Kolmogorov complexity. This method is good measuring complex-
ities, nevertheless, it is highly expensive and the computational time to measure the
complexity of large sequences is ridiculous. For instance, in the experiment shown
in Fig. 5.16 it was impossible to extend the experiment to Boolean Networks whose
topology has more than 16 nodes. Thus, to get around with this problem, in the
next chapter a low cost and faster implementation to measure Kolmogorov complex-
ity is proposed. This implementation is less accurate but can reduce significantly
the amount of time needed to compute the K-complexity.

5.8 Conclusions

In this chapter, we performed a series of experiments about the complexity of
Boolean Networks by using the Random Boolean Network model. We started by
trying to establish the best method to measure the complexity of random sequences
of bits. The conclusion from this experiment is that the best way to compute the
complexity of a sequence of bits, as expected, is to try to approximate Kolmogorov
complexity. For short sequences, the technique based on lossless compression showed
poor results, while the technique based on Shannon entropy gave similar results to
K-complexity. On the other hand, for long sequences, the entropy and the lossless
compression methods showed similar results, but both were not capable of imitat-
ing the behavior of K-complexity. Therefore, we confirmed that the best and most
reliable method to measure complexity was the approximation to Kolmogorov com-
plexity given by the BDM implementation. This was helpful since in the following
experiments we could focus on this method and just care about the representation
of the object since we already knew that other methods are not as good as this.

Then, we tried to measure separately the complexity of the constituents of a
Boolean Network, i.e., the topology and the updating functions. Firstly, we needed
to establish the type of representation of these objects through by which we would
try to measure its complexity. Therefore, we performed some experiments with the
help of some distributions of random graphs to check out the difference between
the results obtained with a 1-D representation and a 2-D representation. The re-
sults with both representations were similar when using random graphs from the
Barabási-Albert graph distribution but showed a small discrepancy with the Watts-
Strogatz graph distribution, so it was not possible to define which representation
was better, though both seem to work. This question was answered in the following
experiments.

We started by considering graphs and not digraphs because with graphs we had
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a way to control its complexity by using the mentioned graph distributions. Nev-
ertheless, when we moved on to random digraphs, we needed a way to control its
complexity. Our first tried was to control its complexity by increasing the number of
incoming directed edges at each node. The results of this experiment were identical
to the results obtained with random sequences of bits and by comparing these results
with those, we concluded that the best representation to measure the complexity of
a digraph was our 1-D proposal. Afterward, we tried to measure the complexity of
the random topologies which are used to created Random Boolean networks, so we
needed to measure the complexity of random digraphs generated with a constant
number of nodes and incoming directed edges at each node. Nonetheless, this caused
that we could not control the complexity of the random digraphs generated, so we
used a visual approach to verify that our measurements made sense. The measure-
ments confirmed that the 1-D representation was better than the 2-D representation
since the behavior of the curve showed a richer variety of complexities. However,
it was not possible to confirm visually the difference in complexity among the most
complex digraph and the less complex digraph. This result was important because,
from it, we inferred that even though our method to measure K-complexity was ro-
bust, it was not robust enough when using it to measure the complexity of digraphs
and it was needed to consider the isomorphic representations of the digraph. This
hypothesis was confirmed in the next experiments. Indeed, we showed that the com-
plexities of the isomorphic representations of a digraph follow a normal distribution,
which constitutes a result which was not originally expected. Once we established
this, we repeated the experiment of random digraphs with a constant number of
nodes and incoming directed edges at each node, but this time we did consider the
isomorphisms, so this time it was possible to confirm visually the difference among
the most complex digraph and the less complex digraph.

Thus, in this series of experiments we learned that the 1-D representation we pro-
posed is better than the 2-D representation (which we also proposed), to measure
the complexity of digraphs. Moreover, unexpectedly, we learned that it is important
to consider the isomorphic representations of the digraph when measuring its com-
plexity, especially if we are going to compare its complexity with the complexity of
other digraphs. Thereby, with these experiments, we have established the basis to
measure the complexity of digraphs and consequently the complexity of the topolo-
gies of Boolean Networks. In summary, we have established the best representation
for digraphs, the best method the compute the complexity, and the importance to
consider isomorphic representations. This knowledge could be used in future ex-
periments to study the complexity of specific types digraphs (and consequently the
complexity of specific types of topologies). Or on the other hand, it could be used
to characterize digraphs with specific complexities or even to characterize Boolean
networks whose topologies have specific complexities.

In the second part of this chapter, we proposed a way to represent a set of
Boolean functions as a matrix. Then, we used this representation to measure the
complexity of random sets of Boolean functions. In our first experiment, we tested
our method by measuring the complexity of random sets of Boolean functions which
complexity was controlled during the generating process. The results showed that
our approach works. Afterward, we performed an experiment by generating random
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sets of Boolean functions with a constant number of inputs. Thus, in this experiment
we had no way to control the complexity of the sets of Boolean functions generated,
so we had to use a visual approach to confirm that our measurements made sense.
The results showed that our method measures correctly the complexity of a set of
Boolean functions. Thereby, the representation we proposed could be used in future
experiments to study Boolean Networks whose set of Boolean functions has a spe-
cific complexity.

In the third and final part of this chapter, we measured the complexity of Ran-
dom Boolean Networks, i.e., this time we did not measure the complexity of its
individual components but the complexity of the Boolean network as an ensemble.
We started by proposing a way of representing a Boolean Network as a sequence
of bits. This proposal was used to test the hypothesis of the correlation between
the complexity of Random Boolean Networks and the complexity of its topology.
The results showed that this correlation exists as expected and seems to be linear.
Therefore, the representation we proposed for Boolean Networks is useful to measure
its complexity. Then, we studied the width of the distribution of complexities for
Random Boolean Networks. The results showed that this width increases with the
number of nodes. Nevertheless, they also showed that as the number of nodes of the
Boolean Network increases, it becomes necessary to consider larger ensembles in or-
der to get results which can truly describe the average behavior of RBNs. Therefore,
the experiments of this section must be repeated by considering larger ensembles
of Random Boolean Networks in order to be able to generalize our results. Finally,
we performed an experiment to test the hypothesis of the correlation between the
complexity of RBNs and the complexity of its set of updating functions. Here, the
results also showed that our hypothesis was correct so there exists a correlation be-
tween the complexities which also seems to be a linear correlation. Nonetheless, as
stated before, it is necessary to repeat this experiment by considering ensembles of
RBNs with more samples in order to be able to generalize this result.

Therefore, our representation for Boolean Networks works and by using it we were
able to check some hypothesis about the complexity of RBNs and the complexity
of its topology and its set of updating functions. Unfortunately, these results could
not be generalized since it is necessary to consider larger ensembles. This was
not possible due to the high computational cost of computing the K-complexity of
large sequences of bits. This problem motivated the creation of a faster way to
approximate algorithmic complexity. This method will be presented in the next
chapter.
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Chapter 6

A Low-cost and Faster
Implementation of Kolmogorov
Complexity for Binary Sequences

In the last chapter, some experiments were performed with the help of the imple-
mentation of Kolmogorov complexity discussed in Section 4.4. It uses the so-called
Block Decomposition Method or BDM for short. This implementation showed that
it can measure the complexity of sequences of bits better than any other previous
method. Nonetheless, it has a high computational cost, especially for large se-
quences. This and the enormous amount of possible applications motivates to look
for new methods to measure the K-complexity. It is desirable to have a method
which can approximate algorithmic complexity for long sequences in less time.

In this chapter, we propose a hybrid method which uses the results obtained
with the BDM for short sequences. This hybrid method is based on the combina-
tion of a method of block decomposition and non-linear regressions performed with
Neural Networks. We call this method The Block Decomposition Method with Neu-
ral Networks (BDMNN). The results indicate that this method is faster than the
classical BDM, though the cost is an increase in the error of the complexity com-
puted. Therefore, for long sequences, the behavior of the BDMNN approaches to
the behavior shown by the entropy method to estimate complexity. Despite this, we
strongly believe that the error can be reduced with the help of more sophisticated
design of the Neural Networks, the use of larger training sets, and more learning
time. Thus, this first attempt of hybrid method is just the beginning in the search
of a faster implementation to measure Kolmogorov complexity and its results are
promissory.

We will begin by giving the theoretical framework behind the functioning of
neural networks as functions to perform non-linear regressions. Then, the description
of the methodology used to create the new method to measure complexity will be
presented. Finally, some results obtained with this implementation will be discussed
and compared with those obtained with the classical BDM.
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6.1 Theoretical Framework

6.1.1 Machine Learning

Nowadays the use of machine learning techniques has taken increasing importance.
Machine learning helps to perform all kind of tasks. It is based on the idea of
teaching and learning from examples, instead of direct programming as usual. Some
usual definitions are the following:

Definition 6.1. Machine Learning is the science (and art) of programming com-
puters so they can learn from data [84].

Definition 6.2. (Machine Learning is the) field of study that gives computers the
ability to learn without being explicitly programmed [85].

When it is said that a computer learns, it means the following:

Definition 6.3. A computer program is said to learn from experience E with respect
to some task T and some performance measure P , if its performance on T , as
measured by P , improves with experience E [86].

We can understand this former definition with the simplest example of a machine
learning program, a spam filter. This program can determine by itself whether an
email is a spam or not. To do so, it uses as examples the emails which we tag as
spam. These examples constitute the so-called training set or training data. Thus,
in this example, the task T is the action of tagging the spam emails, the experience
E is the training data, and the performance can be, for instance, the percentage of
emails correctly tagged as spam by the machine.

Other common examples of machine learning programs are the following: a pro-
gram which uses the photo of a person to predict its age, a program which recognizes
whether a Tweet is aggressive or not, a program which can classify objects in a photo,
a chatbot, a voice assistant, a program which can learn to play a game, a program
which finds irregular data, a program which paints works of art, etc. As can be
seen, the type of data which can be managed by the machine learning techniques
is immense. It can be used to work with images, time series, text, video, music,
measurements, medical data, graphs, etc. Every object which can be represented
as a vector, or more generally as a tensor, can be manipulated with the techniques
of machine learning to perform a specific task. The task can be a classification, a
prediction, a regression, a decision making, a clustering, a detection, a sorting, the
estimation of a probability density, etc.

There are many machine learning techniques and diverse ways to classify them.
The most common way to classify machine learning techniques is by the type of
human supervision during the training process. In this way, we distinguish between
supervised, unsupervised, semi-supervised and reinforcement learning. In supervised
learning we supply the program with training data and with the desired solutions,
i.e., we target the training data with the solution corresponding to each example [86].
Conversely, in unsupervised learning, the training data does not have a labeled so-
lution, so the program must learn without target solutions [86]. On the other hand,
semi-supervised learning combines supervised and unsupervised learning since the
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Figure 6.1: The types of machine learning techniques classified according to the
type of human supervision during the training process and some tasks which can be
performed with them [87].

training data is partially labeled with the solutions [86]. Finally, in reinforcement
learning, an agent observes the environment and creates a strategy called policy to
perform an action and receive a reward in return, its objective is to maximize this
reward by means of the policy chosen [86].

In Fig. 6.1 can be seen the types of machine learning techniques and some tasks
which can be performed with them. As was mentioned, every category includes
distinct types of machine learning techniques which can be used for many different
tasks. In this work, we are only interested in supervised learning. As was mentioned
before, in supervised learning, the data we provide comprises examples with their
respective labeled solutions. If the solutions (desired outputs) are a finite number
of discrete categories, then the task is called classification. On the other hand, if
they consist of one or more continuous variables the task is called regression [87].
This task tries to predict a target numeric value given a set of features known as
predictors [86]. For instance, we could try to predict the height of a person (the
target numeric value), given its age, sex, and nationality (the predictors).

There many machine learning techniques to perform a regression. Among the
most important techniques, we can mention k-Nearest Neighbors, Linear Regres-
sion, Logistic Regression, Support Vector Machines (SVMs), Decision Trees and
Random Forests, and Neural Networks [86]. The most appropriate technique will
depend on many factors such as the type of data considered, the training speed,
the accuracy desired, the memory needed to save the model, etc. Generally, the
election of one model or other will depend on our experience and our knowledge
and assumptions about the data. Nevertheless, the basic ideas behind all of them
are the same. We provide the computer with a training set ~X = { ~x1, ~x2, ..., ~xN}
and label the desired output of each example in this set with a target vector
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~t = {t1, t2, ..., tN}. Therefore, we have a list of training examples where each el-
ement is a pair of the form (~x, t) which can be written for the N training examples
as (( ~x1, t1), ( ~x2, t2), ..., ( ~xN , tN)) = ((~x, t)1, (~x, t)2, ..., (~x, t)N).

In the case of a regression, the output ti represents one or more continuous vari-
ables and the input ~xi can be a tensor of any dimensions 1. Then, we perform the
machine learning algorithm which returns a function y. This function can map new
inputs ~xnew to a target value tprediction (the prediction), i.e., y( ~xnew) = tprediction.
Evidently, the new input and output values ~xnew and tprediction will have the same
dimensions used during the training phase. It is common to perform a preprocessing
of the input data before the training phase to make the task simpler to learn [87].
This preprocessing is known as feature extraction, and when used before training
the new data must be preprocessed as well.

Later in this chapter, we will choose the technique of Neural Networks to perform
a regression. For this reason, in the next sections, we will briefly review this model
and its training process.

6.1.2 Neural Networks

6.1.2.1 The Perceptron

The artificial Neural Networks were born inspired by biological Neural Networks.
These networks are made up of millions of units called neurons which are intercon-
nected in a complex web. In artificial Neural Networks (ANNs), the precursors of
the units (the neurons) used in modern multilayer networks are the perceptrons, so
we will begin the study of this unit model before considering networks with many
interconnected units. Suppose we have n inputs ~x = {x1, ..., xn}, then the output
computed by the perceptron is the following [86]:

f(x1, ..., xn) =

{
1 if w0 + w1x1 + w2x2 + · · ·+ wnxn > 0

−1 otherwise
(6.1)

Where each wi is a real-valued constant called weight and w0 is a bias parameter.
The weight determines the contribution of each input xi to the output. As can
be seen, the output of the perceptron depends on the linear combination w0 +
w1x1 + w2x2 + · · · + wnxn, therefore it is usual to take w0 = 1 and write the linear
combination as

∑n
i=0 wixi, then in vector notation the linear combination is ~w · ~x,

where ~w = {w1, ..., wn}. Thus Eq. 6.1 is rewritten as [86]:

f(~x) = h(~w · ~x) (6.2)

This is the general equation for a unit (a neuron). The function h is a nonlinear
activation function, and in the case of the perceptron unit, this function is the sign
function which is given by:

1Evidently, all the inputs ~xi need to have the same dimensions, though there exist machine
learning techniques were this is not necessary. On the other hand, the outputs ti need always to
have the same dimensions to be consistent.
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Figure 6.2: Graphical representation of the perceptron.

sgn(y) =

{
1 if y > 0

−1 otherwise
(6.3)

In Fig. 6.2 a graphical representation of the perceptron is shown. The per-
ceptron can have two possible outputs, 1 and −1. This makes the perceptron a
function which can represent Boolean functions such as the basic functions AND,
OR, NAND, NOR. Besides, the perceptron is said to be a linear classifier, since it
can classify a set of examples into two classes, corresponding to the values 1 and
−1. Although, it only can classify sets of linearly separable examples, which means
that it cannot represent functions like the XOR function [86]. This is represented
in Fig. 6.3.

The behavior of the perceptron is adjusted by means of the weights ~w = {w1, ..., wn}.
These parameters allow the perceptron to learn. There are different algorithms to
adjust these parameters, in the following section, we will review the method of gra-
dient descent because it is the base of other learning algorithms which even can be
used to train networks with many interconnected units. Unfortunately, the gradient
descent algorithm requires the nonlinear activation function h in Eq. 6.2 to be dif-
ferentiable. Then, it can only be applied to a to an unthresholded perceptron where
h is the identity or a unit with a differentiable activation function.

6.1.2.2 The Gradient Descent Method

In this section, we will present the Gradient Descent algorithm to learn the weights
~w = {w1, ..., wn} of a unit. This method can be applied to any unit of the form
given in Eq. 6.2 with the condition that the nonlinear activation function h must
be differentiable. In this section, for convenience, we will consider as example and
unthresholded perceptron, i.e., f(~x) = ~w · ~x. Thus, in this section when we mention
perceptron, we are referring to a perceptron whose nonlinear activation function h
is the identity. In this way, if the problem to solve is linearly separable, then this
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Figure 6.3: Graphical representation of the decision surface of a perceptron with
two inputs: x1 and x2. If a set of examples is linearly separable, then it is possible
to use a straight line to separate them in the decision surface. a) A set of linearly
separable examples. b) The XOR function represents a set of non-linearly separable
examples since its value is 1 if and only if x1 6= x2 [86].

algorithm converges to the exact solution, however, if the problem is not linearly
separable, then it converges to the best-fit for the given target set [86].

Firstly, as was mentioned in Definition 6.3, we need a performance measure of
the learning process, i.e., we need to define an error function. There are different
ways to define an error function, for a perceptron, we can define it as follows [86]:

E(~w) =
1

2

∑
i∈D

(ti − fi)2 (6.4)

Where D is the set of training examples, ti is the target output for the training
example i, and fi is the output of the perceptron for the training example i. This
error function is a function of the vector ~w because the output f of the perceptron
is a function of this vector.

The error function of Eq. 6.4 measures the discrepancy of the output produced
by the perceptron while using a hypothesis weight vector ~w, against the desired out-
put given by the set of training examples. Therefore, if the training examples are
linearly separable, we expect this function to be 0 when a weight vector ~w makes
the perceptron to exactly reproduce the targets of these training examples. On
the other hand, in case that the training examples were not linearly separable, the
best-fit approximation must occur when this function reaches its minimum value.
This can be seen in Fig. 6.4. Therefore, the problem of training the perceptron is
the problem of finding the minimum of the error function given in Eq. 6.4. In our
case, this function always is parabolic with a global minimum, though in general, for
networks with multiple units (and not necessarily the same kind of error function)
there can exist multiple local minimums.
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Figure 6.4: Error surface for a perceptron with weight vector ~w = {w0, w1}. The
axes w0 and w1 create a plane which represents the possible values of the weights
w0 and w1. The axis E indicates the value of the error function. The shape of
the parabola depends on the set of training examples. The arrow on the surface
indicates the direction of the negative of the gradient at one particular point and its
projection onto the plane w0w1 indicates the direction in this plane which produces
the steepest descent along the error surface [86]. The red point indicates the global
minimum.

The gradient descent algorithm searches the weight vector which minimizes the
error function. The weight vector ~w is usually randomly initialized and at each
step it is moved in the direction that produces the steepest descent along the error
surface in steps of a determined size until the global minimum is reached.

As can be remembered, the result of the gradient is another vector which negative
gives the direction of steepest decrease. Therefore, to find the direction of steepest
descent along the error surface in a point, we need to compute the gradient of the
error function with respect to the vector ~w:

~∇E(~w) =

〈
∂E

∂w0

,
∂E

∂w1

, . . . ,
∂E

∂wn

〉
(6.5)

The negative of this gradient evaluated in a point (w0w1) gives the direction of
steepest descent along the error surface from that point, as is shown in Fig. 6.4.

Thereby, at each step the vector ~w is updated following the rule [86]:

~w ← ~w +4~w (6.6)

where

4~w = −η~∇E(~w) (6.7)

The constant η is a positive constant called the learning rate, and it determines
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Figure 6.5: Gradient descent algorithm for training a linear unit [86].

the step size to take in the direction of the steepest descent at each iteration. This
rule can be written for each component as [86]:

wi ← wi +4wi (6.8)

where

4wi = −η ∂E
∂wi

(6.9)

Thus, each component wi is modified by an amount proportional to ∂E
∂wi

. It is
easy to construct an algorithm to perform the gradient descent rule by means of Eq.
6.9, we just need to compute the partial derivatives of E and evaluate them at the
corresponding point. From Eq. 6.4 it is easy to show that the partial derivative of
the error function with respect to wi is given by:

∂E

∂wi
=
∑
k∈D

(ti − fi)(−xik) (6.10)

Where xik is the single input component xi for the training example d. Thus,
we can rewrite Eq. 6.9 as follows:

4wi = η
∑
k∈D

(ti − fi)xik (6.11)

The learning rate η can increase the speed of the convergence, however, if its
value is too large, the algorithm can get us away from the minimum instead of get-
ting us closer. Thus, to guarantee the convergence it is necessary to use a sufficiently
small value for η, especially being close to the minimum [86].

The gradient descent algorithm to train a perceptron is shown in Fig. 6.5. This
method can be applied if the error function is differentiable with respect to the
weights. Nonetheless, it may converge to the minimum quite slow, moreover, if the
error surface has multiple local minima, it is not guaranteed that it will find the
global minima.
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As was mentioned before, there are many other algorithms to train a unit. These
methods can overcome the difficulties encountered with the gradient descent method
and fortunately, many of them are simple variations to the method presented in this
section, such as the algorithm of stochastic gradient descent which will be discussed
in the next section given its importance in the majority of the most important
optimization methods to train Neural Networks.

6.1.2.3 The Stochastic Gradient Descent Method

The idea behind this method is to avoid the sum of Eq. 6.23. Instead, we consider
an error function defined for each individual training example as follows [86]:

Ek(~w) =
1

2
(tk − fk)2 (6.12)

Thus, the weights are updated using each training example (~x, t)k following:

4wi = η(tk − fk)xi (6.13)

Where for the kth training example, tk is the target value, fk is the output of
the unit, and xi is the ith input.

Therefore, in this method the search of the minimum is guided by ∇Ek(~w)

instead of ∇E(~w), i.e., instead of Eq. 6.7 we use 4~w = −η~∇Ek(~w).

6.1.2.4 Feed-Forward Neural Networks

In this section, we will see how we can combine many units (neurons) to create a
multilayer network also known as Neural Network or NN for short, but first, we
need to choose the kind of units which will compose the network. The former op-
timization methods required the activation function of the unit to be differentiable.
In fact, many optimization methods demand this requirement. Hence, this is the
main reason for not considering the perceptron as the basic unit for constructing a
multilayer network., even though, this model played a key role in the history of ma-
chine learning [87]. Thus, it is common to build multilayer networks by considering
units whose activation function is differentiable.

A basic Neural Network model is built with units of the form given by Eq. 6.2.
Nonetheless, for convenience, we will establish a new nomenclature. To do so, we
will describe how to build a multilayer network from the beginning. Let {x1, ..., xD}
be the input variables, then firstly, we form M linear combination of these input
variables as follows [87]:

aj =
D∑
i=0

w
(1)
ji xi (6.14)

Where j = 1, ...,M . The number M of linear combinations indicates that this
first layer has M units. The superscript (1) indicates that these units are in the

first layer of the network. As before, the parameters w
(1)
ji are the weights (in the

first layer according to the superscript). It must be remarked, that we have adopted

the convention of taking the bias parameter as w
(1)
j0 = 1 with x0 = 1 as we did for
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the perceptron. Each unit of the layer aj is activated through a nonlinear activation
function h(1):

f
(1)
j = h(1)(aj) (6.15)

Each f
(1)
j represents an activated unit which in the context of Neural Networks

are known as hidden units [87]. As was said, the activation functions must be
differentiable, but we will talk about the choosing process later. Equations 6.14 and
6.15 define the hidden units in the first layer, to add a new layer to the network,
we follow the same procedure, i.e., we construct linear combinations of the input
variables for the second layer. For the second layer these input variables are the
hidden units in the first layer:

ak =
M∑
j=0

w
(2)
kj f

(1)
j (6.16)

Where k = 1, ..., K. The number K of linear combinations indicates that this
second layer has K units, or in other words, the second layer has K outputs. Again,
we have taken the bias parameter as w

(2)
k0 = 1 with f

(1)
0 = 1. These units are also

activated with a nonlinear activation function h(2):

f
(2)
k = h(2)(ak) (6.17)

Thus, up to now, we have constructed a Neural Network with two layers (we
will not consider the input variables of the first layer as units). The function of this
Neural Network is:

f
(2)
k (~x, ~w) = h(2)

( M∑
j=0

w
(2)
kj h

(1)

( D∑
i=0

w
(1)
ji xi

))
(6.18)

Thereby, a Neural Network model is simply a nonlinear function of the input
variables ~x and the weights ~w with the set of outputs {f (2)

k }. The topology of the
Neural Network defined by Eq. 6.18 can be represented by the graph shown in Fig.
6.6. This type of topology is said to be fully connected since every node transfers
information to every node in the next adjacent layer [88]. Evidently, this is not
the only kind of possible topology, but it is one of the most common and is easily
generalized, besides it is the topology we will use later in this chapter. This type
of topology for a Neural Network is known as feed-forward Neural Network since
the process of evaluating is a forward propagation of information through the net-
work [87]. This model is also known as multilayer perceptron because it resembles
the perceptron model discussed in Section 6.1.2.1, nevertheless, the perceptron uses
an activation function which is not differentiable, whereas the Neural Network uses
differentiable activation functions. Thus, the function of a Neural Network is dif-
ferentiable with respect to the network parameters which is important for network
training.

The Neural Network defined by Eq. 6.18 has two layers, however, the process
described in this section can be repeated to add as many layers as we wish. The
kth output of a Neural Network with m layers can be represented by the following
equation:
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Figure 6.6: The topology of a feed-forward Neural Network with two layers. The
information flows through the network in the direction indicated by the green arrow.
The nodes of the graph indicate the input variables, the hidden units (first layer)
and the output units (second layer). The edges of the graph indicate the weight
parameters. The red nodes indicate the hidden variables whose edges are the bias
parameters. The layers which are not input or output layers are known as hidden
layers. In this case, we have a single hidden layer, the first layer.

f
(m)
k (~x, ~w) = h(m)

( M∑
j=0

w
(m)
kj h

(m−1)

( Q∑
i=0

w
(m−1)
ji h(m−2)

(
· · ·
(
· · ·h(1)

( D∑
q=0

w(1)
qp xp

)))))
(6.19)

Hence, it is possible to imagine a Neural Network with m layers simply as a
composition of functions:

f
(m)
k (~x, ~w) = h(m)(f

(m−2)
k (f

(m−1)
k (· · · (f (1)

k (~x, ~w))))) (6.20)

Where fi(~x, ~w) = h(i)(
∑

j w
(i−1)
ij xj), and the sum runs over all units which send

information to unit i, including the bias parameter. This way to see the system is
important since it means we can compute the derivatives of the Neural Network by
means of the chain rule.

6.1.2.5 Feed-forward Neural Networks as Approximators

The model described by Eq. 6.19 seems to be quite complex, so it is expected it will
be a great model to perform approximations. In fact, Neural Networks are said to
be universal approximators [87]. We have some theorems regarding several types of
functions:

Theorem 6.1 (Boolean Functions). Every Boolean function can be represented
exactly by some network with two layers of units, although the number of hidden
units required grows exponentially in the worst case with the number of network
inputs ([86], page 105).
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Theorem 6.2 (Continuous Functions). Every bounded continuous function can
be uniformly approximated on a compact input domain with arbitrarily small error
(under a finite norm) by a network with two layers of units provided the network has
a sufficiently large number of hidden units. The units must have a sigmoid activation
function at the hidden layer and (unthresholded) linear units at the output layer
([86], page 105; and [87] page 230).

Theorem 6.3 (Arbitrary Functions). Any function can be approximated to arbi-
trary accuracy by a network with three layers of units. The output layer must have
linear units, and the two hidden units must have units with a sigmoid activation
function. The number of units required at each layer is not known in general ([86],
page 105).

6.1.2.6 Network Training

In this section, we will present the Backpropagation algorithm to train the weight
parameters of a multilayer network with a fixed set of units and interconnections.
This algorithm is based on the Gradient Descent Method studied in Section 6.1.2.2.
Therefore first, we need to define an appropriate error function. To do so, we will
generalize the error function presented in Eq. 6.4 to consider the error over all the
network output units [86]:

E(~w) =
1

2

∑
i∈D

∑
k∈outputs

(tki − fki)2 (6.21)

Here, outputs is the set of output units of the network, tki is the target output for
the training example i in the kth output unit, and fki is the output of the network
in the kth output unit for the training example i.

Thus, as was argued in Section 6.1.2.2, the problem of learning the weight param-
eters is the problem of minimizing the error function of Eq. 6.21. This error function
can be visualized by an error surface like the one shown in Fig. 6.4. Nonetheless,
now this space is defined by the error function defined in Eq. 6.21 and the weight
parameters of all the units in the multilayer network. The idea is the same, we
need to find the values of the weight parameters which minimize the error function,
i.e., we need to find the minimum of the error surface. Therefore, we can use the
gradient descent method to find the minimum. However, this time the error surface
can have multiple local minima, so the convergence towards the global minimum is
not guaranteed.

The idea is the same, we randomly initialize the weight parameters and compute
the gradient of the error function. The negative of the vector given by the gradient
will indicate the direction of steepest descent along the error surface in that given
point. Then, we update the weight parameters according to wji ← wji + 4wji.
Following the same procedure of Section 6.1.2.2, we can compute the gradient of the
error function and obtain the rule to update the value of the weights. We will not
show it here, but the gradient descent weight-rule is given by [86]:

4wji = −η∇E(~w) = ηδjxji (6.22)
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Where η is the learning rate, xji is the input value to which the weight is applied,
and δj is given by:

δj = ηfj(1− fj)
∑

k∈Downstream(j)

δkwkj (6.23)

Here, Downstream denotes the set of units whose direct inputs include the out-
put of unit j. This last equation shows that the value of δ for a hidden unit is
obtained by propagating backward the δ values from units higher up in the net-
work. This is the reason for the name backpropagation.

There are other algorithms to train the parameters of a multilayer network which
follow immediately as variations of the rule given in Eq. 6.22, nevertheless, we will
not consider its details since it lies out of our reach. In practice, we only need to
know the convergence properties of each method to choose one to solve a specific
task.

6.1.2.7 Designing the Network

The design of a Neural Network to solve a specific task is an art which only can be
learned with the experience. However, there are certain rules which can be used as
a starting point.

The number of input units will be given by the dimensionality of the network,
e.g., if our input data are 1-D vectors whose length is 8, then the number of input
units will be 8 plus a unit for the bias parameter. In the same way, the number of
output units will be given by the expected output of our model. For instance, if we
perform a regression, then the output of the network will be a scalar which means
the number of output units will be 1. On the other hand, if for example, our model
gives as output the presence or the absence of a cat and/or a dog in an image, then
it would be adequate to use two output units. An output unit which gives the pres-
ence or absence of the cat and another which gives the presence or absence of the dog.

The number of hidden units must be adjusted to give the best predictive perfor-
mance; however, we need to have in mind that more layers mean more units which
also means more parameters to be trained. Therefore, it is necessary to get a bal-
ance between a good predictive performance and the training time needed to reach
it. If we need to perform a regression, we can see from the theorems presented in
Section 6.1.2.5 that usually two hidden layers will suffice for most of the problems.
The number of units in these hidden units also must be adjusted to give the best
balance between performance and training time. Even though it is possible to use
the number of inputs units as the number of units in the hidden layers, this is not
recommended [89]. It is a better practice to have fewer units in the hidden layers
than in the input layer to force the network to learn compressed representations of
the original input. This does not mean that using the same number of units in the
input layer and in the hidden layers will give bad results, however, it is possible that
in this way we are introducing redundancy in our model which do not contribute to
enhancing its performance and just makes larger the computational time needed to
train the network.
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Figure 6.7: The most commonly used activation functions for the units of mul-
tilayer networks. a) The Logistic Sigmoid function, b) The Hyperbolic Tangent
function, and c) The Rectified Linear Unit function (ReLU).

Figure 6.8: Some of the most common variations for the Rectified Linear Unit
function (ReLU) [90] [91]. a) The ReLU function. b) The Parametric ReLU function
(PReLU) (in this function the slope α is given to the network as a parameter to
be learned. When this parameter is fixed with the value α = 0.01, this function is
known as Leaky ReLU). c) The Exponential Linear Unit.

Moreover, it is not required to connect every unit (neuron) with all the units in
the next layer, i.e., the fully connected topology shown in Fig. 6.6 is not a demand
when designing the network. However, again it is an art the election of which neu-
rons will be connected to another neuron [89].

As can be remembered, the activation functions introduce non-linearities to the
multilayer networks which allow them to represent almost any arbitrary function.
The election of the activation function for the units depends on whether the unit
belongs to a hidden layer or an output layer, in the specific task of the model, and in
the expected performance. In the hidden layers, the most commonly used activation
functions are: Sigmoid (or Logistic), Tanh (Hyperbolic Tangent), and Rectified Lin-
ear Unit (ReLU) (and its variants) [88]. These activation functions can be seen in
Fig 6.7. Every activation function has its advantages and disadvantages, neverthe-
less, the ReLU activation function or its variants are usually chosen for most of the
tasks [89], some variants of this function have been created to solve some drawbacks
in the training process (see Fig. 6.8).

In the case of the output layers, the election of the activation functions is driven
by the type of output expected. For regression problems, we use a linear activation
function, i.e., y(x) = x. For binary classification, we use a single neuron with a
sigmoid function which delivers a probability distribution for a single class (the
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probability of the other class is (1− p)). For multiclass classification we use the so-
called SoftMax output layer (also known as SoftMax layer) which uses the outputs
of all the units in the output layer to compute a probability distribution for each
output unit as follows [89]:

yi =
exi∑
j e

xj
(6.24)

Where the sum of all the outputs fulfils
∑

j e
xj = 1. A perfect prediction will

give an output from the SoftMax layer with the probability value of 1 while the other
outputs will have a probability value of 0, indicating that this output is the class
predicted by the model. An imperfect prediction will give several values for each
output. The class will be indicated by the output with the highest probability value.

We finish this section by commenting that there are other types of Neural Net-
works which can be used to solve determined types of tasks more efficiently, like the
Convolutional Neural Networks or the Recurrent Neural Networks, though we will
not consider them here.

6.1.2.8 Choosing the Error Function

As we saw before, the error function measures the performance of the Neural Network
while using some set of weight parameters with respect to a given a set of training
examples, i.e., it measures the misfit between the output of the network and the
corresponding target in the training data set. This function, which is minimized by
the optimizer to get the best performance, is also known as the loss function. We
will use the terms error function and loss function as synonyms.

In Eq. 6.21 we defined an error function, nevertheless, there are many other
possible error functions which may be more appropriate to use depending on the
type of task to solve and the nature of the data. Here we will review some of the
most frequently used error functions. In our notation, we will use f to indicate the
output of the network, ti to indicate the target of the ith sample in the training set,
and N to indicate the number of samples in the training set. Finally, tij will indicate
the output of the jth output unit obtained with the ith sample of the training set.

Loss Functions for Regression

These loss functions can be used when the task to solve is a regression problem.
The most popular is the Mean Squared Error Loss (MSE) function, which is given
by [88]:

E(~w) =
1

N

N∑
i=1

(fi − ti)2 (6.25)

This function resembles the error function used to perform the ordinary least
squares in linear regression, but here we divide the sum by the number of training
samples. This function is mainly used to perform regression when the output is a
real value, i.e., a scalar. If the output is a vector of size M , or in other words, if the
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outputs are M continuous variables, then the former loss function is generalized as
[88]:

E(~w) =
1

N

N∑
i=1

1

M

M∑
j=1

(fij − tij)2 (6.26)

Note that Eq. 6.25 is the especial case where M = 1. For convenience this
function is sometimes modified as [88]:

E(~w) =
1

2N

N∑
i=1

M∑
j=1

(fij − tij)2 (6.27)

An alternative to the MSE function is the Mean Absolute Error (MAE) Loss
function [88]:

E(~w) =
1

2N

N∑
i=1

M∑
j=1

|fij − tij| (6.28)

When the target value has a spread of values the model can be rudely affected
by the outliers. To avoid so, we use the Mean Squared Logarithmic Error (MSLE)
Loss function [88] [92]:

E(~w) =
1

N

N∑
i=1

M∑
j=1

(log(fij)− log(tij))
2 (6.29)

Finally, another possible error function is the Mean Absolute Percentage Error
(MAPE) Loss function [88]:

E(~w) =
1

N

N∑
i=1

M∑
j=1

100× |fij − tij|
tij

(6.30)

The choice of the loss function for regression problems will depend mainly on
the type of data. For most of the cases, the MSE and MAE functions will suffice.
However, when the data vary largely in range, the MSLE and MAPE functions
should be considered.

Loss Functions for Classification

These functions are used when we need to classify data into categories. For binary
classification, the most commonly used loss function is the Hinge Loss function
which is given by [88]:

E(~w) =
1

N

N∑
i=1

max(0, 1− tij × fij) (6.31)

This function categorizes the data as −1 or 1. If we are interested in the prob-
ability of belonging to a given class, more than a raw classification, then we are
interested in logistic regression. The most common function for such cases is the
Cross-Entropy function, also known as Logarithmic loss function [87] [93]:
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E(~w) = −
N∑
i=1

[tilog(fi) + (1− ti)log(1− fi)] (6.32)

This function can be extended to consider the classification of M classes (multi-
class classification) [87]:

E(~w) = −
N∑
i=1

M∑
j=1

[tijlog(fij)] (6.33)

6.1.2.9 Choosing the Optimization Method

In Section 6.1.2.2, we had the first contact with the Gradient Descent Method, and
in Section 6.22, we saw how to apply it to multilayer networks. Nevertheless, this
method has the disadvantage of being quite slow. The training process could take
less time if we choose to use a faster optimization method. The most common and
faster optimizers are the following: Momentum optimization, Nesterov Accelerated
Gradient, AdaGrad, RMSProp, Adam optimization, and Nadam optimization. As
was mentioned in Section 6.22, we cannot describe its details here since it lies out of
our reach. Nevertheless, we can always safely choose to use Adam and Nadam meth-
ods. These methods are more powerful and usually converge faster than any other
method since they combine ideas from other optimization algorithms ([84], page
293). The Nadam optimization method is an improvement to Adam optimization
method, so if possible, we must give preference to Nadam over the Adam method
[94].

6.1.2.10 Regularization Techniques

When training a Neural Network, we minimize the loss function by evaluating the
given training set. We could think that the closer the value of the loss function to 0,
the better the model we get. However, we need to have in mind, that the purpose of
our model is not to exactly reproduce the training data but to generalize its behavior
to brand new data. We already know the behavior of the training data, so it is not
interesting to build a model which exactly reproduces it. Instead, we would like to
have a model which can generalize the behavior of the training data to unknown
data. Therefore, it is not a clever idea to let the network learn to reproduce exactly
the training data. This problem of producing a model that performs well on the
training data but generalizes poorly to new data is known as overfitting ([95], page
142).

The problem of overfitting is shown in Fig. 6.9. Suppose that we generate ran-
dom data from the function Sin(x) by introducing some random noise as shown in
Fig. 6.9a. Then, we use this random data as training data for a Neural Network. If
we let the Neural Network overfit the training set, then we will get a model like the
one shown in Fig. 6.9b. This model reproduces almost exactly the training data;
however, it is far from the original model from which the data was generated. Thus,
we can say that the overfitted model has learned the random noise in the training
data, so this model is not capable of generalizing new data to the original model
Sin(x). Nevertheless, if we use a technique to avoid the overfitting, we can get a
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model which is more similar to the original model, even though, the training set is
not perfectly adjusted as shown in Fig. 6.9c.

Fortunately, there exist some techniques to avoid the overfitting of the training
data. The most common technique is to reserve a portion of the training data as
test data while using the rest to train the network. This test data will be used
to evaluate the model in an independent way to the optimization process which is
driven by the training data. In this way, we can stop the training process when the
error in the test data stops decreasing and starts to increase which means the model
is beginning to overfit to the training set. The test data allow us to see how well
the model generalizes on new unknown data ([89], page 29).

Additionally, it is usual to divide the training process into epochs. An epoch is
a single iteration over the entire training set. Moreover, the optimization process
is not performed with all the training data at the same time. Instead, we perform
the optimization process by using batches with a determined size obtained from
the training data [96]. The reason behind this can be better understood through
an example: suppose we have a training set with a million of images as training
samples, then the time needed to optimize the model by evaluating the error ob-
tained with each one of these images would be immeasurable. Thus, it is better
to perform the optimization process by using mini-batches (subsets) of the training
data at each iteration of the optimization process. This approach allows to use the
hardware resources more efficiently ([88], page 201). The performance of the model
is measured at the end of each one of these mini optimization processes using the
test data. However, we would also like to measure the performance of the model at
the end of each epoch. Therefore, it is also usual to reserve another portion of the
original training data as validation data. This validation set is used to measure how
well the model is generalizing to new data at the end of each epoch ([89], page 29).
If the error in the training data continues decreasing but the error in the validation
data stays the same or starts to increase, then it means we should stop the training
process because the model has begun to overfit the training data.

In summary, we split up the original data set into three sets: the training data,
the test data, and the validation data. The training data is supplied to the optimizer
in batches. The validation data is used to measure the performance of the model on
new data at the end of each mini-optimization process. Finally, the validation data
is used to measure the performance of the model at the end of each epoch. This
method is quite successful, so it is widely used ([86], page 111).

Another common technique to avoid overfitting is Dropout. The idea is simple, at
every training step, every neuron in the network (excluding the output neurons) has
a probability p of being temporarily turned off ([84], page 304). This means that at
that training step, the neuron is not used in the process of optimization, but it may
be turned on during the next step. The parameter p which controls the activation
of the neurons is called the dropout rate. This kind of parameters which control the
distribution of the model parameters, and thus, the optimization and model selec-
tion during the training process are known as hyperparameters ([87] page 30, and
[88] page 150). This algorithm is quite successful in increasing the training speed
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(a)

(b)

(c)

Figure 6.9: (a) Random data (red dots) obtained from introducing random noise
to the function Sin(x) (blue curve). (b) A Neural Network was trained by using the
previous random data as training data. No method was used to avoid overfitting, so
the model obtained has learned the noise of the training data and shows overfitting.
(c) The same previous Neural Network was trained by using the same previous
random data as a training set, but this time a validation set was used as a method
to avoid overfitting. The model obtained does not show overfitting to the training
data and reproduces better the original function Sin(x) from which the data was
obtained.
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and boosting the accuracy of the resulting model ([88], page 200). This method
prevents the neuron to adapt to its neighbors by obligating it to rely less on them
and by making it independent and useful by its own. What is really happening here,
is that by ignoring some neurons at each training step, we are evaluating different
topologies. These architectures share some neurons with their respective weights.
Therefore, the resulting model is an average of the behavior of these topologies ([89]
page 34, and [84] page 305).

The last technique which will be considered here is the early stopping. This
technique consists in stopping the training process when the error with respect to
the validation data set stops decreasing ([84], page 303). This allows obtaining a
model which has a good generalization performance ([84], page 259).

There exist more regularization techniques to avoid overfitting, however, we will
not consider them here. Better performance can be obtained by combining the use
of different regularization methods at the same time ([84], page 303).

6.1.3 Machine Learning Frameworks

The techniques and methods we have reviewed in this section are already imple-
mented in many machine learning frameworks. Thus, we do not have to spend time
programming the algorithms and we can simply focus on the design and deployment
of our models. Among the best and most common libraries to implement machine
learning methods we can name: Scikit-learn, TensorFlow, and Keras. These li-
braries can be easily installed and used in any Python distribution and altogether
with other famous packages for scientific computing in Python like NumPy, SciPy,
matplotlib, pandas, etc., they make very easy and intuitive the programming and
training of models like multilayer Neural Networks (see [95] chapter 25, [84] chapter
9, [97] chapter 1, [98] page 343, and [89] chapter 3).

6.2 Methodology

The hypothesis behind our implementation is that the computational time needed
to compute the approximation of the K-complexity with the Block Decomposition
method can be significantly reduced by creating a function which imitates the be-
havior of the results delivered by the BDM. In other words, if we could build a
function to perform a regression from some examples computed with the BDM.
Therefore, once we have built this function, its evaluation could be immediate, so
we could predict the complexity of new data just by performing simple arithmetic
operations without the needed of performing an intricate algorithm every time we
need to evaluate the complexity of a new sequence. The computational time would
be absorbed in the process of creation of this function. Fortunately, this process
only would need to be performed one time. Thereby, we could save a lot of time
by recycling this computation. Nonetheless, the function to perform a regression of
the K-complexity must be a very complicated non-linear function. Hence, it should
be impossible to build it with simple regression techniques such as linear regression.
Nevertheless, machine learning provides powerful techniques to perform non-linear
regressions which could be used instead. For instance, a Neural Network can be
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used as a powerful non-linear regression model. Therefore, given the complexity of
the problem, it was decided to use this model to perform the regression.

Therefore, our implementation to measure the K-complexity was built in two
stages. First, three Neural Networks are individually trained with examples of com-
plexities computed with the Block Decomposition Method. Each Neural Network
is specialized in predicting the complexity of sequences of bits over a given range
of lengths. The second stage consists in the creation of a function which accepts
sequences of any length (sequences which length can be even larger than the ini-
tial sequences used to train the Neural Networks) and returns an approximation of
Kolmogorov complexity. The previous is achieved by means of a method similar to
the original Block Decomposition Method. Once we have this function, we will only
have to evaluate it every time we wish to compute the complexity of a sequence,
which makes it faster than the original BDM. The stages of the methodology pro-
posed are shown in Fig. 6.10. In the following sections, the details of these stages
will be presented.

Figure 6.10: Stages of the methodology used to create a faster implementation
to approximate K-complexity. a) Some random sequences of bits are randomly
generated, and its complexity is measured by means of the BDM. The random
sequences form the training set ~X and its complexities the target vector ~t. b) The
training data is used to train three Neural Networks which perform a regression to
approximate the algorithmic complexity of sequences of bits. Each Neural Network
is specialized in approximate the K-complexity of sequences of bits between a given
range of lengths. c) The three Neural Network models can be used to predict the
complexity of new sequences of bits. If the new sequence has a length which lies
out of the range used to train any of the three Neural Networks, the sequence is
decomposed into blocks to approximate its complexity. Thus, this method resembles
the original Block Decomposition Method, so we have decided to name it the Block
Decomposition Method with Neural Networks (BDMNN). The details of these stages
are presented in the text.
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6.2.1 Software and Hardware Features

The most widely used language to program machine learning techniques, especially
Neural Networks, is Python. In this language, we can find many frameworks which
make fast and easily the task of implementing Neural Networks in just a few lines of
code, so we only have to worry about the design and training of the models. For this
reason, all the codes of this section will be written in Python Language, specifically
in Python 3. The framework chosen to build and train the Neural Networks was
the library Keras. This library is user-friendly and allows to rapidly build and train
Neural Network models in an intuitive way.

To train the Neural Networks, we needed sequences of bits whose complexity
was known a priori (as will be described in the next section). Therefore, we had
to rely again on the implementation of Kolmogorov complexity discussed in Section
4.4. Nevertheless, this time we are interested in the Python version of this imple-
mentation which can be downloaded from the same page2. This library contains
the function BDM which can compute the 1-D and the 2-D versions of the Block
Decomposition method, though we only will use the 1-dimensional version in this
chapter. It accepts as argument an array (specifically a NumPy array) of 0′s and
1′s of length greater or equal to 12 and returns an approximation to the algorithmic
complexity of the sequence.

All the algorithms were implemented on the Platform Colaboratory3 of Google
(Google Colab) since it provides immediate access to most of the frameworks for
machine learning and executes Python code in the cloud by using virtual machines.
The virtual machines can be executed using GPUs instead of CPUs which makes
possible to train Neural Networks faster than with a common local machine, even
though they are recycled every certain amount of time so the Neural Networks can
be trained in a continuous way only for a few hours.

6.2.2 The Training and Target Sets

One of the main complications when training Neural Networks is the amount and
quality of the data used as training examples. Fortunately, in our case, we can
generate and provide as many examples as we wish.

The procedure is very similar to the one used in Section 5.2 to generate random
sequences of bits. First, we establish the maximum and minimum lengths that can
have the sequences to generate. Then, we randomly (with a uniform probability)
choose a length L in this closed interval [Lmin, Lmax] of maximum and minimum
lengths. This will be the length of the sequence to generate. Moreover, we ran-
domly (with a uniform probability) choose a number between the interval [0, 1].
This former number will be the probability parameter p to control the complexity of
the sequence generated. Afterward, we generate a sequence of length L, where each
element has a probability p of being 1 and a probability (1− p) of being 0. Finally,

2www.algorithmicdynamics.net/software.html
3https://colab.research.google.com
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the complexity of this sequence is computed by means of the BDM implementation.
This algorithm is repeated a given number of times and the data generated is saved
in two vectors (implemented as lists in Python). The sequences generated are stored
in a vector ~x and its complexities in a vector ~t. The vector ~x is the training vector
and the vector ~t is the target vector.

The training data must be a representative sample of the possible input se-
quences; thus, it is important to provide as many examples as possible, but also is
important ensure a uniform election of these examples among all the possible input
sequences. Nevertheless, in our procedure to generate the random sequences, the
cases where the sequences are only composed of 1′s seldom occur since they appear
almost only when the parameter p equals 1. To overcome this problem, we increase
the frequency of apparition of these rare cases simply by rounding of the parameter
p to 1 when it is greater than 0.95.

Finally, once we have all the sequences and its complexities, we perform a padding
procedure to fill the sequences which length was less than the maximum length. We
append the value −1 at the beginning of each sequence until the sequence a length
equal to the maximum length. In this way, for instance, if we have the sequence
{0, 1, 1, 0, 1} and the maximum length is 8, then the padding procedure would pro-
duce the sequence {−1,−1,−1, 0, 1, 1, 0, 1}. Therefore, if the complexity of the
original sequence before the padding was K(S), we assign to the padded sequence
this same complexity K(S). The final vector ~x with the padded sequences and the
vector ~t with the complexities assigned to the padded sequences are the vectors
which will be used to train the Neural Network.

The code to generate the training and target sets as described above can be
found in the Appendix Section A.2 (Fig. A.12). We generated the data to train
three Neural Networks. The intervals for the length of the initial sequences (before
the padding) were [Lmin, Lmax] = [12, 20],[21, 100] and [101, 1001]. In the three cases,
the number of training examples generated was 30, 000.

6.2.3 Design of The Neural Networks

Neural Networks are widely used to solve classification problems, however, with the
correct design, they also can be used to solve regression problems. They are not the
only machine learning technique which can be used to perform a regression task, nev-
ertheless, it is expected that the function which estimates Kolmogorov complexity
will be highly complicated to approximate, thus, we believe that a Neural Network
with the appropriate design should be able to give good results. The previous fol-
lows from the theorems presented in Section 6.1.2.5. Nonetheless, the question of
whether this is the best approach still open, though we will no try to answer this
question here. Finally, the design of a Neural Network is an art since there is no
standard procedure to build its topology. Our design was based on common prac-
tices.

The design of the three Neural Networks used in this work was the same. The
only difference was the number of neurons present in each layer. The number of
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sequential dense layers used was 3. The first layer had a number of neurons equal to
the length of the final sequences (the maximum length) and the activation function
used was the Exponential Linear activation function (ELU). This activation func-
tion has the form f(x) = x for x ≥ 0 and f(x) = α(ex − 1) for x < 0 (the value of
the parameter α was chosen to be 1). The second layer had a number of neurons

equal to
2

3
times the length of the final sequences (the maximum length) and its

activation function also was the ELU function. The parameter α also was chosen
to be 1 for this layer. The final layer only had one neuron and a linear activation
function, i.e., f(x) = x.

Figure 6.11: Summary of the design for the Neural Network which predicts the K-
complexity for sequences of length between 21 and 100. The number of parameters
to train increases with the number of layers and units, i.e., with the number of
neurons.

In Fig. 6.11, the summary of the design of one of the three Neural Networks
built is shown. The code to build the Neural Network using the library Keras is
shown in the Appendix Section A.2 (Fig. A.13).

6.2.4 The Learning Settings

The method used to perform the optimization of the parameters of the Neural
Networks was the Nesterov adaptive moment estimation optimizer (Nadam). This
method usually converges to the optimal solution faster than other methods like
the stochastic gradient descent method. The loss function chosen was the Mean
Squared Error Loss function. The batch size used was 20, and the entire data set
was shuffled before making the batches with this size. We used a validation set
to check at each epoch the accuracy of the model to data it has not seen. This
validation set was randomly chosen among the training data and its size was 20%
the size of the original training set. As shown in Fig. 6.11, the number of trainable
parameters increases with the number of units (neurons), so the time of training on
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each epoch also increases, besides, the number of epochs to reduce the validation
error also increases. Thus, the number of epochs used to train each Neural Network
was different. For the Neural Network which predicts the K-complexity of sequences
which length is in between 12 and 20 the number of epochs was 2500, for the Neural
Network which predicts the K-complexity of sequences which length is in between
21 and 100 the number of epochs was 3000 and finally, for the Neural Network which
predicts the K-complexity of sequences which length is in between 100 and 1001 the
number of epochs was 2500. To avoid overfitting of the model to the training data,
it is usual to establish a dropout parameter, which says the percentage of neurons
to be off on each epoch. Nonetheless, in this case, it was not necessary to perform
the dropout procedure.

6.2.5 The Block Decomposition Method with Neural Net-
works

Once we have performed the training of the Neural Network models, they can be
used to predict the complexity of new sequences. Nevertheless, each Neural Net-
work was trained to predict the complexity of sequences whose size is in between a
given range of maximum and minimum lengths. In order to get the prediction of
a new sequence which length is in between this interval, it is necessary to perform
the same padding procedure used before in the generation of the training examples,
i.e., we append the value −1 at the beginning of the sequence until it has a length
equal to the maximum length. It is not possible to provide the Neural Network with
sequences whose size is different since it is built and trained to only accept sequences
with this feature.

Therefore, by using the three Neural Networks which we trained, it is possible
to predict the K-complexity of sequences whose length lies in between the range 12
and 1001. Nonetheless, we would like to have a unique function which can predict
the Kolmogorov complexity of any sequence, no matter its size. For this reason, we
implemented a modified version of the Block Decomposition Method by using the
three Neural Network models trained.

The idea is to take advantage of the three Neural Networks trained with se-
quences of specific lengths to predict the complexity of sequences of any size. The
algorithm is the following. If the sequence we need to measure its complexity has
a size which lies in between the range of sizes accepted for one of the three Neural
Network models, then we simply use this Neural Network to predict the complexity
of the sequence. However, if the sequence we need to approximate its complexity
has a size which lies out of the range of sizes accepted for the three Neural Net-
work models, then we perform a Block Decomposition Method, similar to the one
described in Section 4.4.1.2. For example, if the sequence has a size longer than
the maximum length of 1001, then we split this sequence into block sequences of
length equal or less than 700. Finally, the complexity of these block sequences is
measured with the corresponding Neural Network model and the complexity of the
initial sequence is obtained by summing the individual complexities of these block
sequences following the Eq. 4.20. In our case, we have chosen to always split the
original sequence into non-overlapping sequences of length equal or less than 700. If
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the sequence is not a multiple of 700, then there will be a remainder. This remainder
was chosen to be ignored if its length is less than 12 and we just simply assign to
it a complexity value of 2.285794 which is the minimum complexity which can have
any sequence (see [63]), otherwise we measure its complexity using the correspond-
ing Neural Network. We call this method the Block Decomposition Method with
Neural Networks (BDMNN) in analogy with the original BDM.

The code use to define the function described above is presented in the Appendix
Section A.2 (Fig. A.14). In the following section, the results of some experiments
implementing this function will be shown.

6.3 Results

The implementation described above was tested by performing some experiments
concerning the complexity of random sequences of bits. These experiments and its
results will be shown up next.

6.3.1 The Complexity of Random Sequences of Bits

This experiment is based on the experiment performed in Section 5.2, but obviously,
this version is implemented in Python instead of Mathematica, so there are some
slight changes. First, we select the length of the sequences of bits to be generated.
After, we set the probability parameter p = 0 and begin a loop. At each iteration
of the loop, we generate a sequence of bits of the length chosen initially4. As can
be remembered, the parameter p controls the complexity of the sequence generated,
since each element in the generated sequence has a probability p of being 1, and a
probability (1− p) of being 0. This parameter is increased in an amount dp at the
end of each iteration until it reaches the value of 1. The complexity of the gener-
ated sequence is measured by means of the original BDM implementation and our
BDMNN implementation.

As was mentioned, this is the same experiment is basically the same that the
experiment performed in Section 5.2. Therefore, BDM implementation must show
the same behavior shown in Fig. 5.1. On the other hand, we expect BDMNN to
show similar behavior to BDM, which would mean that our method is also a good
approximation to Kolmogorov complexity.

We corroborated the previous, by performing this experiment with sequences of
different lengths. The results are shown in Fig. 6.12. As can be seen, the results
obtained with our implementation, the BDMNN, showed a behavior which is pretty
similar to the behavior and the results obtained with the BDM for sequences of
length less than 1000. This means that the regression performed by the Neural
Networks was able to imitate the approximation to Kolmogorov complexity given
by the original Block Decomposition Method. Nevertheless, for sequences whose
size was greater than 1000 bits, the results delivered by the BDMNN began to differ

4This time we will not generate several sequences with the same p value to compute its com-
plexity and obtain a mean value as was did in Section 5.2. We only generate a sequence for each
p value.



6.3. RESULTS 127

from the results of the BDM. We can see from the experiments with sequences of
lengths 1200, 5000 and 10, 000 that the curve obtained with the BDMNN gets wider
with the increase in the length of the sequences considered in the experiment.

The previous means that the error of the BDMNN increased with the size of
the sequence considered, but moreover, we can see from the experiment shown in
Fig. 5.1b that the behavior of the BDMNN started to seem more like the behavior
given by the techniques based on entropy or compression to measure complexity.
Thereby, our method seemed to be capable of approximate the K-complexity with
comparable results to the ones delivered by the BDM, moreover, it performed like
the Shannon entropy for long sequences, for which it lost accuracy. This convergence
to an entropic behavior also is present in the original implementation of the Block
Decomposition Method (see [57]). Thus, it is natural that our implementation which
is an imitation of the original BDM also should show this behavior. However, in the
case of the BDMNN, it was amplified by the accumulation of error when predicting
the complexity of the decomposed block sequences. This caused the entropic behav-
ior to be manifested faster than it did with the BDM.

This does not mean that our proposal, the Block Decomposition Method with
Neural Networks was inferior. It must be remembered that its initial purpose was
to be a faster implementation to approximate the K-complexity. Therefore, if it
proves to be faster than the BDM, it could become into a powerful alternative tool,
especially because it could be used when it is possible and needed to sacrifice some
accuracy of the approximation in exchange of speed in the computation.

6.3.2 The Error and Computational Time of the BDMNN

Now, we will try to show that our implementation works faster than the original
Block Decomposition Method. To do so, we will perform an experiment to measure
the computational time needed by both methods, the BDM, and the BDMNN, to
measure the K-complexity of sequences of bits.

We will start by generating a random sequence of bits with a given length. This
time it is not necessary to control its complexity, so the sequence will be randomly
chosen among all the possible sequences of the given length with a uniform prob-
ability distribution. Then, we will measure its complexity with the BDM and the
BDMNN. For both methods, we will perform a timing to determine the computa-
tional time needed to execute the function which computes the complexity with each
method. The timing will be performed with the aid of the function process time
which belongs to the library time of Python. The resolution of this function, when
implemented in Colab, was 1 ns. Besides the timing process, we will compare the
complexity computed by the BDMNN with the complexity computed by the BDM
to determine the absolute error obtained with our method. We will perform this
procedure starting with a sequence of length 12, then we will perform it with a
sequence of length 13 and so on.

The results of this experiment are shown in Fig. 6.13. As can be seen in Fig.
6.13a, this experiment showed as expected, that our implementation is faster than
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the BDM, moreover, the computational time of the BDMNN stayed constant with
the sequence length, while it increased linearly for the BDM. Furthermore, the ab-
solute error stayed bounded below 10% for sequences whose size was less than 4000
with the only exception of the initial sequences for which the absolute error was
around 17%. For sequences with sizes larger than 4000, the absolute error increased
linearly. However, it increased slowly since for sequences of length 10, 000 its value
was barely around 10%.

These results have shown that our initial hypothesis was correct and the BDMNN
computes faster the K-complexity. Moreover, the loss of accuracy occurs slowly with
the length of the sequence and only is significant for very long sequences. This justi-
fies its use for calculations were the computational time is important and the BDM
takes so so long to be implemented that it becomes a restriction for the experiment.

The code to execute the experiment of this section can be found in the Appendix
Section A.2 (Fig. A.15).

6.3.3 The BDMNN Versus a Parallel Implementation of the
BDM

Now, we want to go further and evaluate the speed of our implementation versus
a parallel implementation of the BDM. This parallel implementation is included in
the library of the Block Decomposition Method for Python. This function splits
the sequence and distributes the pieces into the available kernels. In this way, every
kernel computes a piece of the process to accelerate the BDM.

This parallel implementation to compute the BDM was created with the objec-
tive of decrease the computational time needed approximate the K-complexity. In
fact, this implementation was not available in the Wolfram Language implementa-
tion, so it is expected to be possibly one of the fastest possible implementations
since Python by itself is a fast language. Hence, if we can beat this implementation,
our implementation automatically could be considered the fastest implementation to
compute the Kolmogorov complexity. Moreover, even if our implementation cannot
beat the parallel implementation of the BDM, it still is possible to consider also a
possible parallel implementation for the BDMNN.

We will repeat the same experiment of the last section, but this time instead of
the classic BDM we will use this parallel implementation. The timing performed in
the following experiment does not consider the time needed to divide the sequence
into smaller sequences nor the distribution of them to the available kernels. The
number of parallel kernels used was 4.

The results of this experiment are shown in Fig. 6.14. It can be seen in Fig.
6.14b that the absolute error obtained with the BDMNN showed a similar behav-
ior that the absolute error shown in Fig. 6.13b. Nevertheless, the absolute error
obtained with the initial sequences (short sequences with sizes of around 12) was
greater. This discrepancy not necessarily means that our implementation gave a big
error for these short sequences. This result can be explained because the parallel
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implementation of the BDM has a different behavior for short sequences and since
the Neural Networks of our implementation were trained with examples obtained
from the original BDM, it was not expected the BDMNN to agree with the parallel
implementation of the BDM. The parallel implementation of the BDM seems to
have boundary problems for short sequences unlike the original BDM, so the result
shown in Fig. 6.13b for short sequences was not alarming.

On the other hand, the result in Fig. 6.14a showed that the computational time
increased linearly for both methods. Nonetheless, the slope of this increase was
very low for both methods. In fact, the BDMNN started with computational times
larger than the computational times for short sequences with the parallel implemen-
tation of the BDM, however, the slope of the BDMNN was smaller than the slope
of the parallel implementation for the BDM, thus, this would mean that for long
sequences the BDMNN should overcome the parallel implementation. Nevertheless,
for sequences whose size was around 16, 000 existed a jump in the computational
time which made the computational time obtained with the BMDNN to increase.
Even so, the parallel implementation of the BDM was just around 2ms faster than
the BDMNN in the worst case. Thereby, a refined implementation for the BDMNN
should easily overcome any implementation of the BDM.

Notwithstanding the previous results, we can argue that the former experiment
was not fair since we did not take into consideration the time needed to divide the
sequence into smaller sequences and to distribute them to the available kernels in
the parallel implementation. For this reason, we repeated the experiment, but this
time the timing for the parallel method included the time needed to split and dis-
tribute among the kernels the given sequence.

The result of this experiment is shown in Fig. 6.15. The results for the absolute
error shown in Fig. 6.15b were the same as before. Nevertheless, the results in
computational time were quite different. The results which are shown in Fig. 6.15a
showed that when we took into account the time needed to split and distribute
the sequence among the available kernels, the parallel implementation was easily
surpassed by our method, the BDMNN.

The code to execute the two former experiments can be found in the Appendix
Section A.2 (Fig. A.16).

6.4 Conclusions

The results obtained with our proposal, the Block Decomposition Method with
Neural Networks (BDMNN), were outstanding, considering the simplicity of the
idea behind it. It showed by far, to be faster than the original Block Decomposition
Method. It even competes in speed with the parallel implementation of the BDM.
The loss in the accuracy is not significant and remains below 20% of the absolute
error for sequences with sizes below 20, 000 bits. In the worst cases, its behavior
resembles an entropic like behavior.

We strongly believe that this method can be improved even further. We could
reduce the error by enhancing the training of the Neural Network models by means
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of more data examples, more training time, a more sophisticated model, or even
another regression technique could be considered. Also, better programming of the
block decomposition algorithm could help. For example, by considering an over-
lapping parameter or the use of more neural networks to perform more refined
predictions. Finally, a parallel implementation with Neural Network models should
render spectacular timing results.

The original Block Decomposition Method uses the complexity results for se-
quences whose length is equal or less than 12 to compute the complexity of larger
sequences. Instead, our method uses the complexity results for sequences whose
length is in between 12 and 1000, to extend them to larger sequences. Therefore,
both methods are basically the same, the only difference is the size of the sequences
whose complexity is known. In the case of the BDM, its complexity was computed
from the Coding Theorem Method (CTM), and in the case of the BDMNN, its com-
plexity is computed from the regression performed by Neural Networks.

In the end, our method can be used as a good approximation to Kolmogorov
complexity, especially when the computational time is important, and we do not
care to lose some accuracy in the results.
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Figure 6.12: The complexities of random sequences of bits of different lengths
versus the probability parameter. The complexities were measured with the origi-
nal Block Decomposition Method and with our proposal, the Block Decomposition
Method with Neural Networks. The number of random sequences generated in each
experiment was 100.
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(a)

(b)

Figure 6.13: (a) The computational time needed to implement the Block Decompo-
sition Method (BDM) and the Block Decomposition Method with Neural Networks
(BDMNN) to measure the K-complexity, versus the sequence length. The compu-
tational time is measured in seconds. (b) The percentage of absolute error of the
complexity computed with the BDMNN compared with the complexity computed
with the BDM, versus the sequence length.
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(a)

(b)

Figure 6.14: (a) The computational time needed to compute a parallel implemen-
tation for the Block Decomposition Method (BDM) and the Block Decomposition
Method with Neural Networks (BDMNN) to measure the K-complexity, versus the
sequence length. The computational time is measured in seconds and for the parallel
implementation, it does not consider the time needed to split and distribute among
the available kernels the given sequence. (b) The percentage of absolute error of the
complexity computed with the BDMNN compared with the complexity computed
with the parallel implementation of the BDM, versus the sequence length.
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(a)

(b)

Figure 6.15: (a) The computational time needed to compute a parallel implemen-
tation for the Block Decomposition Method (BDM) and the Block Decomposition
Method with Neural Networks (BDMNN) to measure the K-complexity, versus the
sequence length. The computational time is measured in seconds and for the parallel
implementation, it does consider the time needed to split and distribute among the
available kernels the given sequence. (b) The percentage of absolute error of the
complexity computed with the BDMNN compared with the complexity computed
with the parallel implementation of the BDM, versus the sequence length.



Chapter 7

General Conclusions

Throughout this thesis, we have been probing distinct methods to measure the com-
plexity of distinct objects. We have proved that in all the cases the best measurement
of complexity is obtained by trying to approximate Kolmogorov complexity. Thus,
this implementation is recommended and can be safely used in any application for
which there is a necessity to measure complexity. Nonetheless, we have shown that
for certain mathematical objects this implementation must be used with care. If
the mathematical object we are trying to measure its complexity has distinct iso-
morphic representations, then the true complexity of the object is the minimum
value obtained with one of these isomorphic representations. Besides, for graphs
or any mathematical object which could be represented as a matrix, we have seen
how it is better to transform this representation to a 1-dimensional representation
to get better measurements of complexity. These results are important since they
will make easier to perform future experiments about complexity.

Moreover, we proposed a novel application to Kolmogorov complexity by mea-
suring the complexity of Boolean networks. To do so, we needed to propose a
representation for Boolean Networks which were representative of its behavior and
could be used to measure its complexity. This representation was evaluated by us-
ing it to prove some hypothesis of correlation among the complexity of a Boolean
Network and the complexity of its constituents. The results agreed with which was
expected which means our approach works correctly and the representation used cor-
rectly captures the essential features which characterize the complexity of a Boolean
Network. Although, future experiments with larger ensembles of Boolean Networks
will be needed to be able to generalize the results and confirm these hypotheses
for Boolean Networks of any size. Even so, the results of our proposal to measure
the complexity of Boolean Networks are promising and they could be used in the
study of real-world systems which can be modeled by means of Random Boolean
Networks. For instance, we could use the measurements of the complexities of the
same genetic regulatory network for different species (modeled as Boolean Networks)
to try to establish phylogenetic relationships. This is because we could expect the
complexity of a genetic regulatory network to be lower for species who evolved ear-
lier than others. Of course, our methods and observations obtained by measuring
the complexity of graphs, digraphs, and binary sequences could be used to study
real-world systems as well.

135
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Our experiments also showed that the library we used to measure K-complexity
works well, though it needs a lot of time to compute the complexity for long se-
quences. This problem makes it not suitable to study the complexity of objects
whose representation is large. Therefore, given the enormous amount of possible
applications where it is needed to compute Kolmogorov complexity. We decided to
propose a novel method which could be used in situations where we need a faster
implementation to measure complexity. Our implementation called BDMNN works
faster and needs very low computational power. The only cost to pay is a little loss
in accuracy, however, we believe that this implementation can be easily enhanced to
reduce the error of approximating K-complexity by training more Neural Networks
with larger data sets and larger training times. This novel approach works quite
similar to the original BDM and in the worst cases behaves just like Shannon en-
tropy, so it can be used immediately for any application. Future experiments could
help to determine if a regression with any other machine learning technique works
better. Certainly, it could be used in future experiments to generalize the results of
our hypothesis of correlation to Boolean Networks with larger topologies.



Appendix A

Algorithms

A.1 Wolfram Language Algorithms

L = 100; (*sequence length*)

repsp = 10; (*times we use the same probability value p*)

dp = 0.01; (*probability steps' size*)

numexp = (1/dp); (*number of sequences*)

complexity = Table[0, repsp]; (*list to save the K-complexities for the same p value*) 

entropy = Table[0, repsp];  (*list to save the entropies for the same p value*)

compress = Table[0, repsp]; (*list to save the file sizes of c. seqs. for the same p value*)

Ckolmo = Table[0, numexp + 1]; (*list to save the K-complexity for each p value*)

ShannonEntropy = Table[0, numexp + 1]; (*list to save the entropy for each p value*)

complexcompress = Table[0, numexp + 1];  (*list to save the file size for each p value*)

Do[

  Do[

    output = Table[RandomChoice[Rule[{1 - p, p}, {0, 1}]], L]; (*random binary sequence*)

    If[First[output] == 0, output = "0" <> ToString[FromDigits[output]], output = 

ToString[FromDigits[output]]]; (*transform the list into a string*)

    

    complexity[[j]] = StringBDM[output];

    entropy[[j]] = Entropy[ToString[FromDigits[output]]];

    Export["C:\file_directory\name.txt.gz", output]; 

    compress[[j]] = QuantityMagnitude[FileSize["C:\file_directory\name.txt.gz"], "Bits"]

    , {j, repsp}];

  

(*we perform a trimmed mean discarding the first and fourth quartiles*)

Ckolmo[[(p*numexp) + 1]] = TrimmedMean[complexity, {(Length[Select[complexity, # < 

Quantile[complexity, 1/4] &]])/Length[complexity], (Length[Select[complexity, # > 

Quantile[complexity, 3/4] &]])/Length[complexity]}]; 

  ShannonEntropy[[(p*numexp) + 1]] = TrimmedMean[entropy, {(Length[Select[entropy, # < 

Quantile[entropy, 1/4] &]])/Length[entropy], (Length[Select[entropy, # > Quantile[entropy, 3/4] 

&]])/Length[entropy]}];

  complexcompress[[(p*numexp) + 1]] = TrimmedMean[compress, {(Length[Select[compress, # < 

Quantile[compress, 1/4] &]])/Length[compress], (Length[Select[compress, # > Quantile[compress, 

3/4] &]])/Length[compress]}];

  , {p, 0, 1, dp}]

(*we can plot the results*)

ListLinePlot[{Rescale[Ckolmo, {0, Max[Ckolmo]}], Rescale[ShannonEntropy, {0, 

Max[ShannonEntropy]}], Rescale[complexcompress, {0, Max[complexcompress]}]}, DataRange -> {0, 1}, 

AxesLabel -> Automatic, PlotRange -> All, PlotLegends -> Placed[{"Kolmogorov Complexity", 

"Entropy", "File Size (GZIP)"}, {.5, .2}], Frame -> True, FrameLabel -> {"p(0→1)", "C(S)"}, 

GridLines -> Automatic];

Figure A.1: The code to generate and measure the complexity of random sequences
of bits.
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n = 100; (*number of nodos*)

repsp = 10; (*times we use the same probability value p*)

dp = 0.01; (*probability steps' size*)

complexity = Table[0, repsp]; (*list to save K-complexity (1-D representation) for the same p 

value*)

complexitymat = Table[0, repsp];  (*list to save K-complexity (adjacency matrix) for the same p 

value*)

entropy = Table[0, repsp]; (*list to save entropy values for the same p value*)

seqnet = Table[0, (1/dp) + 1]; (*list to save the K-complexity for each p value (1-D 

representation)*)

Matnet = Table[0, (1/dp) + 1]; (*list to save the K-complexity for each p value (2-D 

representation)*)

ShannonEntropy = Table[0, (1/dp) + 1];  (*list to save the entropy for each p value*)

Do[

 Do[

  rg = RandomGraph[WattsStrogatzGraphDistribution[n, l, 5]]; (*random graph*)

  mat = Flatten[Normal[AdjacencyMatrix[rg]]]; (*1-D representation of the random graph*)

  If[First[mat] == 0, output = "0" <> ToString[FromDigits[mat]], output = 

ToString[FromDigits[mat]]]; (*transform the list into a string*)

  

  (*measure the complexity using three different methods*)

  complexity[[j]] = StringBDM[output];

  complexitymat[[j]] = BDM[Normal[AdjacencyMatrix[rg]], 4] // N;

  entropy[[j]] = Entropy[output];

  , {j, repsp}];

 

 (*we perform a trimmed mean discarding the first and fourth quartiles*)

 seqnet[[(1/dp)*(l + dp)]] = TrimmedMean[complexity, {(Length[Select[complexity, # < 

Quantile[complexity, 1/4] &]])/Length[complexity], (Length[Select[complexity, # > 

Quantile[complexity, 3/4] &]])/Length[complexity]}];

 Matnet[[(1/dp)*(l + dp)]] = TrimmedMean[complexitymat, {(Length[Select[complexitymat, # < 

Quantile[complexitymat, 1/4] &]])/Length[complexitymat], (Length[Select[complexitymat, # > 

Quantile[complexitymat, 3/4] &]])/Length[complexitymat]}]; 

 ShannonEntropy[[(1/dp)*(l + dp)]] = TrimmedMean[entropy, {(Length[Select[entropy, # < 

Quantile[entropy, 1/4] &]])/Length[entropy], (Length[Select[entropy, # > Quantile[entropy, 3/4] 

&]])/Length[entropy]}]; 

 , {l, 0, 1, dp}]

(*we can plot the results*)

ListLinePlot[{Rescale[seqnet, {0, Max[seqnet]}], Rescale[Matnet, {0, Max[Matnet]}], 

Rescale[ShannonEntropy, {0, Max[ShannonEntropy]}]}, DataRange -> {0, 1}, AxesLabel -> Automatic, 

PlotRange -> All, PlotLegends -> Placed[{"K-Complexity (1-D representation)", "K-Complexity 

(adjacency matrix)", "Entropy"}, {.5, .2}], Frame -> True, GridLines -> Automatic, FrameLabel -> 

{"p", "C(G)"}]

Figure A.2: The code to generate and measure the complexity of random graphs
using the Watts-Strogatz graph distribution.
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n = 100; (*number of nodos*)

numexp = 100; (*number of random graphs generated*)

repsp = 10; (*times we use the same probability value p*)

complexity = Table[0, repsp]; (*list to save K-complexity (1-D representation) for the same p 

value*)

complexitymat = Table[0, repsp];(*list to save K-complexity (adjacency matrix) for the same p 

value*)

entropy = Table[0, repsp]; (*list to save entropy values for the same p value*)

ShannonEntropy = Table[0, numexp]; (*list to save the entropy for each p value*)

seqnet = Table[0, numexp]; (*list to save the K-complexity for each p value (1-D representation)*)

Matnet = Table[0, numexp]; (*list to save the K-complexity for each p value (2-D representation)*)

Do[

 Do[

  rg = RandomGraph[BarabasiAlbertGraphDistribution[100, l]]; (*random graph*)

  mat = Flatten[Normal[AdjacencyMatrix[rg]]]; (*1-D representation of the random graph*)

  If[First[mat] == 0, output = "0" <> ToString[FromDigits[mat]], output = 

ToString[FromDigits[mat]]]; (*transform the list into a string*)

  

  complexity[[j]] = StringBDM[output];

  complexitymat[[j]] = BDM[Normal[AdjacencyMatrix[rg]], 4] // N;

  entropy[[j]] = Entropy[output];

  , {j, repsp}];

 

(*we perform a trimmed mean discarding the first and fourth quartiles*)

seqnet[[l]] = TrimmedMean[complexity, {(Length[Select[complexity, # < Quantile[complexity, 1/4] 

&]])/Length[complexity], (Length[Select[complexity, # > Quantile[complexity, 3/4] 

&]])/Length[complexity]}]; 

 Matnet[[l]] = TrimmedMean[complexitymat, {(Length[Select[complexitymat, # < 

Quantile[complexitymat, 1/4] &]])/Length[complexitymat], (Length[Select[complexitymat, # > 

Quantile[complexitymat, 3/4] &]])/Length[complexitymat]}]; 

 ShannonEntropy[[l]] = TrimmedMean[entropy, {(Length[Select[entropy, # < Quantile[entropy, 1/4] 

&]])/Length[entropy], (Length[Select[entropy, # > Quantile[entropy, 3/4] &]])/Length[entropy]}]; 

, {l, numexp}]

(*we can plot the results*)

ListLinePlot[{Rescale[seqnet, {0, Max[seqnet]}], Rescale[Matnet, {0, Max[Matnet]}], 

Rescale[ShannonEntropy, {0, Max[ShannonEntropy]}]}, AxesLabel -> Automatic, PlotRange -> All, 

PlotLegends -> Placed[{"K-Complexity (1-D representation)", "K-Complexity (adjacency matrix)", 

"Entropy"}, {.43, .16}], Frame -> True, GridLines -> Automatic, FrameLabel -> {"k", "C(G)"}]

Figure A.3: The code to generate and measure the complexity of random graphs
using the Barabási-Albert graph distribution.
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n = 100; (*number of nodos*)

maxindegree = 100; (*max in-degree*)

repsp = 10; (*times we use the same probability value p*)

complexity = Table[0, repsp];

(*list to save K-complexity 1-D representation for the same p value*)

complexitymat = Table[0, repsp];

(*list to save K-complexity adjacency matrix for the same p value*)

entropy = Table[0, repsp]; (*list to save entropy values for the same p value*)

ShannonEntropy = Table 0, maxindegree ; (*list to save the entropy for each p value*)

seqnet = Table 0, maxindegree ;

(*list to save the K-complexity for each p value 1-D representation *)

Matnet = Table 0, maxindegree ;

(*list to save the K-complexity for each p value 2-D representation *)

Do

Do

(*create the random digraph*)

k = l; (*in-degree*)

Mnodes = {}; (*adjacency matrix*)

For i = 1, i n, i++×

AppendTo[Mnodes, Table[0, n]] ×

For i = 1, i n, i++,

flag = 0;

While flag < k, position = RandomInteger[{1, n}];

If Mnodes i, position 0, Mnodes i, position = 1; flag++, ;

rg = Transpose[Mnodes]; (*random digraph*)

mat = Flatten[rg]; (*1-D representation of the random graph*)

If First[mat] 0, output = "0" <> ToString FromDigits[mat] ,

output = ToString FromDigits[mat] ; (*transform the list into a string*)

complexity j = StringBDM[output];

complexitymat j = BDM[rg, 4] // N;

entropy j = Entropy[output];

, j, repsp ;

(*perform a trimmed mean discarding the first and fourth quartiles*)

seqnet[[l]] = TrimmedMean complexity,

Length Select complexity, # < Quantile complexity, 1/4 & Lengthcomplexity,
LengthSelectcomplexity, # > Quantilecomplexity, 3/4 &Lengthcomplexity;

Matnet[[l]] = TrimmedMeancomplexitymat,
LengthSelectcomplexitymat, # < Quantilecomplexitymat, 1/4 &Lengthcomplexitymat,
LengthSelectcomplexitymat, # > Quantilecomplexitymat, 3/4 &Lengthcomplexitymat;

ShannonEntropy[[l]] = TrimmedMeanentropy,
LengthSelectentropy, # < Quantile[entropy, 1/4] &Length[entropy],
LengthSelectentropy, # > Quantile[entropy, 3/4] &Length[entropy];

, l, 1, maxindegree

(*plot the results*)

ListLinePlot{Rescale[seqnet, {0, Max[seqnet]}],

Rescale[Matnet, {0, Max[Matnet]}], Rescale[ShannonEntropy, {0, Max[ShannonEntropy]}]},

AxesLabel → Automatic, PlotRange → All, PlotLegends →
Placed"K-Complexity (1-D representation)", "K-Complexity (adjacency matrix)", "Entropy",
{.5, .15}, Frame → True, GridLines → Automatic, FrameLabel → {"d-

Figure A.4: The code to generate and measure the complexity of random digraphs
with increasing vertex in-degree.
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n = 6; (*number of nodos*) k = 3; (*in-degree*) numexp = 100000; (*number of random digraphs to 
generate*)

complexity = Table[0, numexp]; (*list for K-complexity (1-D representation)*)
complexitymat = Table[0, numexp]; (*list for K-complexity (adjacency matrix)*)
entropy = Table[0, numexp]; (*list for entropy values*)

Do[(*create the random digraph*)
 Mnodes = {};(*adjacency matrix*)
 For[i = 1, i <= n, i++
    AppendTo[Mnodes, Table[0, n]]]
  For[i = 1, i <= n, i++, flag = 0;
   While[flag < k, position = RandomInteger[{1, n}];
    If[Mnodes[[i, position]] == 0, Mnodes[[i, position]] = 1; flag++,]]];
 
 rg = Transpose[Mnodes]; (*random digraph*)
 mat = Flatten[rg]; (*1-D representation of the random graph*)
 
 If[First[mat] == 0, output = "0" <> ToString[FromDigits[mat]], output= 
ToString[FromDigits[mat]]]; (*transform the list into a string*)
 complexity[[l]] = {l, StringBDM[output]};
 complexitymat[[l]] = {l, BDM[rg, 4] // N};
 entropy[[l]] = {l, Entropy[output]};
 Export[NotebookDirectory[] <> ToString[l] <> "file_name.txt", rg];
 , {l, 1, numexp}]

(*Order the complxities by increasing value*)
sorted = Sort[complexity, #1[[2]] < #2[[2]] &] ;(*sorted list with positions and values*)
list = Flatten[First[sorted[[#]]] & /@ Table[i, {i, Length[sorted]}]] ;(*sorted list with 
positions*)
data = Flatten[Take[sorted[[#]], {2, 2}] & /@ Table[i, {i, Length[sorted]}]]; (*sorted list 
with values*)

sortedmat = Sort[complexitymat, #1[[2]] < #2[[2]] &];
listmat = Flatten[First[sortedmat[[#]]] & /@ Table[i, {i, Length[sortedmat]}]]; 
datamat = Flatten[Take[sortedmat[[#]], {2, 2}] & /@ Table[i, {i, Length[sortedmat]}]];

sortedent = Sort[entropy, #1[[2]] < #2[[2]] &] // N;
listent = Flatten[First[sortedent[[#]]] & /@ Table[i, {i, Length[sortedent]}]]; 
dataent = Flatten[Take[sortedent[[#]], {2, 2}] & /@ Table[i, {i, Length[sortedent]}]];

(*plot the results*)
ListLinePlot[{Rescale[data, {0, Max[data]}], Rescale[datamat, {0, Max[datamat]}], 
Rescale[dataent, {0, Max[dataent]}]}, TargetUnits -> {"experimento", "C(red)"}, AxesLabel -> 
Automatic, PlotRange -> All, PlotLegends -> {"K-Complexity (1-D representation)", "K-Complexity 
(adjacency matrix)", "Entropy"}, Frame -> True, GridLines -> Automatic, FrameLabel -> {"Ordered 
Digraphs", "C(D)"}]

(*draw some of the digraphs by increasing order of complexity*)
numdig = 27; (*number of digraphs to plot*) r = 1; (*flag*)
Table[If[net == Round[(numexp*r/numdig)] || net == 1,
   state = Import[NotebookDirectory[] <> ToString[list[[net]]] <> "file_name.txt", "Lines"]; r++;
   AdjacencyGraph[ToExpression[state], PlotLabel -> "Digraph " <> ToString[lista[[net]]]], 
VertexStyle -> RGBColor[1, .78, .72], EdgeStyle -> Black]
  ,{net, 1, numexp}] /. Null -> Sequence[]

Figure A.5: The code to generate and measure the complexity of random digraphs
with a fixed number of nodes and in-degree.
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n = 8; (*number of nodos*)
k = 7; (*vertex degree*)
numperms = 400; (*number of random permutations*)

matrix = Normal[AdjacencyMatrix[RandomGraph[{n, k}]]]; (*random graph*)
graph= AdjacencyGraph[matrix, VertexStyle ->RGBColor[1, .78, .72], EdgeStyle ->Black] (*plot 
the random graph*)

(*generate the isomorphisms*)
perms = Cycles[{#}] & /@ RandomChoice[Permutations[Table[i, {i, n}]], numperms];(*generators of 
permutations*)
matpermuted = DeleteDuplicates[Permute[Table[Permute[matrix[[i]], #], {i, n}], #] & /@ perms] 
;(*permuted matrices*)

complexity = Table[Null, Length[matpermuted] + 1]; (*list for K-complexity (1-D 
representation)*)
complexitymat = Table[Null, Length[matpermuted] + 1]; (*list for K-complexity (adjacency 
matrix)*)
entropy = Table[Null, Length[matpermuted] + 1]; (*list for entropy values*)

(*complexity of the random graph*)
mat = Flatten[matrix];
If[First[mat] == 0, output = "0" <> ToString[FromDigits[mat]], output = 
ToString[FromDigits[mat]]];
complexity[[1]] = StringBDM[output] // N;
complexitymat[[1]] = BDM[rg, 4] // N;
entropy[[1]] = Entropy[output] // N;

(*measure the complexity of the isomorphisms*)
Do[
 rg = matpermuted[[l]];
 mat = Flatten[rg];
 If[First[mat] == 0, output = "0" <> ToString[FromDigits[mat]], output = 
ToString[FromDigits[mat]]];
 complexity[[l + 1]] = StringBDM[output] // N;
 complexitymat[[l + 1]] = BDM[rg, 4] // N;
 entropy[[l + 1]] = Entropy[output] // N;
  If[ IsomorphicGraphQ[AdjacencyGraph[matrix], AdjacencyGraph[matpermuted[[l]]]] == False, 
Abort[]] (*check isomorphism*)
 , {l, 1, Length[matpermuted]}]

(*plot the results*)
seqcomplexity = DeleteCases[complexity, Null];
matcomplexity = DeleteCases[complexitymat, Null];
ShannonEntropy = DeleteCases[entropy, Null];
ListLinePlot[{Rescale[seqcomplexity, {0, Max[seqcomplexity]}], Rescale[matcomplexity, {0, 
Max[matcomplexity]}], Rescale[ShannonEntropy, {0, Max[ShannonEntropy]}]}, AxesLabel -> 
Automatic, PlotRange -> {{0, Length[seqcomplexity]}, {0.4, 1.01}}, PlotLegends -> Placed[{"K-
Complexity (1-D representation)", "K-Complexity (adjacency matrix)", "Entropy"}, {.5, .2}], 
Frame -> True, GridLines -> Automatic, FrameLabel -> {ToString[Length[seqcomplexity]] <> " 
Isomorphic Graphs G'≅G", "C(G')"}]

Figure A.6: The code to generate and measure the complexity of the isomorphisms
of a random graph. To work with a random digraph of n nodes and k directed edges
instead of a graph of n nodes and k edges, the argument DirectedEdges → True has
to be added in the function RandomGraph.
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n = 6; (*number of nodos*) k = 3; (*in-degree*) numexp = 100000; (*number of random digraphs to 
generate*) numperms = 1000; (*number of random permutations*)
complexity = Table[0, numexp]; (*list for K-complexity (1-D representation)*)
complexitymat = Table[0, numexp]; (*list for K-complexity (adjacency matrix)*)
entropy = Table[0, numexp]; (*list for entropy values*)

(*create the random digraph*)
Do[Mnodes = {};(*adjacency matrix*)
 For[i = 1, i <= n, i++
    AppendTo[Mnodes, Table[0, n]]]
  For[i = 1, i <= n, i++, flag = 0;
   While[flag < k, position = RandomInteger[{1, n}];
    If[Mnodes[[i, position]] == 0, Mnodes[[i, position]] = 1; flag++,]]];
matadj = Transpose[Mnodes]; (*random digraph*)
Export[NotebookDirectory[]<>ToString[l]<>"file_name.txt",matadj];
  

(*generate the isomorphisms*)
perms = Cycles[{#}] & /@ RandomChoice[Permutations[Table[i, {i, n}]], numperms];(*generators of 
permutations*)
matpermuted = DeleteDuplicates[Permute[Table[Permute[matadj[[i]], #], {i, n}], #] & /@ perms] 
;(*permuted matrices*)
complexitypermut = Table[Null, Length[matpermuted] + 1]; (*list for K-complexity (1-D 
representation) permuted*)
complexitymatpermut = Table[Null, Length[matpermuted] + 1]; (*list for K-complexity (adjacency 
matrix) permuted*)
entropypermut = Table[Null, Length[matpermuted] + 1]; (*list for entropy values permuted*)
   

(*complexity of the random graph*)
matadjflatten = Flatten[matadj]; (*1-D representation of the random graph*)
If[First[matadjflatten] == 0, output = "0" <> ToString[FromDigits[matadjflatten]], output = 
ToString[FromDigits[matadjflatten]]];
complexitypermut[[1]] = StringBDM[output] // N;
complexitymatpermut[[1]] = BDM[matadj, 4] // N;
entropypermut[[1]] = Entropy[output] // N;
   

(*measure the complexity of the isomorphisms*)
Do[rg = matpermuted[[l]];
 mat = Flatten[rg];
 If[First[mat] == 0, output = "0" <> ToString[FromDigits[mat]], output = 
ToString[FromDigits[mat]]];
 complexity[[l + 1]] = StringBDM[output] // N;
 complexitymat[[l + 1]] = BDM[rg, 4] // N;
 entropy[[l + 1]] = Entropy[output] // N;
  If[ IsomorphicGraphQ[AdjacencyGraph[matrix], AdjacencyGraph[matpermuted[[l]]]] == False, 
Abort[]] (*check isomorphism*)
 , {l, 1, Length[matpermuted]}]
 (*the complexity is the minimun vale*)
   complexity[[l]] = {l, Min[complexitypermut]};
   complexitymat[[l]] = {l, Min[complexitymatpermut]};
   entropy[[l]] = {l, Min[entropypermut]};
   Export[NotebookDirectory[] <> ToString[l] <> "Vecinos_red.txt", matadj];
   , {l, 1, numexp}]

(*order the complxities by increasing value*)
sorted = Sort[complexity, #1[[2]] < #2[[2]] &] ;
list = Flatten[First[sorted[[#]]] & /@ Table[i, {i, Length[sorted]}]] ;
data = Flatten[Take[sorted[[#]], {2, 2}] & /@ Table[i, {i, Length[sorted]}]];

sortedmat = Sort[complexitymat, #1[[2]] < #2[[2]] &];
listmat = Flatten[First[sortedmat[[#]]] & /@ Table[i, {i, Length[sortedmat]}]]; 
datamat = Flatten[Take[sortedmat[[#]],{2, 2}]&/@Table[i,{i, Length[sortedmat]}]];

sortedent = Sort[entropy, #1[[2]] < #2[[2]] &] // N;
listent = Flatten[First[sortedent[[#]]] & /@ Table[i, {i, Length[sortedent]}]]; 
dataent = Flatten[Take[sortedent[[#]],{2,2}]&/@Table[i, {i, Length[sortedent]}]];

(*plot the results*)
ListLinePlot[{Rescale[data, {0, Max[data]}], Rescale[datamat, {0, Max[datamat]}], 
Rescale[dataent, {0, Max[dataent]}]}, TargetUnits -> {"experimento", "C(red)"}, AxesLabel -> 
Automatic, PlotRange -> All, PlotLegends -> {"K-Complexity (1-D representation)", "K-Complexity 
(adjacency matrix)", "Entropy"}, Frame -> True, GridLines -> Automatic, FrameLabel -> {"Ordered 
Digraphs", "C(D)"}]

(*draw some of the digraphs by increasing order of complexity*)
numdig = 27; (*number of digraphs to plot*) r = 1; (*flag*)
Table[If[net == Round[(numexp*r/numdig)] || net == 1,
   state = Import[NotebookDirectory[] <> ToString[list[[net]]] <> "file_name.txt", "Lines"]; r++;
   AdjacencyGraph[ToExpression[state], PlotLabel -> "Digraph " <> ToString[lista[[net]]]], 
VertexStyle -> RGBColor[1, .78, .72], EdgeStyle -> Black]
  ,{net, 1, numexp}] /. Null -> Sequence[]

Figure A.7: The code to generate and measure the complexity of random digraphs
with a fixed number of nodes and in-degree by considering its isomorphisms.
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maxk = 14; (*max k parameter*) n = 10; (*number of functions in each set*)
repsp = 10; (*times we use the same probability value k*)

complexity = Table[0, repsp]; (*list of K-complexity 1-D representation for the same k value*)
complexitymat = Table[0, repsp];
(*list of K-complexity 2-D representation for the same k value*)
entropy = Table[0, repsp]; (*list ofentropy values for the same k value*)
ShannonEntropy = Table[0, maxk]; (*list to save the entropy for each k value*)
seqnet = Table[0, maxk];
(*list to save the K-complexity for each k value 1-D representation *)
Matnet = Table[0, maxk]; (*list to save the K-complexity for each k value 2-D representation *)

Do Do k = l; (*parameter k*)
booleanfunction = {}; (*boolean function*)
Matrixbooleanfunctionlist = {}; (*matrix representation*)
Clear[a];
A = Table a i , i, 1, k ; (*boolean variables*)

(*generate the set of boolean functions*)
functions = Table[0, n];
For i = 0, i < n, i++,
f = BooleanFunction RandomInteger 0, 22

k - 1 , k;
(*choose randomly one of the 22

k

possible boolean functions*)
AppendTo booleanfunction, f ;

AppendTo Matrixbooleanfunctionlist,

Boole BooleanTable BooleanConvert Apply f, A , "NOR" , A ;

functions i + 1 = f ;

(*measure the complexity of the set*)
matrixrepresen = Matrixbooleanfunctionlist;

sequencerepresen = Flatten matrixrepresen ;

If First[sequencerepresen] ⩵ 0, output = "0" ToString FromDigits[sequencerepresen] ,

output = ToString FromDigits[sequencerepresen] ;

complexity j = StringBDM[output];
complexitymat j = BDM matrixrepresen, 4 N;

entropy j = Entropy[output];
, j, repsp ;

(*perform a trimmed mean discarding the first and fourth quartiles*)
seqnet[[l]] = TrimmedMean complexity,

Length Select complexity, # < Quantile complexity, 1 4 & Lengthcomplexity,
LengthSelectcomplexity, # Quantilecomplexity, 3 4 &Lengthcomplexity;

Matnet[[l]] = TrimmedMeancomplexitymat,
LengthSelectcomplexitymat, # < Quantilecomplexitymat, 1 4 &Lengthcomplexitymat,
LengthSelectcomplexitymat, # Quantilecomplexitymat, 3 4 &Lengthcomplexitymat;

ShannonEntropy[[l]] = TrimmedMeanentropy,
LengthSelectentropy, # < Quantile[entropy, 1 4] &Length[entropy],
LengthSelectentropy, # Quantile[entropy, 3 4] &Length[entropy];

, {l, 1, maxk}

(*plot the results*)
ListLinePlot{Rescale[seqnet, {0, Max[seqnet]}], Rescale[Matnet, {0, Max[Matnet]}],

Rescale[ShannonEntropy, {0, Max[ShannonEntropy]}]}, AxesLabel → Automatic, PlotRange → All,

PlotLegends → Placed"K-Complexity (1-D)", "K-Complexity (2-D)", "Entropy", {.25, .3},
Frame → True, GridLines → Automatic, FrameLabel → "k", "C(f)"

Figure A.8: The code to generate and measure the complexity of random sets of
boolean functions with increasing parameter k.
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n = 4; (*number of functions in each set*)
k = 2 (*parameter k*) numexp = 40000; (*number of sets to generate*)
numperms = 16; (*number of permutations to test*)

complexity = Table[0, numexp]; (*list for K-complexity 1-D representation *)
complexitymat = Table[0, numexp]; (*list for K-complexity 2-D representation *)
entropy = Table[0, numexp]; (*list for entropy values*)

Do booleanfunction = {};
Matrixbooleanfunctionlist = {}; (*matrix representation*) Clear[a];
A = Table a i , i, 1, k ; (*boolean variables*)

(*generate the set of boolean functions*)
functions = Table[0, n];
For i = 0, i < n, i++,
f = BooleanFunction RandomInteger 0, 22

k - 1 , k;
(*choose randomly one of the 22

k

possible boolean functions*)
AppendTo booleanfunction, f ;

AppendTo Matrixbooleanfunctionlist,

Boole BooleanTable BooleanConvert Apply f, A , "NOR" , A ;

functions i + 1 = f ;

(*generate the isomorphisms*)
matrixrepresen = Matrixbooleanfunctionlist;

perms = RandomChoice Permutations Table i, i, n , numperms ;

isos = DeleteDuplicates Permute matrixrepresen, & /@ perms ;

complexityiso = Table 0, Length isos ;

complexitymatiso = Table 0, Length isos ;

entropyiso = Table 0, Length isos ;

(*measure the complexity of the isomorphisms*)
Do flatten = Flatten isos[[L]] ;

If First flatten 0,

output = "0" <> ToString FromDigits flatten , output = ToString FromDigits flatten ;

complexityiso[[L]] = StringBDM[output];
complexitymatiso[[L]] = BDM isos[[L]], 4 // N;

entropyiso[[L]] = Entropy[output], L, Length isos ;

(*the true complexity value is the minimum value obtained from the isos*)
complexity[[l]] = l, Min complexityiso ;

complexitymat[[l]] = l, Min complexitymatiso ;

entropy[[l]] = l, Min entropyiso ;

Export NotebookDirectory[] <> ToString[l] <> "file_name.txt", Matrixbooleanfunctionlist ,

{l, 1, numexp}

(*sort the results in increasing complexity order*)
sorted = Sort complexity, 1[[2]] < 2[[2]] &

list = Flatten First[sorted & /@ Table i, i, Length[sorted] ;

data = Flatten Take[sorted , {2, 2}] & /@ Table i, i, Length[sorted] ;

sortedmat = Sort complexitymat, 1[[2]] < 2[[2]] &

datamat = Flatten Take[sortedmat , {2, 2}] & /@ Table i, i, Length[sortedmat] ;

sortedent = Sort[entropy, 1[[2]] < 2[[2]] &] // N

dataent = Flatten Take[sortedent , {2, 2}] & /@ Table i, i, Length[sortedent] ;

(*plot the sorted results*)
ListLinePlot {Rescale[data, {0, Max[data]}], Rescale[datamat, {0, Max[datamat]}],

Rescale[dataent, {0, Max[dataent]}]}, AxesLabel Automatic, PlotRange All,

PlotLegends Placed "K-Complexity (1-D)", "K-Complexity (2-D)", "Entropy" , {0.75, 0.3} ,

Frame True, GridLines Automatic, FrameLabel "Ordered Sets", "C(f)"

(*plot some sets in increasing complexity order*)
numsets = 16; (*number of sets to visualize*)
r = 1; sets = {};
Table If nset Round[(numexp*r/numsets)] || nset 1, r++;

statemat =
ReadList NotebookDirectory[] <> ToString list[[nset]] <> "file_name.txt", Expression ;

AppendTo sets, list[[nset]] ;

Show MatrixPlot statemat, ColorFunction "Monochrome"

, {nset, 1, numexp} /. Null Sequence[]
Print "sets by increasing complexity order = ", sets

Figure A.9: The code to generate and measure the complexity of random sets of
boolean functions with fixed parameter k and N .
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numberofRBN = 2000; (*number of RBN's with the same topology*)
numberofexps = 50; (*number of topologies to test*)
numperms = 5000; (*random permuations of the topology to test*)
n = 7; (*number of nodes*) k = 4; (*in-degree*)

complexityRBNtrimmed = Table 0, numberofexps ;

complexityGraphtrimmed = Table 0, numberofexps ;

complexityRBN = Table 0, numberofRBN ;

(*generate the random topology*)
Do Mnodes = Table[Table[0, n], n];
For i = 1, i n, i++, Flag = 0;

While Flag < k, position = RandomInteger[{1, n}];
If Mnodes i, position 0, Mnodes i, position = 1; Flag++ ;

Matrixnodes = Transpose[Mnodes];

(*generate the updating functions*) r = 0;

Do r++; iterations = 1; booleanfunction = {}; booleanfunctionMatrix = {}; Clear[a];
A = Table a i , i, 1, k ;

For i = 0, i < n, i++, f = BooleanFunction RandomInteger 0, 22
k - 1 , k;

AppendTo booleanfunction, f ;

AppendTo booleanfunctionMatrix, BooleanConvert Apply f, A , "NOR"  ;

(*generate the dynamics of the network*)
inputstates = Tuples[{0, 1}, n]; (*possible input states*)
outputstates = Table Table 0, iterations , 2n ; (*output states*)
For q = 1, q 2n, q++, neighbors = Table[0, k]; (*positions of the k-neighbors*)
For i = 1, i iterations, i++, statesnodes = Table[0, n]; (*states of the nodes*)
For j = 1, j n, j++ , (*run over the nodes*) Flag = 0;

For p = 1, p n, p++, (*find the k-neighbors*)
If Matrixnodes p, j 1, Flag++; neighbors[[Flag]] = p ;

For m = 1, m k , m++, (*run over the in-degrees*)a[m] = inputstates q, neighbors[[m]] ;

statesnodes j = FullSimplify booleanfunctionMatrix j ;

(*transform the states of the nodes into the state of the network*)
outputstates[[q]] = FullSimplify[Boole[statesnodes]];
inputstates[[q]] = FullSimplify[Boole[statesnodes]] ;

(*measure the complexity of the RBN*)
If First[Flatten[outputstates]] 0,

codedinamica = "0" ToString FromDigits[Flatten[outputstates]] ,

codedinamica = ToString FromDigits[Flatten[outputstates]] ;

complexityRBN[[r]] = StringBDM codedinamica , numberofRBN;

(*measure the mean complexity of the topology*)
matrix = Matrixnodes; mat = Flatten matrix ;

perms = Cycles[{#}] & /@ RandomChoice Permutations Table i, i, n , numperms ;

permutedMatrix =
DeleteDuplicates Permute Table Permute matrix i , # , i, n , # & /@ perms ;

complexity = Table Null, Length permutedMatrix + 1 ;

If First[mat] 0, output = "0" ToString FromDigits[mat] , output = ToString FromDigits[mat] ;

complexity[[1]] = StringBDM[output] // N;

Do rg = permutedmat[[l]]; mat = Flatten[rg];
If First[mat] 0, output = "0" ToString FromDigits[mat] , output = ToString FromDigits[mat] ;

complexity[[l + 1]] = StringBDM[output], {l, 1, Length[permutedmat]} ;

MatNet = DeleteCases complexity, Null ;

complexityGraphtrimmed[[y]] =
TrimmedMean MatNet, LengthSelectMatNet, # ≤ Quantile[MatNet, 1/4] &Length[MatNet],

LengthSelectMatNet, # ≥ Quantile[MatNet, 3/4] &Length[MatNet];

(*mean complexity of the RBN's*)
complexityRBNtrimmed[[y]] = TrimmedMeancomplexityRBN,

LengthSelectcomplexityRBN, # ≤ QuantilecomplexityRBN, 1/4 &LengthcomplexityRBN,
LengthSelectcomplexityRBN, # ≥ QuantilecomplexityRBN, 3/4 &
LengthcomplexityRBN, y, numberofexps

complexityGraphtrimmed;

Figure A.10: The code to generate and measure the complexity of Random
Boolean Networks which share the same topology.
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numberofRBN = 2000; (*number of RBN's with the same topology*)

numberofexps = 50; (*number of topologies to test*)

numperms = 5000; (*random permuations of the updating functions to test*)

n = 5; (*number of nodes*) k = 3; (*in-degree*)

complexityRBNtrimmed = Table 0, numberofexps ;

complexityBoolFun = Table 0, numberofexps ;

complexityRBN = Table 0, numberofRBN ;

(*generate the updating functions*)

Do booleanfunction = {}; booleanfunctionMatrix = {}; Clear[a];

A = Table a i , i, 1, k ;

For i = 0, i < n, i++,

f = BooleanFunction RandomInteger 0, 22
k

- 1 , k ;

AppendTo booleanfunction, f ;

AppendTo booleanfunctionsMatrixList,

Boole BooleanTable BooleanConvert Apply f, A , "NOR" , A ×

AppendTo booleanfunctionMatrix, BooleanConvert Apply f, A , "NOR" ;

r = 0; (*generate the topology*)

Do r++; iterations = 1;

Mnodes = Table[Table[0, n], n];

For i = 1, i n, i++, Flag = 0;

While Flag < k, position = RandomInteger[{1, n}];

If Mnodes i, position 0, Mnodes i, position = 1; Flag++ ;

Matrixnodes = Transpose[Mnodes];

(*generate the dynamics of the network*)

inputstates = Tuples[{0, 1}, n]; (*possible input states*)

outputstates = Table Table 0, iterations , 2n ; (*output states*)

For q = 1, q 2n, q++,

neighbors = Table[0, k]; (*positions of the k-neighbors*)

For i = 1, i iterations, i++,

statesnodes = Table[0, n]; (*states of the nodes*)

For j = 1, j n, j++ , (*run over the nodes*) Flag = 0;

For p = 1, p n, p++, (*find the k-neighbors*)

If Matrixnodes p, j 1, Flag++;

neighbors[[Flag]] = p ;

For m = 1, m k , m++,

(*run over the in-degrees*)a[m] = inputstates q, neighbors[[m]] ;

statesnodes j = FullSimplify booleanfunctionMatrix j ;

(*transform the states of the nodes into the state of the network*)

outputstates[[q]] = FullSimplify[Boole[statesnodes]];

inputstates[[q]] = FullSimplify[Boole[statesnodes]] ;

(*measure the complexity of the RBN*)

If First[Flatten[outputstates]] 0,

codedynamics = "0" <> ToString FromDigits[Flatten[outputstates]] ,

codedynamics = ToString FromDigits[Flatten[outputstates]] ;

complexityRBN[[r]] = StringBDM codedynamics , numberofRBN ;

(*measure the complexity of the updating functions*)

rg = booleanfunctionsMatrixList; mat = Flatten[rg];

perms = RandomChoice Permutations Table i, i, n , numperms ;

isos = DeleteDuplicates[Permute[rg, #] & /@ perms] ;

complexityiso = Table 0, Length isos ;

Do flatten = Flatten isos[[L]] ;

If First flatten 0,

output = "0" <> ToString FromDigits flatten , output = ToString FromDigits flatten ;

complexityiso[[L]] = StringBDM[output], L, Length isos ;

complexityBoolFun[[y]] = Min complexityiso ;

(*mean complexity of the RBN's*)

complexityRBNtrimmed[[y]] = TrimmedMean complexityRBN,

Length Select complexityRBN, # Quantile complexityRBN, 1/4 & Length complexityRBN ,

Length Select complexityRBN, # Quantile complexityRBN, 3/4 &

Length complexityRBN , y, numberofexps

Export NotebookDirectory[] <> "C(f)_min.txt", complexityBoolFun ;

Export NotebookDirectory[] <> "C(BN)_trim.txt", complexityRBNtrimmed ;

Figure A.11: The code to generate and measure the complexity of Random
Boolean Networks which share the same updating functions.
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A.2 Python Algorithms

import keras

import numpy as np

from bdm import BDM

import random

from keras.preprocessing.sequence import pad_sequences

# Initialize BDM object

# ndim argument specifies dimensionality of BDM

bdm = BDM (ndim = 1)

length_max = 100

length_min = 21

num = 30000 #number of sequences to generate

X = [] #Training vector

Y = np.zeros ((num + 1, 1)) #Target Vector

for i in range (num + 1) : 

length = random.randint (length_min, length_max) #length of the sequence

ones_prob = random.randint(0, 100)/100 #probability parameter

if ones_prob > 0.95 : #increase the probability of a sequence full of 1s

sec = np.random.choice (2, length, p = [0, 1]).reshape (1, length) #random sequence

X.append (sec[0].tolist ())

Y[i] = bdm.bdm (sec[0])

else : 

prob = random.randint (0, 100)/100 #probability parameter

sec = np.random.choice (2, length, p = [1 - prob, prob]).reshape (1, length) 

X.append (sec[0].tolist ())

Y[i] = bdm.bdm (sec[0])

X = pad_sequences (X, value = -1) #padding procedure

Figure A.12: The code to generate training data for the Neural Network which
predicts Kolmogorov complexity.
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from keras import Sequential

from keras.layers import Dense

from keras.layers import ELU

def build_regressor () : 

regressor = Sequential ()

regressor.add (Dense (units = length_max, input_shape = (length_max,))) 

regressor.add (ELU (alpha = 1))

regressor.add (Dense (units = int (round (2*(length_max)/3))))

regressor.add (ELU (alpha = 1))

regressor.add (Dense (units = 1, activation = ' linear')) 

regressor.compile (optimizer = ' Nadam', loss = ' mean_squared _error', metrics = [' 

mean_squared _error', ' mean_absolute _error', "mean_absolute_percentage_error"])

return regressor

build_regressor ().summary ()

Figure A.13: The code to build with the library Keras a Neural Network to perform
regression.

import keras

from keras.preprocessing.sequence import pad_sequences

import math

import collections

import numpy as np

length_max = 1001 #max length of NN 1

length_max _ 2 = 100 #max length of NN 2

length_max _ 3 = 20 #max length of NN 3

splitted_length=500 #length of the splitted sequences

def kolmo (seq, counter = 1, complexity = 0) : 

if (len (seq[0]) < length_max) : 

if (len (seq[0]) > length_max _ 2) : 

sequence = pad_sequences (seq, value = -1, maxlen = length_max)

complexity = NN_ 1000. predict (sequence) + math.log (counter, 2) #BDMNN

elif (len (seq[0]) <= length_max _ 2 and len (seq[0]) > length_max _ 3) : 

sequence = pad_sequences (seq, value = -1, maxlen = length_max _ 2)

complexity = NN_ 100. predict (sequence) + math.log (counter, 2)

elif (len (seq[0]) <= length_max _ 3 and len (seq[0]) > 11) : 

sequence = pad_sequences (seq, value = -1, maxlen = length_max _ 3)

complexity = NN_ 20. predict (sequence)[0] + math.log (counter, 2)

else : 

complexity = 2.285794 #complexity of sequences 0 and 1

elif (len (seq[0]) >= length_max) : 

splitted = np.array_split (seq[0], math.ceil (len (seq[0])/(splitted_length)))

splitted_tuple = map (tuple, splitted)

counts = collections.Counter (splitted_tuple) #count repeated sequences

complexity_list = list (map (kolmo, [splitted], counts.values ()))

complexity = sum (complexity_list[0])

else : 

complexity = 2.285794 #complexity of sequences 0 and 1

return complexity

Figure A.14: The code to define a function which takes advantage of three Neural
Network models to predict the K-complexity of sequences of any length. The func-
tions NN 20, NN 100, and NN 1000 are the Neural Networks trained to predict
the complexity of sequences in the corresponding interval of lengths.
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import time

long_max = 10000 #number of sequences to consider

time_lib = np.zeros ((long_max - 11)) #time for BDM

time_mi _lib = np.zeros ((long_max - 11)) #time for BDMNN

lib = np.zeros ((long_max - 11)) #complexity by BDM

mi_lib = np.zeros ((long_max - 11)) #complexity by BDMNN

longs = np.zeros ((long_max - 11))

for i in range (12, long_max + 1) : 

 prueba = np.random.choice (2, i).reshape (1, i)

start = time.process_time () #start timimng for BDMNN

mi_lib[i - 12] = kolmo (prueba)

time_mi _lib[i - 12] = time.process_time () - start

start = time.process_time () #start timimng for BDM

lib[i - 12] = bdm.bdm (prueba[0])

time_lib[i - 12] = time.process_time () - start

longs[i - 12] = i

Figure A.15: The code to perform the timing of the BDM and the BDMNN.

import time

import numpy as np

from joblib import Parallel, delayed

from bdm import BDM

from bdm.utils import slice_dataset

bdm = BDM (ndim = 1)

kernels = 4 #numer of kernels

long_max = 5000 #number of sequences to consider

time_lib = np.zeros ((long_max - 11)) #time for BDM

time_mi _lib = np.zeros ((long_max - 11)) #time for BDMNN

lib = np.zeros ((long_max - 11)) #complexity by BDM

mi_lib = np.zeros ((long_max - 11)) #complexity by BDMNN

longs = np.zeros ((long_max - 11))

for i in range (12, long_max + 1) : 

prueba = np.random.choice (2, kernels*i).reshape (1, kernels*i)

start = time.process_time ()

mi_lib[i - 12] = kolmo (prueba)

time_mi _lib[i - 12] = time.process_time () - start

if len (prueba[0]) >= 48 :

counters_demo = Parallel (n_jobs = 4) (delayed (bdm.count_and _lookup) (d) for d in 

slice_dataset (prueba[0], (round (len (prueba[0])/kernels),))) 

start = time.process_time ()

lib[i - 12] = bdm.compute_bdm(*counters_demo) time_lib[i-12]=time.process_time()-

start 

 else:

start=time.process_time() lib[i-12]=bdm.bdm(prueba[0])          

time_lib[i-12]=time.process_time()-start longs[i-12]=kernels*i

Figure A.16: The code to perform the timing of the BDMNN and the parallel im-
plementation of the BDM. For the parallel implementation, it does not consider the
time needed to split and distribute among the available kernels the given sequence.
If we want to take into account this extra time we just need to move the line:
start = time.process time() of the if section, immediately before the declaration of
counters demo.
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