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Abstract

The green technique of mechanical ball milling has been extensively employed in the
fabrication of environmentally functional materials. The improved specific surface area
and modified surface properties of the resulting materials contribute to the high
performance in pollutant removal. In this work, to improve the performance of low-
cost activated carbon and sponge iron powder under neutral conditions. Ball milling
was used to pretreat activated carbon and treat the mixture of surface oxidized sponge
iron powder and contaminant solution, wherein the strong oxidant and toxic Cr(VI) was
chosen as the target pollutant. The reduction coupling with precipitation was
dominantly attributed to the removal of Cr(VI), wherein the surface enhanced surface
functional groups and hydrophilicity within ball milling were the main mechanisms
subject to the elimination of Cr(VI) which was substantiated by Boehm’s titration.
Furthermore, surface precipitated Cr(IlI) oxides have been shown to impede Cr(VI)
removal, and acidic washing experiments can rejuvenate the used activated carbon by
dissolving the Cr(III) oxide layer. Moreover, the reduced Cr (III) and adsorbed Cr (VI)
can be recovered by acidic and alkaline elution, respectively.

The inherent demerits of zerovalent iron, such as surface passivation in solution and
low electron efficiency, could be mitigated perpetually by ball milling. Removal
efficiency of Cr(VI) maintained over 60 % over a wide pH of 4-10 in presence of ball
milling, while negligible Cr(VI) decrease was noticed in absence of ball milling. XPS
spectra analysis supported that reduction of Cr(VI) to Cr(Ill) followed co-complexed
with Fe(IIl) as Feo33Cro.67(OH)3(s) was the foremost elimination pathway of Cr(VI).
The effect of dissolved oxygen on Cr(VI) removal can be divided into two segments as
per the pH; the generated Fe(Il) that originated from the Fe® oxidation by dissolved
oxygen facilitated to the reduction of Cr(VI) at acidic conditions, whereas the produced
Fe(IT) ions were oxidized at alkaline conditions and the electron efficiency of Fe was
alleviated likewise. Uncovered fresh core Fe® to the aqueous Cr(VI) by the motion of
ball milling which was the main mechanism that diminished the surface passivation
layer of Cr(IlT)/Fe(Ill) hydro(oxides). Furthermore, the depletion curve of Cr(VI) as

function of time under different initial concentration, dosage, and rotational speed was



consistent with zero order kinetic model.
Keywords: Mechanochemical Procedure, Ball Milling, Activated Carbon, Zero-Valent

Iron, Chromium, Reduction
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M.C.Yi Fang

Chapter I. Introduction

Mechanochemical procedures (MCPs) as an emerging technology for nanomaterial
(nano-zero valent iron, nano activated carbon) preparation, has arouse more and more
attentions by researchers!®!>. MCPs is fast become a key technology in environmental
material synthesis with sustainable and low-cost. And physical and chemical
characteristics of materials will be enhanced like hydrophilic and adsorption
performance on inorganic matters'® 7. In general, MCPs defect the material particle
through shear and impact force generated from high energy collision between milling
balls and medium. The size of medium particles or grain declined rapidly after
undergoing repeat flatten, deformation, disintegration, and the size of medium won’t
further refined even longer milling duration executed due to the cold-welding and
agglomeration of particles'®. In addition to the particle size reduction, when mixed
desired medium with functional agents like active metal and organic matters to
produced specific characteristic materials. The evidence of target material modification
assistant with mechanically milling can be clearly seen in the case of study of Yulin
Zheng et al, in which the MgO introduced into milling jar with biochar to prepare dual-
functional adsorbent for cationic dye and anionic phosphate removal, the adsorption
performance of MgO-biochar improved significantly compared to the pristine biochar?®.
Common equipment for MCPs are planetary ball-milling, tumbler ball-milling, attrition
ball-milling and vibration ball-milling, details seen in Fig 1-1, when considering the
size limitation for laboratory-scale application; the planetary ball-milling of high rotate
speed, compact size and multiple milling jars was an optimum choice for laboratory

trial.

Application of Mechanochemical Procedure on Aqueous Cr(VI) removal with
additives of activated carbon and Fe’/Fe,Os
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Figure. 1-1 Four conventional ball-milling machines and their working principles,
(a) planetary ball-milling, (b) tumbler ball-milling, (c) attrition ball-milling, (d)
vibration ball-milling, copyright 2020, Elsevier.

Chromium is widely used in industry as plating, alloying, textile dyes and pigments.
Due to the wide application of chromium in industry, the consequent environment
contamination has become a central issue and has arouse the attention of researchers 2’
30 Cr (VI) exists in the forms of chromate (CrOs?"), dichromate (Cr,07%") and CrOs are
considered to be the most toxic forms of chromium, chromium poisons the plants in the
form of hexavalent chromium for its highly mobile and toxic while trivalent chromium
is less mobile and toxic (Deepti S et al., 2018). Cr(IIl) is an essential micronutrient to
human, while Cr(VI) is toxic and can cause severe diseases such as kidney circulation,
dermatitis and lung cancer?’. Therefore, attention should be activated for sequestration
or reduction Cr(VI) to Cr(Ill) from aquatic environments for the protection of

environment and public health.

The conventional methods for the removal of Cr(VI) from wastewater are
membrane filtration, precipitation, and ion exchange?®. There are some disadvantages
of these methods including high chemical dosage, high capital and operation cost, high

energy consumption and potential secondary effluent?’. The activated carbon (AC) is
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the most widely used material for its readily available, low cost, high specific surface
area which range from 500 to 1500m? g!, developed internal microporous structure
and wide spectrum of surface functional groups like carboxylic group®'. AC derived
from biomass like coconut shell, wood coal, hazelnut shell, Terminalia arjuna nuts and
rubber wood sawdust, the adsorption capacity of synthetic adsorbent from these
biomass on Cr(VI) range from 4.4 to 170.0 mg g'! 323°, In order to further improve the
adsorption performance of AC, modification of the activated carbon by chemical
procedure to enhance its surface functional group, AC was prepared from Longan seed
by chemical modification with sodium hydroxide (NaOH) which possess adsorption
capacity on Cr(VI) was 35.02 mg/g and higher than the pristine AC¢. AC pretreated by
heating with sulfuric acid and nitric acid, the maximum adsorption capacity are 7.485
and 10.929 mg/g, respectively?’. By way of illustration, Kronje,K,J et al activated the
sugarcane bagasse by zinc chloride, results indicated that the removal rate was over
87%3. Compared to the chemical modification, physical treatment presents several
advantages, no secondary effluent after physical treatment and easily operation.
Conventional physical treatment are activation with steam, gasification in CO; or in a

water-nitrogen mixture®®-40,

Most of the adsorption treatments were pre-adjusted to the acid condition and the
pH value were 2-4% 4133 At the acid condition the surface function group were
protonated and facilitated the redox reaction between contaminants and electron on AC.
But the adjustment of acid condition required numerous acid solution and subsequently
cause the emission problem of acidic effluent. Augment the removal capability of AC

at near-neutral pH could be a promising solution for removal of Cr(VI).

On the other hand, improving the adsorption capacity of activated carbon through
mechanical grinding rarely seen in the related research literatures***. Crushing the
activated carbon particle into finer particle by ball milling, the activated carbon become
smaller particulate in the process of milling, thus more surface functional groups were

exposed and higher specific surface area, the adsorption performance could be
3
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improved, correspondingly.

Zero-valent iron as another common low-cost material has received much attention
on contaminants removal, while the inherent demerits of zero-valent iron like easily-
agglomeration, atmospheric oxidation, passivation in solution and the low electron
efficiency have inhibited its implication. MCP could remove the surface oxidation layer
through the repetitive collision which makes it a promising method on mitigating the

drawbacks and improving the lifespan of zero-valent iron.

1.1. The sequestration of aqueous Cr(VI) by zerovalent iron-based materials
1.1.1. Introduction

Chromium (Cr) has a wide range of industrial applications such as plating, alloying,
leather tanning, metallurgy, textile dyes, and pigments. Thus, Cr-contaminated sewage
has become a big issue and has attracted the attention of experts to eliminate Cr by
employing various kinds of materials like activated carbon %7, alkalic modified activated

carbon %%, green synthesized zero-valent iron 28 30: 3!

and well-designed nanocarbon
spheres 3°. Cr mainly occurs in two different states in nature such as hexavalent
chromium (Cr(VI)) and trivalent chromium (Cr(Ill)). Cr(VI) has mutagenic and
carcinogenic effects in humans because of their higher mobility and toxicity behavior.
It can cause severe diseases such as kidney circulation, dermatitis, and lung cancer in
humans ?°. While, Cr(III) is less mobile, more stable, and less toxic than Cr(VI) 2. It
can be converted into chromium hydroxide (Cr(OH)3), which can be precipitated out at
moderately acidic to alkaline pH and can also serve as an essential micronutrient.
Therefore, the removal or reduction of Cr(VI) anions to nontoxic and immobile Cr(III)
ions is important for protecting the environment and public health.

Moreover, conventional methods such as adsorption, reduction, membrane

filtration, precipitation, and ion exchange have been employed to remove heavy metals

from sewage 2% 3. Whereas, the reduction and adsorption procedure of Cr(VI) has
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attracted more attention because of its cost-effectiveness as compared to membrane
filtration 3%, ion exchange >°, and electrochemical treatment technologies *°. Further,
iron and modified iron compounds have been extensively applied for Cr(VI)
elimination owing to having their higher activity and feasible synthesis protocols such

28,50.51. 36 ' mangrove fungus reduction method °’, in-situ growth

as green technologies
method °® and replacement reactions method *. Further, the nanoparticles of ZVI have
shown a great potential application in the treatment of real tannery wastewater and the
removal ratio of 100, 70, 73, and 88% were noticed for Cr(VI), TOC, COD, and phenol,
respectively . Since the first exhaustively documented practical application of ZVI on
groundwater remediation with the permeable reactive barrier (PRB) in 1996 ©!, the
development of ZVI-based materials has received considerable attention for

environmental remediation. Regarding this, Fig. 1-2 is depicting a comprehensive

summary of the advancements in ZVI-based materials for sewage treatment.
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Figure. 1-2 The major events of ZVI-based materials development over the past 25
years (1,1,1 TCA (1,1, 1-trichloroethane), TCE (trichloroethylene), Mont
(Montmorillonite), CNTs (carbon nanotubes), PBDEs (polybrominated diphenyl

ethers), GO (graphlte OXide)) 1,234567,6289 18 20,63 21,22

65,66 co-existing ions 7

Notably, certain factors such as particle size %4, pH value
68 hydrodynamic filed  and contaminant concentration were restricted performance
of iron 7%, The passivation layer on the surface of the iron particle formed under alkaline

conditions could sequester the electron derived from iron, wherein the passivation layer
5
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was mainly contained non-conductive hydroxide of iron and Cr 7!. Research efforts
have been done on impairing the effect of the passivation layer. For instance, the
iron/aluminum bimetallic material presented higher Cr-elimination performance as
compared to the elemental iron 72, In addition to unfavorable impacts induced by the
surface oxidized layer, nZVI particles are preferred to clump in the aqueous solution
where the activities of iron were limited remarkably 73. To solve this issue, a stable
nZVI containing material was synthesized through embodied nZVI in MCM-41 for the
improvement of the performance and longevity of nZVI in solution 7. The most
common measures to promote the capability of iron include composited bimetallic
materials (Al-Fe, Zn-Fe, Pb-Fe, Cu-Fe, Ni-Fe, Ag-Fe) 7> 76, loaded iron on carbon
template 77, and mixed iron with elemental sulfur or sulfide ®. The preparation
procedures for iron-bearing materials fluctuate by considering the limitations caused by
poor solution dispersion and easy air oxidation of iron. To enhance the dispersion of
nZVI in solution, carbon nanotube-supported nZVI was synthesized through liquid-
phase reduction method and Cr removal efficiency was found to be around 36% higher
than bare nZVI 7°. While, the reduction of 10 ppm Cr(VI) solution to ~Ippm was
observed in three days by employing activated carbon-supported iron prepared by
carbothermal reduction technique 7’. Similarly, the carbon skeleton improved the
stability of iron dramatically .

Therefore, a comprehensive summary of ZVI-based materials development was
essential to design a compatible environmental material with practical contamination
sites. Even though some review papers have recapitulated the versatile ZVI technology
from the synthesis procedure to different countermeasures against the limitations of
pristine ZVI 8132, As well as another review paper has discussed the effect of solution

chemistry and operational conditions on ZVI property *

. Rare review papers
systematically considered the co-effect of pH and DO on the performance of ZVI-based
materials on targeted pollutant sequestration. For example, the efficiency of ZVI

towards Cr(VI) removal was suppressed in the presence of oxygen 84, but another study

6
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discovered the opposing results in the presence of oxygen *. Briefly, the pH could
greatly involve in the corrosion of ZVI and product establishment with DO. Therefore,
we delicately evaluated the co-effect of pH (acid or alkaline) and DO (oxic or anoxic)
on the capability of ZVI-based materials. Moreover, the literature involved in the
preparation methods of ZVI-based materials (liquid-phase reduction and mechanical
methods), four common ZVI-based materials (carbon-Z VI, sulfur-ZVI, bimetal of ZVI,
and magnetite-ZVI composites), mechanism of Cr(VI) elimination, field application,

and market penetration of ZVI-based materials were carefully discussed herein.
1.1.2. Synthesis of ZVI-based Materials for the Removal of Chromium

Various technologies can be classified into chemical and physical methods for the
fabrication of ZVI-based materials to remove Cr from the environment. Chemical
reductants (such as molecular hydrogen, hydrazine hydrate, NaBH4, CO, etc.) were
applied for Cr-reduction. While, the physical methods comprised mechanical crushing
and metal electrode precipitation 3. To the best of our knowledge, most of the
researches only focused on the application of chemical reduction methods by using

NaBHjs 87 and mechanical milling %%,

1.1.2.1 Liquid-phase Reduction

The liquid-phase reduction or borohydride reduction method is based on ferric and
ferrous ions as ZVI precursors and NaBH4 as a reducing agent. The earliest recorded
prepared nano-scale ZVI was FeBr2(aq) and FeBrs(aq), which were reduced by NaBH4
in the aqueous solution °. Similarly, various other researchers synthesized nano-scale
ZV1 with narrow size distribution (10-100 nm) °!-*? and also coated with oxide shells
%3, For its preparation, the desired amount of Fe precursor such as degassed FeCls
solution was dropped with sodium borohydride solution (1 drop/s), the reduction
reaction is presented in Eq (1-1). After the accomplishment of the reaction, the mixed

solution was allowed to settle down for 20 min, and then it was centrifuged for

7
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collection of ZVI 4. The synthesis process was conducted under an inert atmosphere
as-synthesized ZVI can be easily oxidized in air.
4Fe’" + 3BHs ™ + 9H,0 — 4Fe’ + 3H,BO; ~+ 12H' + 6H» (gas) (1-1)
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Figure. 1-3 The schematic illustration of the preparation of BL-nZVI by liquid-phase
reduction method, and the removal process of Cr(VI). The Cr(VI) was reduced by

loaded-Z VT and followed co-precipitation with Fe(III) *, Copyright 2020, Elsevier.

Although extensive research has been carried out on bare ZVI preparation, the
reactivity of nZVI might be lowered due to agglomerate irreversibly in the solution.
ZVI doped on the template such as activated carbon °°, biochar °7, graphite °® and
chitosan *° has demonstrated outstanding dispersion in the solution. Meanwhile, the
removal performance of Cr(VI) was improved considerably for ZVI-loaded material
concerning their monometallic counterpart. A group of researchers successfully
produced biochar-supported nZVI by liquid reduction technique, wherein nZVI was
loaded on biochar through carboxyl and silicon mineral within biochar. The removal
capacity for Cr(VI) was 40 mg/g under initial pH 4.0 and could serve as a candidate
material for groundwater remediation ', Further, as compared to non-supported nZVI
(62.9%), the attapulgite-supported nZVI exhibited 90.6% removal efficiency for Cr(VI).
Moreover, the stability and dispersion of nZVI were improved after doping evenly on

a supporter of attapulgite '°!. A team of researchers performed a series of experiments
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to illustrate that bentonite-supported organosolv lignin stabilized nZVI (BL-nZVI) had
a higher removal capacity of Cr(VI) than bare nZVI and bentonite-supported nZVI (B-
nZVI) . A comprehensive procedure from synthesis to the application has been

demonstrated in Fig. 1-3.
1.1.2.2 Mechanical Method

The ball milling (BM) procedure has been proved to be an effective method for the
preparation of nZVI %2, Briefly, the iron grains undergo deformation, fracture, and
welding repeatedly in the presence of vigorous collision between milling medium balls
and iron particles. The size of the produced ZVI is a function of grinding duration time
103 Further, the ZVI fabricated by mechanical milling subjects to the coarse size and
unregulated shape, but the BM method can easily be scaled up with reasonable

expenditures as compared to other approaches '%

. It was reported that the 2 mm grain
of ZVI was milled in high energy planetary ball milling for 10 h, and the resulting 20.9
um meso-Z VI eradicated Cr(VI) and organic pollutant effectively '%. Recently, it was
reported that different masses of AC were combined with 5.6 g of micron-scale ZVI
(mZV]) in stainless steel milling jar and then grounded for 30 minutes at 300 rpm.
Thereafter, it was followed by the addition of mZVI-AC in acidic and anaerobic Cr(VI)
solution. The removal efficiency of Cr(VI) reached 94.01% within 2 h, it was also found
that only 22.1% Cr(VI) was removed by the mixture of ZVI and AC %, These results
verified the findings of a great deal of the previous work of Wang et al, (2020), and
their thorough information has been presented in Fig. 1-4 1°7,

Besides, the milling-induced displacement reaction to prepare various sizes of ZVI
is a promising technology, as it could enable the recycling of scrap iron. The
nanocomposites of ZVI with ALbO3 or ZnO were obtained after grinding of a sample of
metallic aluminum or zinc with magnetite or hematite 1%8-11°, As the reaction processes
have been presented in Eqs (1-2)-(1-4). Thus, by considering the ease of operation, cost-
effectiveness, and readily scaling-up, BM is a promising technology for ZVI

9
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preparation.

3Fe;04 + 8Al = 3Fe + 4A1,03 (1-2)
Fe304 + 4Zn = 3Fe + 4Zn0O (1-3)
Fe2O3 + 2Al = 2Fe + ALO3 (1-4)
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Figure. 1-4 The schematic illustration of the preparation of the biochar-supported

ZVI1 by mechanical ball milling and its application for the Cr(VI) removal. The
adsorbed Cr(VI) on pore channel and surface functional groups of biochar was
reduced by Fe’, meanwhile, part of Cr(VI) reduced in solution (Wang et al., 2020c),
Copyright 2020, Elsevier.

1.1.2.3. Other synthetic methods

Apart from the numerous studies about chemical reduction and mechanical milling,
there are also other non-widely discussed approaches for ZVI fabrication. For instance,
the coal and iron oxide (FeO, Fe;0s, Fe;O4) were introduced into a silica glass tube
equipped with a graphite cylinder radiation heater, the coal reacted with H,O and CO»
to produce reductant gas CO and H» over 800°C, and then CO and H; reduced iron
oxides to ZVI via the thermal reduction method ''!. Similarly, the goethite was reduced
to ZVI by H> with heat, nevertheless, the reducing reactant not only included ZVI but
also magnetite °'. Further, the chemical vapor condensation (CVC) process could
decompose iron pentacarbonyl (Fe(CO)s) under Ar or He atmosphere to prepare nZVI.

Thus, the spherical nZVI (6-25 nm in diameter) was successfully prepared by CVC at
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150°C 2, Moreover, pulsed electrodeposition (PED) was adopted to reduce aqueous
iron salt to ZVI by desired current and voltage. In short, sacrificial iron anode and inert
Ti cathode were immersed in (NH4)2Fe(SO4)2-contained electrolyte and were pulsed
continuously. Thus, Fe?* ions were reduced to Fe® and precipitated on Ti cathode 3. A
similar study was performed with PED to obtain nZVI with an average diameter of 19

nm 114

. The previously described spinning disk reactor (SDR) method proposed
potential application on nZVI synthesis on the laboratory-scale !'°. Nevertheless, the
nZVI production on a large-scale still challenges the routines declared above. We made

a comparison of these mentioned methods and presented them in Table 1-1.

Table 1-1 The comparison of various preparation methods

Preparation
Process Characteristic
methods
Liquid-phase Mixing ferrous or ferric ions The most commonly used method,
reduction with NaBHj to obtain Fe®and but the additive of NaBH4 is toxic
then the reduced Fe’ was and the post-treatment for effluent is
loaded on supporters like required regulatorily 'S,
biochar and bentonite.
Mechanical ~ Ball milling iron oxides with Easily scaled-up for production, but
ball milling ~ Al/Zn to produce Fe or ball energy consumption is the main
milling Fe® with supporters concern !'!’.
like AC.
Thermal Reducing iron Recycling the scrap iron, however,
reduction oxides/hydroxides to Fe® the high energy consumption and the
through heating under high emission of greenhouse gas are the
temperature reducing gas. main disadvantages '8,
CvC Decomposition of Fe(CO)s The size of Fe? particle is adjustable

Application of Mechanochemical Procedure on Aqueous Cr(VI) removal with
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under high-temperature inert by changing temperature, the cost of
gas. raw material and energy
consumption are the considerations
19,
PED Preparing Fe? by The purity and thermal stability of
electrochemical reduction. prepared Fe® are high and the size is
controllable, and the power
consumption is the central concern
120
SDR Introducing FeSO4-7H,0 and The size of Fe’ is controllable by
NaBH4 solutions into a adjusting the rotational speed of the
rotating disk with desired disk and the feeding position of
velocity and feeding position solutions !2!,

to gain Fe’.

1.1.2.4. Conventional ZVI Composites for Cr(VI) Treatment

1.1.2.4.1 Carbon-ZVI Composites

Biochar, AC, and carbon nanotube have been extensively employed as iron
templates to fabricate reliable iron-containing material '22. Among them, AC possesses
stable characteristics because of the developed pores and higher specific surface area,
which provided plenty of vacant sites as the iron carrier '2*. Further, AC derived from
various kinds of biomass has presented a superior efficiency as a potential adsorbent
for Cr(VI) 27124125 Moreover, the AC loaded-iron coupled adsorption with reduction
has proved to be the main process for Cr(VI) removal '?°, To prepare homogenized AC
supported ZVI, the AC was immersed in ferric chloride hexahydrate solution and then
was introduced with NaBHjs solution to reduce ferric to ZVI. Finally, nZVI-loaded AC

was obtained after centrifugation, filtration, and drying in the nitrogen gas environment

12
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127 1t was found that the removal efficiency of Cr(VI) increased with an increase in iron
loading and the highest removal efficiency (99%) was obtained with the iron loading
of 10.9%. On the contrary, the maximum removal efficiency for AC without iron was
only 40 %. Further, the characterization of nZVI-loaded AC after treatment has proved
that Cr(VI) could be reduced to Cr(III) and precipitated with oxidized product ferric.
To illustrate this phenomenon the cyclic voltammetry curve was conducted and was
found that it exists the iron-carbon microcell facilitated the redox reaction between iron
and Cr(VI).

Similarly, pristine biochar was derived from cornstalk and was modified with H>O»,
HCI, and NaOH solution. Further liquid-phase reduction method as described above
was employed to synthesis iron-loaded biochar and then it was applied for Cr(VI)
removal from solution. The Cr(VI) removal experiments results showed that iron-
loaded biochar modified with HCI solution exhibited better Cr(VI) removal efficiency
than the other two materials. During the process of Cr(VI) removal, the biochar matrix
stimulated the redox reaction of iron and Cr(VI) by electrostatic attractions between
positively charged biochar and anion chromate, and faded the side impact of
Cr(IIT)/Fe(I1I) (oxy) hydroxides deposit on the iron particle 128, Moreover, the micro-
galvanic formed between iron particle and carbon matrix contributed to another
mechanism, Thus the role of biochar to serve as an electron-transfer mediator through
removing aqueous solution Cr(VI) by silicon-rich biochar-supported ZVI was also
verified '?°. Compared to iron-loaded on AC or biochar, magnetite-loaded carbon

t 130, owning to

material could endure the defect of secondary separation for by-produc
magnetic properties of FesO4 which has attracted much attention for the separation
procedure in Cr(VI) removal 3135, However, magnetite can easily be inclined to lose
magnetic property as a result of oxidation to ferric oxide under acidic conditions 136, A
group of researchers decorated the multiwall carbon nanotube with magnetite

nanoparticles and then modified with 1,6-hexanediamine to treat acidic Cr(VI) solution,

this synthesized material presented good magnetic property and nearly reached 95%
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removal rate of Cr(VI) at pH 2.0 '¥7. In addition to the magnetite, y-Fe>Os3 had also
shown magnetic properties. Laboratory synthesized y-Fe.Os-carbon hybrids could be

separated magnetically after the removal of Cr(VI) from the aqueous solution (Fig. 1-

3).
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Figure. 1-5 The schematic demonstration of the removal of Cr(VI) by magnetic y-

Fe>Os-carbon composite 138, Copyright 2012, ACS Publications.

1.1.2.4.2. Sulfur-ZVI Composites

139 140

The reducible species like oxygen, protons '°°, and water can consume the
electrons originated from ZVI and could damage the utilization efficiency of ZVI to
target contaminants. Further, the sulfur compounds modified ZVI could alleviate the
unintentional reaction of ZVI with water, and the efficiency of the electron of ZVI could
be strengthened as a result. Notably, the findings have demonstrated the essential role
of sulfur in the decontamination of trichloroethylene (TCE) 3% 141-143 and florfenicol !4
by S-ZVI. Besides, it has been suggested that sulfur speciation like sulfate radicals
specified promising capability on pollutant degradation removal '¥°. A team of
researchers prepared the S-ZVI composite by mixing the desired amount of iron with
elemental sulfur in planetary ball milling within 4 h. Then, the obtained S-ZVI material
was employed to treat the Cr(VI) solution under aerobic conditions. The S-ZVI

composites appreciably increased the electron effectiveness of iron to Cr(VI) which

was 10.7-fold higher than bare iron. The enhancement effect of sulfur species was
14

Application of Mechanochemical Procedure on Aqueous Cr(VI) removal with
additives of activated carbon and Fe’/Fe,Os



M.C.Yi Fang

mainly ascribed to the FeS, which boosted the attachment of chromate onto the surface
of S-ZVI and transferred the electrons to chromate '#°. Similarly, the aqueous Cr(VI)
was eliminated by S-nZVI composites with a higher S/Fe molar ratio '¥, and the
removal process has been demonstrated in Fig. 1-6. Based on the prior literature about
pollutants elimination by iron under aerobic and anaerobic conditions, it was observed
that undesirable hydrogen evolution reaction between iron and water also depleted iron
under anaerobic condition, thus decreased the longevity and electron selectivity of iron
148-132 ' A comparison between bare iron and sulfur-modified iron was also executed, it
was found that the latter implied conservative hydrogen production rate and amount 3,
A plausible explanation for the suppressed reactivity of ZVI to water was that the sulfur-
modified ZVI inclined to hydrophobic and the reaction of hydrogen evolution from ZVI
and water was mitigated as a result. It made sulfur-modified iron a potential material
for anaerobic groundwater remediation. Recent cases also supported the hypothesis that
sulfur could fascinate the selectivity and activity of iron to the targeted pollutants '>%, Tt
has been demonstrated that S-nZVI fixed with carboxymethyl cellulose (CMC)

presented higher mobility and stability in the sub surfaces for field applications 5.

Higher surface area

-— - -

: Enhanced electron transfer |

|\ Direct reduction ),

Figure. 1-6 Removal of aqueous Cr(VI) by S-nZVI. The increased surface area after
modified with sulfur fascinated the adsorption of Cr(VI), and the FeSx favored the

corrosion of ZVT to target Cr(VI) 47, Copyright 2019, Elsevier.
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1.1.2.4.3. Bimetallic Composites

Previous studies have defined bimetal of iron as incorporating the second metal
such as Al, Ni, Pt, Ag '3 and Pd %7, Cu !*® with iron. The chemical and electronic
properties of the bimetallic materials are optimized evidently as compared to the
solitary metals '>°. Table 1-2 is illustrating a summary of the published reports on Cr(VI)
removal by ZVI-based bimetallic materials. The main drawback of the bimetallic
materials is the employment of noble metals like Ag and Pt or the use of toxic metals
such as Ni and Cu as second metals. However, it makes the rarely available metals to
fabricate bimetal of iron for pollutants remediation in the large-scale application. Al as
the most abundant metallic element on the earth was an ideal candidate for Al-Fe
preparation. Besides, the elemental Al has been extensively employed for the removal
of a variety of pollutants such as Cr(VI) 190163 bromate '**, TCE ' and phenol !%. The
Fe-Al bimetallic particles were fabricated via depositing iron on the Al surface for
Cr(VI) removal. The desired mass of Al was added to deionized water, which was
priorly mixed with the desired concentration of FeSO4 solution. Then it was rinsed and
dried after stirred for 30 min. Different ratio of Al/Fe was obtained by regulating the
dose of Al and Fe, the synthesized Fe-Al material was the Al-cored particle and Fe was
deposited on its outer layer. The galvanic cell based on Fe as anode and Al as cathode
for the electrode potential of Fe (-0.44V) was higher than Al (-1.67V). For this reason,
the Cr(VI) was reduced by electrons donated by the Al core and transferred through the
iron shell. The iron accelerated the electrons transfer from Al to Cr(VI) and higher
removal efficiency was achieved over a wide range of pH (3.0 to 11.0) 7. Similar
studies of the galvanic effect of Al-Fe bimetallic particles for Cr(VI) elimination from

aquatic environments was conducted by ¢

. In contrast to earlier findings, however, Al-
Fe bimetallic that ZVI coated with zero-valent Al has shown lower Cr(VI) removal
capacity. However, another research team found that Fe/Al bimetallic material has

demonstrated 21 folds higher Cr(VI) removal efficiency than Al/Fe bimetallic 68, It
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was due to the oxidation of the Al layer by Cr(VI). Then, the electrons from Al and ZVI
was quarantined from contaminants, but concerning iron-coated Al particle, the
pathway of electron transfer from Al to Fe was unaffected by contaminants. The
oxidized Fe?" by Cr(VI) could be reduced to Fe’ by Al spontaneously. A similar

galvanic cell effect on Fe/Co bimetallic has been demonstrated in Fig. 1-7.
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Figure. 1-7 The removal process of Cr(VI) by Fe-Co bimetallic coated by tea-
polyphenol. The removal efficiency enhanced after incorporated with Co, ZVI was
depleted by Cr(VI) and the Co can maintain the activity for ZVI that electron derived

from Co can reduce Fe** to Fe?*. The reduced Cr(III) separated from the solution by

precipitated as Cr(OH)3 and CrxFeix(OH); with Fe** 16°, Copyright 2016, Elsevier.

As compared to the laboratory scale liquid reduction method, the melting and ball
milling techniques for synthesis of bimetals exhibited higher homogeneity, superior
mechanical stability, and greater potential in large-scale applications 7173, Typically,
the desired ratio of Al and Fe powder in MgO crucible is melted in a vacuum melting
furnace, and then the obtained Al-Fe was crushed into particles for further applications

in the removal of targeted contaminants '73. It was noticed that Al-Fe particles

17

Application of Mechanochemical Procedure on Aqueous Cr(VI) removal with
additives of activated carbon and Fe’/Fe,Os



M.C.Yi Fang

consisting of 20% Fe prepared through melting method has indicated favorable removal
performance of Cr(VI) 74, According to the available literature, ball milling is the most
widely used mechanical procedure for the preparation of bimetallic materials for
pollutants elimination 7>-'7%, The bimetallic materials produced by ball milling have
demonstrated some advantages, such as simple operation, easy scaling up, and time-
saving. However, as far as we know, most of the researches up till now did not focus
on the preparation of Fe-Al particles through high energy ball milling, thus, the study
would be more beneficial if a wider range of ball milling procedure for Fe-Al

preparation is explored, especially for Cr(VI) eradication.
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Table 1-2 ZVI-based bimetallic materials for Cr(VI) removal

Bimetals Synthesis methods Reducing  Removal (%) Operational Removal mechanism Refs(s)
agents pH

Ni-ZVI Liquid-phase reduction KBH4 96.33-60.31 2.0-7.0 Reduction, adsorption, and precipitation 7

Ni-ZVI Liquid-phase reduction NaBHj4 100 1.0-3.0 Reduction, adsorption 180

Mont- Liquid-phase NaBHj4 100 1.0-3.0 Reduction 180

supported  reduction

Ni-ZVI

Ni-ZVI Chemical vapor deposition H> 83 N/A Reduction, adsorption 181

Cu-ZVI Liquid-phase reduction NaBHj4 50.57 2.0 Reduction, adsorption 182

Pd-ZVI Liquid-phase reduction NaBH4 95.5-73.0 3.0-8.0 Reduction, adsorption, and precipitation '8

Cu-ZVI Liquid-phase reduction Extract of 94.7 5.0 Reduction, adsorption, and precipitation 34
green tea

Cu-SZVI  Liquid-phase reduction Fe 97.9 8.0 Reduction 185

Al-Fe Liquid-phase reduction Al 90.0 7.0 Reduction, Precipitation 167

N/A. Not available
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1.1.2.4.4. Magnetite-ZVI Composites

Magnetite or ferrosoferric oxide (Fe3;Os4) i1s commonly found in nature and
characterized by properties like conductivity, magnetism, high surface area, and
reducibility. Its importance in literature has been recognized in the elimination of
targeted contaminants 7! 186192 Tt was reported that Cr(VI) could directly reduce by
magnetite . Further, the coupling of magnetite with iron for the
degradation/reduction of contaminants would not only accelerate the corrosion of iron
but also easily separate from aqueous solutions '*+1%, The structural Fe** of magnetite
can act as an electron channel from iron to pollutants. Briefly, Fe**(s) in the octahedral
site of magnetite could be oxidized by targeted contaminants to Fe3*(s), and then the
oxidized Fe**(s) could be reduced back to Fe**(s) by accepting electrons from Fe® and
this process is thermodynamically favorable, as suggested by standard electrode
198, 199

potential, which is expressed as in Eq (1-5) 7, and without construal constrain

Regarding this, Fig. 1-8 is showing synergistic effects of Fe;04/Fe on Cr(VI) removal.

2Fe3*(aq) + Fe'(s) = 3Fe**(aq) AE=1.21V (1-3)
Fe%/Fe;0, mediated
Cr g\HI)Cr(VI) Reduction
‘Adsorption-coupled reduction’ AL
by surface functional groups |
Cr(I) VD) .

AA
A

A

Yeast Cell Surface

\
\
Magnetite nanoparticles
@ | Zero-valentiron nanopaniclcs\
Electron donating group
- Cr(VI) binding group /

N | Cr(11D) binding group

Figure. 1-8 The Yarrowia modified Fe3Os-Fe® employed for Cr(VI) elimination. The
oxidized Fe**(s) from Fe3O4 by Cr(VI) converted to Fe* (s) by Fe? 200290 Copyright

2013, Elsevier.
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To determine the effect of Fe?*(s) of magnetite on Cr(VI) removal by Fe3Os-Fe?,
the removal performances of Fe’-a-Fe; O3, Fe-y-Fe>03, and Fe’-FeOOH were compared
with Fe%/Fe3;04. The Fe’/Fe;Os composite depicted a higher Cr(VI) conversion rate
(65%) as compared to the other three composites. In contrast, the bare Fe’ and Fe;O4
only converted 15% and 25% Cr(VI), respectively 2°!. Moreover, the conventional
Fe®/Fe304 composite failed to consider the long-term impact of neutral or alkaline
conditions. For instance, the Cr(VI) removal efficiency by Fe’/Fe;04 composite dropped
significantly from 100% to 35.88 % as pH increased from 7 to 10 2°2. Furthermore, a
previous study reported that the reduction of aqueous Cr(VI) by magnetite was ceased
after 10-20 A surface of magnetite was oxidized into maghemite (y-Fe»O3) at pH 7.0 203,
It was might be due to the surface passivation effect. Recently, a hydroxyl-modified Fe’-
Fe;O4 was fabricated with the addition of Na;EDTA complexation, and then it was
employed for the removal of Cr(VI). The results indicated that the concentration of
Cr(VI) was lessened continuously, which could be attributed to the contribution of
complexation of Na,EDTA with Fe*" and Cr** 178, Moreover, the EDTA ligand assisted
sequestration procedure has gained much attention presently due to its cost-effectiveness
and its outstanding capability in the elimination of various contaminants like heavy
metals, organic matters, etc. 2%42%, Nevertheless, the existing accounts have failed to
resolve the contradiction between in-situ application and environment protection, the
degradation of EDTA is important before its discharging to prevent the environment
from EDTA toxicity 2!°. Thus, more research efforts would be required to find out eco-
friendly ligands which can assist the removal of Cr(VI) from the environment by

Fe®/Fe304 composites.

1.1.2.5. Mechanism of Cr(VI) Sequestration by ZVI-based materials

The route of Cr(VI) removal by ZVI-based materials is mainly controlled with the
combination of reduction, adsorption, and co-precipitation, wherein the leading

reduction process is effected essentially by pH and DO. The reduction capacity of
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pristine iron was inhibited due to the intrinsic defect caused by the passivation layer
under alkaline and aerobic/anaerobic conditions. The resulting constitution of ZVI after
treating with Cr(VI) could clearly be described by two linear dimensions 2!l
Deliberately formulated ZVI-based materials have been used to preclude the
passivation on the surface of ZVI to promote the electron efficiency and permanence
of iron. In the current review, we predominantly consider the mechanism of encouraged
Cr(VI]) reduction potential of ZVI after incorporated into AC/biochar-ZVI, ZVI-based
bimetal, sulfur-ZVI, and magnetite-ZVI composites.

The effect of the galvanic cell has been evidenced to be the main path for Cr(VI)
reduction by AC-supported iron 2! and ZVI-based bimetal 213, The electrons derived
from ZVI could be transferred to the target contaminant via AC and the corrosion of
ZV1 was facilitated, consequently. The produced secondary reductant Fe?*
accompanied with the oxidation of Fe° could further reduce Cr(VI), and the Cr(III)
could be precipitated with Fe** because the improved pH of the aqueous solution was
initialed by redox couple of Cr(VI)-Fe’/Fe?". Moreover, the adsorption property of AC
on Cr(VI) could advance the reduction process.

Based on the reduction potential difference between Fe’ and another metal in the
bimetallic pair, Fe® could serve as an anode in the galvanic cell when coupling with less
active metal and could also act as a cathode instead when coupling with the higher
active metal 2'%. The electrons transported directly from anode Fe? or indirectly through
less active metal to contaminant, this pathway was greatly related to the configuration
of ZVI-based bimetallic particles. In general, these two electron relocation channels
were both driven by reduction potential difference of Fe’-pollutants or Fe®-Cu/Ni

215, 216

couples when Fe® dispersive homogeneously in bimetallic . The electrons

originated from the Fe® core could simply be transferred indirectly through inert shell
metal like Cuor Nito Cr(VI), conversely. And the core-shell structure could deteriorate

0 158,217

the undesirable effect of the passivation layer on Fe . The effect of Cu layer on

iron endurance to contaminant transformed from positive to negative when increased
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the mass of planting Cu on the iron core from heterogeneous and loose to dense and
uniform film, owing to the galvanic corrosion of Fe-Cu was readily formed with loose
Cu layer '8, While Fe° performs as a cathode in bimetallic material, the reduction of
contaminants arisen from three kinds of electron transportations; electrons from Fe?,
higher active metal (e.g., Al), and the galvanic cell of bimetallic 2. Fe-Al bimetallic
prepared by liquid reduction method or replacement reaction suggested a desirable
Cr(VI) removal efficiency over a wide pH range (3-11), three electron assignment paths
mentioned above contributed appreciably to the Cr(VI) reduction and the subsequent
precipitation removal 72,

The reduction of Cr(VI) by sulfur-modified ZVI involved two phases, Cr(VI)
reduced directly by Fe® and indirectly by the regenerated Fe** from redox of Fe**/Fe’
couple 2?°. The sulfured iron film on the surface of the iron core could enhance the
corrosion of Fe’ via the electron transfer from Fe® to oxidized Fe**. Meanwhile, the
Cr(VI) reduction performance would be un-favored once excess sulfur was introduced
as the core Fe? would be covered by a dense sulfidation iron layer 22!, It was also found
that the regeneration of Fe*" was absent in the reduction of Cr(VI) by excess sulfur
modified iron, it can inference that the iron core was overlaid completely by the outer
FeS layer and constrained the regeneration of Fe** from soluble aqueous Fe** 222,
Besides, the surface area of iron increased after the sulfidation, which helped in the
adsorption of Cr(VI) and succeeding reduction. Corresponding to the passivation of
Z V1, the virgin magnetite was also expected to be passivated with maghemite, goethite,
and/or CrixFexOOH under alkaline pH during reaction with Cr(VI) which inhibited the
reduction of Cr(VI), subsequently 7!. Similarly, a research study implied that the
removal efficiency of Cr(VI) on magnetite-ZVI composite was 96.4 %, while about
18.8 % and 48.8 % were noticed by ZVI and FesOs, respectively 22, It speculated that
the regeneration of Fe?' in magnetite sponsored the enhancement of Cr(VI)
sequestration in magnetite-ZVI composite compared to bare ZVI 22, The octahedrally

located Fe® on FezOs4 cycled the oxidized Fe*™ in magnetite to Fe*" for the further
Yy g
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reduction of Cr(VI) with Fe’. The enhancement of electron selectivity of Fe to Cr(VI),
acceleration of corrosion of Fe’, and the regeneration of Fe?* are the main mechanisms
that contribute to the superior Cr(VI) removal capacity by ZVI-based materials. The
effect of galvanic cell and the conductive layer covered on Fe? accelerate the electron

transfer from Fe® to Cr(VI), particularly.

1.1.2.6. Comparison with others iron-based materials

The Fe(Il)-containing minerals such as pyrite (FeS,), ferrous sulfide (FeS), and
green rusts (GRs) established promising properties on the environmental remediation
technologies 22422, The GRs as the layer structured Fe(IT)-Fe(III) hydroxides possessed
an outstanding competence on pollutants reductive removal owing to having a higher
content of Fe(I1). Meanwhile, the GRs were unstable and the stability modification was
essential to lengthen the endurance. Green rust chloride immobilized with silicate (Si),
phosphate (P), fulvic acid (FA), CMC, and bone char (BC) were used for Cr(VI)
removal, and the results indicated that the release of Fe(Il) was retarded after
immobilization and fast removal of Cr(VI) was noticed by using over 90% of Fe(II) 2%’.
Bae et al., (2020) studied the capacity of Fe(II)-phosphate mineral (i.e., vivianite) on
Cr(VI) removal, it found that Cr(VI) was reduced by structural Fe(Il) in vivianite and
then formed a complex with the generated mixed-valence Fe-phosphate 228, Recently,
the FeS, particles presented an effective Cr(VI) eradication over a wide pH range (6.0-
9.5) 22°. To reinforce the removal of Cr(VI), the FeS-loaded titanate nanotubes were
prepared hydrothermally, the Cr(VI) was reduced efficiently by FeS and the produced
Cr(III) was adsorbed on titanate nanotubes simultaneously 23°. In general, a wider scope
of iron-based materials that are not limited to ZVI-based materials or Fe(II)-containing
minerals would help us to extend the application of iron-based materials on Cr(VI)

sequestration.

1.1.3. The governing conditions for ZVI performance
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1.1.3.1. pH

The speciation and oxidation states of Cr(VI) are greatly dependent on the value of
solution pH. The species of Cr(VI) in aqueous solution consists of chromic acid
(H2CrOs4), bichromate ion (HCrOs'), chromate ion (CrOs*), and dichromate ion
(Cr207%), to illustrate the formation process of Cr(VI) complexes, the equations can be

seen in Egs (1-6)-(1-8) 23!,

CrO4* + H" =HCrOy4 pKi=6.51 (1-6)
CrO4* + 2H*= H2CrO4 pK>=5.65 (1-7)
2CrO4* + 2H"=Cr,07* " H20 pKs=14.56 (1-8)

The speciation of hexavalent chromium (1000 ppm) as a function of pH was calculated
based on the value of pK, the Fig. 1-9 reveals that the predominant species of Cr(VI)

are HCrO4 and CrO4> which exists at below pH 5.0 and up to pH 8.0, respectively.
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Figure. 1-9 Speciation diagram of (a) Cr(VI) and (b) Cr(IlI) at different pH
Further, the half-cell reactions of Cr(VI) under acidic and alkaline conditions are
expressed as in Egs (1-9)-(1-10), respectively 232. Acidic solution favors the oxidation
state of Cr(VI), on the contrary, Cr(VI) presents the least significant oxidation state
under neutral and alkaline conditions. It was demonstrated that the reduction rate of
Cr(VI) by Fe® increased notably for near 20 times from pH 7.5 to 5.5, and a negligible
Cr(I1T) was detected after pH increased to 8.0. While, the logarithmic value of the first-
order rate coefficient of Cr(VI) removal as a function of pH value is highly linear fitted

which the slope is 0.72 + 0.07 233. Further, a team of researchers stated that their data
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strongly supported the view of Alowitz et al. (2002) that the H" accelerated the corrosion
of iron and promoted the Cr(VI) reduction. It was found that the removal efficiency of

Cr(VI) was significantly declined from 97 % to 50 % as pH increased from 4.0 to 10.0

234

Cr07 + 6¢ + 14H" — 2CP* + 7TH20 Eo=1.36V (1-9)

CrOs2 + 4H0 + 3¢ — Cr(OH)y +40H-  Eg=-0.13V (1-10)
Fe’ + HCrO4 + 7H" =Fe&** + Cr** +4H,0 Acidic conditions (1-11)
Fe® + CrO4* + 2H,0 = Fe** + Cr¥* + 40H" Alkalic conditions (1-12)

It should be noted that redox reactions between Fe® and Cr(VI) (Egs (1-11)-(1-12))
were varied substantially as pH. Furthermore, the pH of the solution will increase as the
redox reaction carried on either due to the protons consumed or hydroxyl ions (OH")
generated. Referred to the theory of point of zero charge (pzc), the material presents the
positive charge when the pH of the aqueous solution is below the pH of pzc (pHpzc), it
exhibits the negative charge when solution pH surpasses the value of pHp.c, conversely
235, Previously the pHy,c value of ZVI was reported around 7.7-8.3 2°6-23° Thus, it can
be concluded that ZVI will be negatively charged at pH over 8.3 and the transport of
anion chromate in bulk solution to ZVI surface will be inhibited due to electrostatic
repulsion.

To further demonstrate the alkaline condition post side effect on Cr(VI) removal,
nano-ZVI was synthesized by the liquid reduction method and was applied for Cr(VI)
elimination. It was observed that the removal rate of Cr(VI) decreased around 3-fold
from pH range 3.0-4.0 to pH 9.0, meanwhile, the pH of the solution was increased from
3.0 to 6.2 within 60 min 24°, Contrary to the previous findings that increasing pH has a
post negative effect on Cr(VI) removal, however, the removal efficiency of Cr(VI) was
higher at pH 5.0 under Fe’/H,O system between pH 4.0 and 6.0. Comparing to pH 5.0,
iron showed a higher reduction capacity at pH 4.0 but the reduced product of Cr(III)
was soluble and remained in solution. Furthermore, at pH 6.0, the reduction rate of
Cr(VI) was declined greatly due to the minor availability of free protons . Here, the
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major source of uncertainty is the applied method for the evaluation of the removal
performance of Cr(VI) by iron. Generally, the removal mechanism includes the
combination of reduction, adsorption, and co-precipitation. Regarding monometallic
iron, the removal was mainly contributed by reduction and adsorption at acidic
conditions, reduction and co-precipitation under neutral or alkaline conditions. Most
accepted equations for removal capacity of Cr(VI) can be seen in Eqgs (1-13)-(1-14).
qi=(co-ccrevn)/co (1-13)
q2=(Co-Ctotal Cr)/Co (1-14)
Wherein, qi and qz2(mg/g) are the removal capacity, co(mg/L) is the initial concentration
of Cr(VI), ccrvy and crotal cr (mg/L) are the concentrations of Cr(VI) and total chromium
(Cr(V1), respectively. For the Eq (13), it was observed that the value of q; decreases
gradually as the increase of pH because of the drop of Cr(VI) reduction rate, whereas
the variation of q, as pH was affected by Cr(VI) and the reduced product Cr(III) for the
Eq (14). In brief, reduced soluble Cr(IIl) decreased gradually as pH increase and started
to precipitate when pH over 5.0, and the residual concentration of Cr(VI) increased as
pH. Therefore, the value of g> was not linearly related to pH. This illustrated the optimal
pH for the removal of Cr(VI) by Fe® was not the lower value when employed Eq (14).
Although extensive research has been carried out to assess the capability of iron for
Cr(VI) elimination, however only a few researchers have been able to draw a systematic
approach 241243 Thus, it was found that a much more systematic approach would result
in the identification of reduction and removal capability of iron, a complete removal
process should involve the conversion of Cr(VI) to Cr(IIl) and the final separation of

Cr(IIT) from solution.

1.1.3.2. Dissolved Oxygen

The erosion of iron is highly affected by dissolved oxygen (DO) in aqueous solution,
the oxidation product can be seen in Eqs (1-15)-(1-17), it was demonstrated that in the

presence of a high concentration of DO in solution, ferrous ion (Fe**) can be further
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oxidized to ferric ion (Fe**) and then could be precipitated with hydroxide (OH") 2%,

While, Fe' is reported as an effective reductant for Cr(VI) 247-248,

2Fe® + O, + 4H" = 2Fe?" + 2H,0 (1-15)
4Fe?* + 4H" + O, = 4Fe** + 2H,0 (1-16)
Fe** +30H = Fe(OH)s(s) (1-17)

It was documented that iron erosion under anaerobic implies a slower rate than that
under aerobic, as shown in the Eqs (1-18)-(1-19), due to the formation of ferrous (oxy)

hydroxides (Fe(OH).) instead of ferric (oxy) hydroxides (FeO(OH)). It was found that

Fe(OH); remained stable in free oxygen and at low temperature 3% 24,
Fe + 4H,0 = Fe?* +2H, + 40H- (1-18)
Fe?* + 20H- = Fe(OH)a(s) (1-19)

In general, oxygen may compete for the available sites and electrons of iron with
contaminants like Cr(VI) and reduce the efficiency of the electron. On the other hand,
the desired concentration of DO stimulated the generation of soluble Fe?* and promoted
the elimination of pollutants 2%,

The Fe?* was stable under acidic conditions in the presence of oxygen but could
easily be oxidized by oxygen under alkaline conditions. The reaction kinetics of Fe**
with Cr(VI) under pH 2.0 was higher than those under pH 6.0 for two orders of
magnitude 246 231252 Tt meant that Fe** predominant the redox reaction with Cr(VI)
under acidic solution in the presence of oxygen. To further demonstrate the role of Fe?*
on Cr(VI) removal under acid/anaerobic solution, 1,10-phenanthroline was introduced
as a populated indicator for Fe* into Cr(VI)/Fe’ system to complexes strongly with Fe?*.
Hence, the availability of Fe?* to Cr(VI) was inhibited, and the results indicated that the
removal of Cr(VI) was substantially suppressed in the presence of 1,10-phenanthroline
220 Similar reports were also supported this idea by adding 1,10-phenanthroline to

204,221, 253

isolate Fe?* from acid/anaerobic aqueous solution . The generated Fe?" abound

in bulk solution which verified by the results that removal rate of Cr(VI) impeded after

introducing 1,10-phenanthroline complex. Notably, the data from several sources have
s s 07 08
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identified that the increase in removal performance of Cr(VI) resulted from the produced
Fe** under oxic solution that associated with the Fe® surface-bound with Fe?*, not just
the free Fe?" in bulk solution 229254,

The reduction product of Fe’ in Cr(VI) solution favors forming the y-FeOOH or o-
FeOOH over a-Fe,O3 or y-Fe>03 233237, Wherein the iron oxyhydroxides (goethite and
lepidocrocite) had shown relatively high specific surface, and the reduced Cr(III) could

258

easily be adsorbed on them “>°. The iron oxyhydroxides incorporated with Cr(III) could

further transform to sparingly soluble CriFei—x(OH)s 5% 20, This claim has been

completed by many researchers 8 261,262

. Briefly, it was found that the product was
different under oxic and anoxic conditions of Fe’/Cr(VI) setup, meanwhile, the removal
efficiency under oxic was much better than those under anoxic conditions. The porosity
of the FeCr204 layer was predominantly covered on iron under oxic/acidic conditions,
while the compact layer of hydroxide/oxyhydroxides of Fe(Ill) and Cr(III) was
produced under anoxic/acid condition. The redox product of FeCr.O4 under oxic/acid
conditions substantially coincided with the product of Fe** and Cr(VI) 26°. It can be
concluded that the governing mechanism for Cr(VI) removal by iron under oxic/acid
conditions was due to the generation of Fe?" from iron with oxygen and then reacted
with Cr(VI).

A recent study concluded a converse view that FeCr,O4 was formed under
anoxic/acid condition, while the iron/chromium oxyhydroxides appeared in the presence
of oxygen under acid condition, nevertheless, the presence of oxygen impaired the
removal rate of Cr(VI) by iron ?*°, The most likely cause of either positive effect or
negative effect of DO on Cr(VI) removal under acid condition was the transformation
of redox product of Fe?/Cr(VI) with DO concentration. Typically, the desired amount of
oxygen could accelerate the corrosion of iron and the generation of reductant Fe*
accompanied with reserved protons depletion, and the Cr(VI)/Fe?*(aq) and Cr(VI)/Fe**(s)
(bounded on Fe®) couples could generate loose FeCr,04. Adversely, the excess oxygen

could deteriorate the effectiveness of iron through further oxidation of Fe** to Fe** by
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Fenton reaction 24, and the consumed protons could produce compact CrxFei«(OH)s,
simultaneously. Thus, more efforts are required to find the exact critical value of DO
concentration. Previous studies about oxygen influence did not focus on its
concentration in solution, and most of the attempts were made to compare the aerobic
and anaerobic by aeration with oxygen or nitrogen gas 265 26 Furthermore, the
passivation layer composed of hydroxide/oxyhydroxides of Fe(Ill)/Cr(IIl) on the
surface of iron hindered the electrons transfer from iron to Cr(VI) under over oxygen
content 3. The shielding effect of the passivation layer formed in the presence of oxygen
is evidenced 24,

Altogether, the effect of DO on Cr(VI) removal by ZVI was not only dependent on
solution pH but also relied on its concentration. It could be divided into the following
five pathways: (1) The important intermediate reducing agent Fe?* that originates from
Fe® contributed to the elimination of Cr(VI) under lower DO and acidic conditions; (2)
the higher value of DO under acid conditions could oxidize immoderately Fe** to Fe**
and weaken the electron efficiency of Fe’; (3) under anaerobic/acid conditions, the
protons accelerated the erosion of Fe® and the produced Fe?" could participate in the
reduction of Cr(VI); (4) Due to the instability of Fe*" under aerobic/alkaline conditions
and the generated compact precipitate covered on the Fe, and the durability of Fe’
deteriorated accordingly; (5) The Fe® and the produced Fe?* both were involved in the
reduction of Cr(VI) in the deficiency of DO under alkaline conditions, which improved
the removal efficiency of Cr(VI). The specific information about the co-effect between

DO and pH is shown in Table 1-3.
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Table 1-3 The co-effect of DO and pH on Cr(VI) removal by iron

Aerobic/alkaline Anaerobic/alkaline

Anaerobic/acid

Aerobic/acid

Operation

High DO

Low DO

conditions

Deteriorate performance of  Strengthen the performance

Strengthen the

Deteriorate

Strengthen the

Effect

iron of iron

performance of iron

performance of

performance of

iron

iron

Fe’ + 4H,0 = Fe*" + 2H> + 40H

Fe’ + CrOs” + 2H20 =Fe’" + Cr’" + 40H
3Fe”" + CrO4” + 4H20 = 3Fe’ + Cr'" +
SOH

2Fe” + 2H,0 + 02 = 2Fe*" + 40H
4Fe*" + 0y + 2H20 = 4Fe*" + 40H

Fe’ + 2H" = Fe*" + Ho(gas)

3Fe’" + HCrO4 + 7TH'=3F¢’" + Cr'" +
4H,0

Fe’ + HCrO4 + 7H" =F¢’" + Cr’" + 4H,0

4Fe’ + 30, + 12H = 4Fe*" + 6H20

2Fe + 02 + 4H' = 2Fe* + 2H20
Fe’ + HCrO4 +7H" =F&*" + Cr*" +4H20
Fe*' + HCrO4 +7H" =Fe*" + Cr*" +

4H->0

Mechanism
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1.1.4. Practical Applications of ZVI-based materials

Since it was reported in 1925, permeable reactive barrier (PRB) is attracting a lot
of interest in the remediation of groundwater pollutants such as organic matters, heavy
metals, inorganic matters 267-26%, Tt was recorded in 2009 that there were 13 full-scale
PRB present worldwide. From them, 6 PRBs were equipped with ZVI as reactive media
269 The field-scale of PRB was operated under more complicated conditions as
compare to the laboratory-scale, such as they did face fairly slow flow, low dissolved
oxygen, relatively high pH value, lower temperature, low contaminants concentration,
and a range of inorganic anions like CO3*, SO4*, NO3 27% 27! In the laboratory studies,
the principal mechanism for Cr(VI) removal by ZVI-PRB was presumed to be the redox
reaction between Cr(VI) and Fe®, which could be undermined by the formation of
insoluble Fe(IIl)/Cr(IIT) (oxy) hydroxides phase 27>. While the removal process for
Cr(VI) under field sites would be uncertain owning to the other competitive ions. In
general, more attempts are needed to transfer laboratory-based theory to field-scale
application.

Longevity and reactivity are the two major considerations in the long-term
operation capability of PRB 273, An early example of research into the reactivity of ZVI
PRB has demonstrated that the intensively reducing process and high pH value could
be associated with the diminish of reactive media due to the precipitation of inorganic
species, which consequently clogged the permeable pore of PRB 274, Further, about
0.88%/year decline in porosity of ZVI PRB was noticed, which hinted that the loss of
carbonates (90%), calcium (82%), and sulfate (69%) in groundwater flow through the
PRB 275, Moreover, the column experiments with various groundwater geochemistry
for sequestration Cr(VI) through ZVI were also investigated to elucidate the effects of
hardness and carbonate on Cr(VI) removal by ZVI in groundwater, and their results
indicated that the capability of ZVI dropped slightly in the presence of calcium hardness.
Notably, the Cr(VI) removal capacity of ZVI decreased by 17% under magnesium

solution. Furthermore, it was found that a 33% decrease in ZVI performance was
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noticed in the co-present of hardness and carbonate in columns 27°. Similar research
implied the bicarbonate gave the mildest impact on Cr(VI) removal by ZVI compared
to calcium, magnesium ions, whereas bicarbonate together with calcium posted the
greatest impact on ZVI efficiency for Cr(VI) removal 2”7. On the other hand, not all
deposits on the barrier are unfavorable for the reactivity of ZVI media, the ferrous
precipitates like magnetite and green rust could transfer electrons from ZVI to
pollutants 27827, Tt can therefore be assumed that the permeability of PRB could drop
gradually due to the formation of precipitate on the surface of ZVI particles, but the
reactivity of ZVI could either reduce or enhance with time, which can be correlated
with the geochemical conditions of groundwater like DO and pH.

The longevity of ZVI PRB could be referred to as its potential to maintain the
reactivity of filling media and hydraulic performance, while the hydraulic performance
was related to the residence time of plume pass through the barrier 2*°. Construction
methods, reactive material, and groundwater constituents affected the life cycle of PRB.
The data from several sources have identified that the trench-based construction method
showed significant remediation capacity on Cr(VI) compared to the caisson-based
construction method. Notably, the ZVI and iron oxide-coated sand could reduce the
environmental impact on PRB. Natural organic matters (NOM) in groundwater could
lower the PRB capability due to the depletion of the higher amount of ZVI 28!, For
instance, no significant reduction in the performance of PRB was observed even after
continuous operation for 13 years °!- 282,

In contrast, the study of Bronstein, et al (2005) noticed a significant fluctuation in
the removal performance of Cr(VI) after the operation of one year 233, Thus, It has been
presumed that the uneven depletion of ZVI in plume could decline the longevity in the
PRB over time 24, Apart from the study aimed at the construction method, groundwater
constituents, and media reactivity, more comprehensive hydrology of groundwater
should be examined. Therefore, the contaminants concentration distribution and flow
velocity changes should be taken into account for PRB design and installation. Besides

the bare ZVI used for PRB reactive media, the ZVI-based materials like S-nZVI and
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nZVI-SBA-15 have been developed as the substitute material for Cr(VI) isolation in
groundwater at pilot-scale or field trials 28286, Compared to single ZVI, ZVI-based
materials could prevent the reactivity loss of nZVI that results from congregating.
Various surveys have shown that the permeable reactive columns filled with activated
carbon fiber supported nZVI have exhibited a higher Cr(VI) removal efficiency 7.
Therefore, more research efforts are needed in this direction for shifting ZVI-based
materials PRB from laboratory-based data to practical implantation.

Moreover, the injection well technology is another most used method excluding
PRB technology for groundwater remediation 2*8, The media particles were prepared
as slurry before injecting into the polluted source sites or plume, in which the
extensively utilized media are ZVI and bimetallic particles of iron 2’!. Remarkably, the
Cr(VI) concentration declined substantially from 4-8 mg/L to 0.015 mg/L by employing
a composite of ferrous sulfate (Fe>SO4) combined with sodium dithionite (Na»S»04) as
the reactive media in the injection well 2%, Sodium dithionite could prevent the
premature oxidization of Fe?*, and could prevent the clogging of injected media, and
maintained effective hydraulic conductivity. Similarly, an over 96% degradation ratio
of TCE was noticed by injecting bimetallic particles of Fe-Pd gravitationally into the
groundwater 2°°. The particles were supplied at an optimal rate, which presented ideal
mobility and diffusion. However, the in-site remediation cases all required the ZVI-
based materials prepared on the spot, for example, the CMC-stabilized Fe-Pd composite
was synthesized on the site through liquid reduction right before injection into the wells
to minimize the reactivity loss of filling material ?°!. Thus, the transport, storage, and
cost of the raw materials are the potential impediments. Besides, long-term activity,
persistence, and dispersion of ZVI-based materials, the stability and mobility of the
treated contaminants both entail the advanced, easy-synthesis, and low-cost ZVI-based

materials 292294,

1.1.5. Barriers in Market Penetration of ZVI-Based Materials in Removing Cr
(VD)

From the acquisition of raw material, the preparation and performance evaluation
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of ZVI-based materials from laboratory-scale to commercial applications, the barriers
in market penetration are remained mainly attributed to the technology challenges,
toxicity assessment to ecosystems, and the cost. The performance of ZVI-based
materials in field trials or full-scale applications is rarely documented excluding nZVI.
A pilot-scale in-situ remediation test was conducted with commercially available nZVI
at Kortan in Hradek nad Nisou. The findings depicted that the concentration of Cr(VI)
and total chromium in groundwater were substantially decreased after injecting nZVI
with no observed effect on groundwater properties 2°°. While, a lot of laboratory-based
data has supported that template-supported nZVI or modified nZVI could prevent the

296,297 However,

agglomeration of the nZVI particles and impair non-target reactions
the longevity, reactivity, and removal mechanism of ZVI-based materials for Cr(VI)
removal in field remediation are still unclear and act as an obstacle to the market
penetration of this technology. The unintentional migration of nZVI through the soil,
water, and air can threaten the ecosystem, especially for plant cells, animal cells, and
microorganism cells 2°%:2°°, Thus, the toxicological effects of nZVI on organisms should
be addressed in future research 339, In the commercialized application cases of ZVI,
some companies prepared ZVI suspension with organic additives and dispersants to
promote diffusion and delivery of ZVI. However, more organic additives are needed in
terms of nZ VI for the higher surface area and smaller particle size 288, There would be
more regulation considerations on the organic additives and dispersants to the
ecosystem. Due to the presence of aggregation of nZVI in the subsurface environment,
the nZVI has shown inferior migration than surface-modified nZ VI, It was found that
the migration of nZVI could be enhanced significantly after coated with starch and
polyacrylic acid 392, However, the potential environmental risks of ZVI-based materials
are still unknown. Hence strategies to balance the potential environmental risks and
expected environmental interests of ZVI-based materials would be required in
clarifying the migration and toxicological impacts at specific sites. Further, as can be

seen in Table 1-4, the demand amount of ZVI for a project was so high. Given price

was $0.55-15/bs for ZVI from 325 pum to below 1 um. It’s a comparative high
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expenditure for the ZVI during the remediation project. Compared to ZVI produced
directly from the smelter, the ZVI derived from scrap iron and recycled material could
lower the expenses remarkably. Regarding the sparing information about the actual cost
for producing ZVI-based materials like sulfur-ZVI, Cu-ZVI, AC-ZVI, it’s urgent to

evaluate the cost for the synthesis of ZVI-based materials with scrap iron.

Table 1-4 ZVI remediation cases and the consumption
(https://hepure.com/product-list/case-studies/)

Mode of  In-situ or
Site background Contaminant Dosage
application  ex-situ

Vadose zone soils beneath a  Cr(VI) Hydraulic  In-situ 64,000 lbs
large manufacturing facility injection

The facility had operated for PCE?, TCE =~ PRB and In-situ 154,000 Ibs
50 years as a machine shop injection

where parts were degreased

by a variety of solvents

Former Dry Cleaner PCE Injection  In-situ 401,310 Ibs
Located in North Central PCE, TCE, Injection In-situ 145,000 1bs
Ohio and VCP

2 Tetrachloroethene

® Vinyl Chloride

1.1.6. Conclusions

Altogether, the ZVI-based materials have been well-recognized and
comprehensively employed for pollutants sequestration. This review has discussed four
conventional ZVI-based materials (ZVI-AC/biochar, ZVI-sulfur, ZVI-magnetite, and
bimetal of ZVI), two prevailing preparation methods (liquid reduction method and
mechanical ball milling procedure), and their applications on Cr(VI) removal. The
removal mechanisms have mainly involved the reduction, adsorption, and co-
precipitation. Besides, the developed performance of ZVI-based materials regarding
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the pristine ZVI could be attributed to the galvanic cell effect for ZVI-AC/biochar and
bimetals of ZVI, and the regeneration of ferrous ions for sulfur-ZVI and magnetite-ZVI.
Especially, the electron selectivity of ZVI to Cr(VI) was substantially controlled by the
DO and pH of the solution. One of the most significant findings of this review is that
the transfer of electrons from ZVI to Cr(VI) was appreciably dominated by five
pathways. Briefly, the acidic/low oxygen condition facilitated the removal capacity of
ZVI by generating more reductants, and the removal efficiency of ZVI on Cr(VI) was
suppressed under acidic/oxygen-rich conditions due to the over-exhaustion of iron by
oxygen, conversely. On the other hand, acidic/anaerobic conditions promoted the Cr(VI)
removal through accelerating ZVI hydrogen-evolution erosion, and the erosion product
aqueous ferrous ions were an effective reducing agent. The Cr(VI) removal rate was
deteriorated under alkaline/aerobic conditions due to the more susceptible oxidation of
Fe?* by oxygen under alkaline conditions compared to acid conditions. The last pathway
of DO and pH on iron capability under alkaline/anaerobic was that the produced Fe?*
contributed to the reduction of Cr(VI), which improved the removal efficiency of
Cr(VI). The insights gained from this study may assist in groundwater remediation
through PRB. Limited PRB field applications overlooked to consider the distribution
of Cr(VI) concentration and flow velocity gradient in groundwater, which could help
in optimizing the PRB dimension and avoid the uneven loss of ZVI media. More
information on technology challenges, potential ecosystem risk, and cost of ZVI-based
materials would help us to establish a greater degree of accuracy on the
commercialization of this technology. The following are the key suggestions for future
applications of ZVI-based materials:
® The selection of suitable ZVI-based materials is needed to reduce the
unintentional consumption of ZVI by Oz, water, or other untargeted pollutants
® The solution chemistry of contaminated sites should be vigilantly evaluated
because the utilization efficiency and selectivity to the aimed contaminants of
ZVI in ZVI-based materials is greatly affected by pH and DO

® The large-scale and low-cost production of ZVI-based materials is necessary.
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Although many ZVI-based materials have shown superior performance in the
laboratory-scale or pilot stage, the practical performance is rarely available, like
the PRB of ZVI-based materials

Migration and toxicology of ZVI-based materials in the aquatic environment or
soil are the potential ecological risk, thus the treated sites with ZVI-based
materials would require long-term monitoring, and the used ZVI-based

materials should be disposed of safely.
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Chapter II. Highly surface activated carbon to remove Cr(VI) from aqueous
solution with adsorbent recycling

2.1. Introduction

Chromium is a highly toxic contaminant in the effluents of electroplating and
tanning factories, threatening the health of humans by bioaccumulation in the food
chain 47, Cr(VI) and Cr(III) are the two main chromium species. Cr(VI) shows a higher
solubility, mobility, and toxicity as compared to Cr(IIl) #*®. There are not sparingly
soluble Cr(VI) compounds, but in the case of Cr(IIl), Cr.O3 is a compound that has a
very low solubility. Therefore to remove Cr(VI), it is a common practice to reduce
soluble anion Cr(VI) to Cr(III) followed by precipitation. Conventional reducing agents

447 which are effective in acidic

for Cr(VI) are sulfur compounds and iron salts
conditions. Under these conditions, the predominant Cr(VI) species are HCrO4 4¥.
Salts with the sulfoxy species SO3*, S;0s% as well as SOx(g) are the most common
reducing agents and rapidly reduce Cr(VI) at pH 2.5 ¥°% 431 Fe?* jons also reduce Cr(VI)
at a high rate at low pH #*2. Under acidic conditions, Cr** ions are predominant, and
aqueous solution pH should be increased with lime or base compounds to precipitate
them as Cr(OH)s(s). The optimum removal conditions for Cr(VI) and Cr(Ill) are
different from each other. Cr(OH)s3(s) precipitates as ultrafine particles with low
flocculation, settling, and filtration rates. As a result, the generated residue is a sludge
with high moisture content and is difficult to dispose of as a green discharge. Other
techniques have been proposed to remove Cr(VI) from aqueous solutions such as

453-456

electrodialysis followed by precipitation and electroreduction , ion exchange #7,

bioremediation **7 and modified zero-valent iron (ZVI) and zeolite materials 4% 437,
These techniques have the disadvantage of being of high energy consumption and high
cost to produce the synthetic adsorbents.

AC has aroused attention for the removal of heavy metals because of its low cost

460, 461

and easy handling . AC presents a high specific surface area and surface

functional groups and electron donors to convert Cr(VI) to Cr(IIT) #6>-46¢ It has been
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found that removal of Cr(VI) is effective at acid conditions in the range of pH 2-4 2737
467 At low pH, the AC surface functional groups are protonated, present a high
reduction performance 23! and Cr(VI) reduces to Cr(III) and precipitates as CrO3(s) 468
470, The high performance of AC for Cr(VI) reduction at low pH is similar to that shown
by protonated Ecklonia biomass, which was 3.7 times higher than FeSO4-7H,0 471,

Most waters and soils contaminated with Cr(VI) possess a pH higher than 3.0 so
their pH needs to be lowered to about 3 to remove the Cr(VI) according to these studies
472,473 Once the adsorption step is completed, the pH then has to be raised to around
neutral values to reuse the water and soil. These two steps of pH adjustments could be
avoided if the Cr(VI) removal were carried out at near-neutral pH. Under these
conditions Cr(VI) is predominantly as CrO4*> and Cr(IIl) as Cr(OH)s(s). After an
extensive literature survey, we found that Cr(VI) removal from water at near-neutral
pH has not been investigated in detail. Neither has been studied the Cr(VI) desorption
from the AC and the AC recycling.

The main aim of this study was to establish the most suitable conditions for the
removal of Cr(VI) with AC at near-neutral pH using an AC with a high density of
functional groups to enhance the Cr(VI) adsorption and regenerating the AC for its
recycling to the adsorption step. It is worth mentioning that this the first work facing
these two aspects for the processing of waters contaminated with Cr(VI). Batch Cr(VI)
adsorption tests were carried out at pH 6 and 7 with fresh and regenerated AC. The
functional groups on the AC were characterized by electrokinetics and surface titration
while the Cr species on the AC were identified by SEM (scanning electron microscopy)
coupled to an EDX (energy-dispersive X-ray spectroscopy). AC with the high density

of functional groups was prepared by high-intensity ball milling 315474,

2.2. Materials and methods
2.2.1. Adsorbents and chemicals

Granular coconut shell AC was purchased from Calgon Company. Its chemical

composition was 97% C and 3% inorganic residues *°. The HAC was prepared by ball
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milling -20 pm size particles of AC for 60 min, using a planetary mono mill
(Pulverisette 6, Fritsch, Germany) with steel balls of 5 mm in size as the grinding media.
10 g AC was mixed with the steel balls and milled at a speed of 300 rpm. This milled
product is referred to highly activated carbon (HAC) throughout this manuscript. Its
Dgo (particle size of cumulative undersize at 80%) size of the HAC was found to be
4um, the specific surface area was 928.5 m?/g, and the mean pore size was 15.3 A. The
HAC was dried at 60 °C for 24 hours, then kept in a plastic flask in a glass desiccator.
Analytical grade potassium dichromate (K2Cr2O7) was the source of Cr(VI) and
acquired from J.T.Baker. A stock solution with a concentration of 1,000 mg/L Cr(VI)
was prepared for all the adsorption tests. All aqueous solutions were prepared with
deionized water of 18.2 Q, which was obtained by passing distilled water through a
Barnstead E-pure II Water Purification Systems, Thermo Scientific, USA. 1.0 mol/L
aqueous solutions of both sulfuric acid and sodium hydroxide were used to adjust the
pH in the adsorption tests. All other inorganic chemical reagents such as HoSO4, H3POg,
NaOH, and NaHCO3 were of analytical grade.

2.2.2. Adsorbent characterization

Adsorbed chromium species on HAC were determined through SEM coupled to
an EDAX. The surface functional carboxyl and hydroxyl (phenolic, hydroxyl, and
lactols) groups of the AC and HAC were quantified by Boehm’s titration method 47°.
Briefly, the method is as follows: stir 200 mg AC in 100mL deionized water with the
desired NaHCOj3; and NaOH concentration for 20 hours, take a 50 mL aliquot and titrate
it with a normalized HCl aqueous solution. The content of carboxyl and hydroxyl
groups was determined from the loss of NaHCO3 and the loss difference of NaOH and
NaHCO;, respectively.

A Zeta Probe equipment (Colloidal Dynamics, USA) was employed to determine
the zeta potential of AC and HAC. For these measurements, a 3 g sample was stirred
ultrasonically in 100 mL with a 0.01mol/L NaCl concentration at 150 rpm for 5 min.

For the zeta potential measurements, 0.1 mol/L of both HCI and NaOH aqueous
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solutions titrated automatically the carbon suspension for pH adjustment throughout the
zeta potential quantification. All these measurements were performed at 22°C. The
equipment uses the electrokinetic sonic amplitude (ESA) to determine the zeta potential
of particles in suspensions. Two electrodes with a high-frequency electric field are
immersed in the suspension. For the moment, the particles oscillate back and forth with
the electric field and most of the particle oscillations cancel one another out, but the
oscillation does not take place near the electrodes, and a sound wave is generated from
there. The sound wave would hit a transducer along the delay rod. Therefore, the
transducer will produce a sinusoidal voltage signal by vibration. The generated
amplitude value of the sinusoidal voltage signal equals the ESA number. The

mathematic relation between ESA and dynamic mobility (wq) is given by Eq (2-1) 47¢

477,
ESA = A(m)(p%Zud (2-1)

where A() is the instrument calibration factor, which can be determined by calibration
with potassium silico tungstate solution (KSiW), ¢ is the particle volume fraction (3%
in our study), Ap is the density difference between particle (1.91 g/cm?®) and solvent
(1.00 g/cm?), p is the solvent density and Z is a factor related to the acoustic impedance
of suspension and delay rod of the instrument. Finally, us was converted to zeta

potential ({) by Henry’s equation, represents as Eq (2-2) 478

Ug = (%) f(ka) (2-2)

where ¢ is the dielectric constant, n is the water viscosity, f(ka) is Henry’s factor. A
simple value for f(xa) is 1.5, referred to the modified Smoluchowski equation 47

The specific surface area and pore size of HAC before and after Cr(VI) adsorption
were determined by gas adsorption measurement using an Autosorb-1, Quantachrome
instrument. A desired amount of sample was heated and degassed at 80 °C before
analysis, then nitrogen adsorption and desorption were conducted at 77.3 K liquid
nitrogen. The multipoint BET, BJH methods were used to calculate the specific surface

area and pore size, respectively.
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Raman spectra (DXR, Thermo scientific, USA) were utilized to obtain the detailed
carbon structure change caused by ball milling and XPS (X-ray photoelectron

spectroscopy) was used to determine the C, N, S, and O elements content.
2.2.3. Cr(VI) uptake experiments

Adsorption kinetics studies were performed with 5g adsorbent and 100 ml, 1000
mg/L Cr(VI) at pH 6 and 7. A 20 puL aliquot was withdrawn from the aqueous solution
at various time intervals such as 0.25, 0.5, 1, 3, 5, 7, 9, 12, 15, 30, 60, 120 mins. The
aliquot was analyzed for Cr(VI) and total Cr. Adsorption isotherms were built within a
Cr(VI) concentration range of 800 to 2000 mg/L at 295, 308, and 323 K by contacting
the adsorbent with the Cr(VI) for 24 h. Before the addition of Cr(VI), the AC and HAC
were pre-treated for the equilibrium of their surface groups with the aqueous solution
as follows: 5 g adsorbent was mixed with 100 mL deionized water, and the pH was
stabilized at 6 and 7 until the pH did not change, which occurred at about 30 mins.
Then, potassium dichromate was introduced to the suspensions at the desired Cr(VI)
concentration.

The HAC suspension was stirred in a 250 mL Erlenmeyer flask using a Thermo
scientific magnetic stirrer at 400 rpm at 22 °C. An aliquot of 100 uL was withdrawn
from the aqueous suspension and centrifuged at 8,000 rpm for 10 min using an
Allegra™ 21 Centrifuge (Beckman coulter, USA). The supernatant was analyzed for
total Cr and Cr(VI). Total Cr was determined through atomic absorption
spectrophotometry, while the Cr(VI) by a colorimetric method using a UV/Vis
spectrophotometer (Thermo Scientific, USA. with a light path of 1 cm) at 540 nm. 1,5—
diphenylcarbazide was used as an indicator *%°. The concentration of Cr(Ill) was
determined by the difference between total Cr and Cr (VI). Unless otherwise stated, all

the adsorption experiments were performed with a blank control at 22°C.

2.2.4 Cr desorption from HAC after treatment with Cr(VI)
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Cr (VI) desorption from the HAC and HAC surface regeneration was carried out
by acid and alkali elution experiments. First, HAC and pristine AC were repeatedly
contacted (four times) with a 1,000 mg/L Cr(VI) aqueous solution to obtain a Cr-loaded
material. The Cr-loaded HAC (0.5g) and Cr-loaded AC (0.5g) were then treated with
0.2 mol/L H2SO4 (50 ml) and 0.1 mol/L. NaOH (50 ml) aqueous solutions. The amount

of desorbed chromium (mg/g) after elution was determined as follows;

q= % (2-3)

where q (mg/g) is the chromium content desorbed from the carbon materials, Ci(mg/L)
is the chromium concentration in the eluted solution at time t, V (L) is the volume of

the elution solution and m (g) is the mass of the material.
2.2.5 Regeneration and reusability of HAC

Consecutive adsorption tests were conducted to investigate the reusability of HAC
on Cr(VI) (1000mg/L) adsorption. The HAC was contacted with an H>SO4 solution of
0.1 mol/L for 24 hours stirring the suspension at 400 rpm in a magnetic stirrer to
regenerate the surface of the HAC treated with Cr(VI) solution *!. This regenerated

material was then used in the next Cr(VI) adsorption test.

2.3. Results and discussions

2.3.1. Effect of ball milling on Cr(VI) sequestration

| —m— AC-pH6
1000 —e— AC-pH7 b
—A— HAC-pH6
800 - —v—tacpr7 |[HAC-pH 6
600 | ° * ' ' ' v ' ' '
o \-\
s |[HAC-pH7
v\ . -
200 4 v : _ :
0 A A ' ' ' ' ' '
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Time (h)

Figure. 2-1 (a) The depletion curve of Cr(VI) by AC and HAC under pH 6 and 7 as
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time (AC average size is 20um, HAC average size is 4um, dose 5g/100ml, 1000mg/L
Cr(VI), RPM=350, 295K); (b) The aqueous solution color change as time of Cr(VI)
removal by HAC.

Fig. 2-1 (a) depicts the depletion of Cr(VI) concentration as a function of time at
pH 6 and 7. It is seen that for both pHs, the Cr(VI) concentration depletion was very
fast in the first 0.25 hour, being this depletion larger at pH 6. The Cr(VI) removal by
HAC was 99.0% and 77.8% at pH 6 and 7 after 2 hours, respectively. These Cr(VI)
removals were larger than those on pristine AC (68.3% at pH 6 and 42.7% at pH 7).
Thus, a significant increase in Cr(VI) removal was achieved with the HAC. The figure
also shows photos of the Cr(VI) aqueous solutions at various times at the two pH values.
The increase in Cr(VI) adsorption can be associated with the increase of the functional
groups on the AC. In Fig. 2-1 (b), it is noted that the color of the Cr(VI) aqueous
solution became more crystal clear at pH 6 than at pH 7, clearly indicating that more

Cr(VI) was removed at pH 6.
2.3.2 Characterization of materials

2.3.2.1 Surface and texture chemistry of materials
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Figure. 2-2 Zeta Potential of AC (20um) and HAC (4pm) as a function of pH

Fig.2-2 shows the zeta potential of pristine AC and HAC as a function of pH. It is

seen that the zeta potential decreased negatively as the pH increased, as reported
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elsewhere 482 483 The negative zeta potential of AC and HAC is due to the
dissociation of their acidic functional groups #%* and Chingombe et al. (2005) have
reported that the zeta potential of AC becomes more negative as the acid functional
groups increased. As noted in Fig. 2-2, the zeta potential of HAC is more negative than
that of AC, indicating that the ball milling promoted the formation of acid functional
groups of the carboxylic type. This was confirmed by determining the surface density
of the functional groups before and after milling. Table 1 presents the surface density
of the total acidic and alkaline functional group before and after milling, as well as after
adsorption of Cr(VI). It is noted that the total acidic group of the AC increased from
1.31 mmol/g to 1.84 mmol/g after grinding, due mainly to the increase of COOH groups.
Our results are consistent with those of Lyu et al. (2018) who have reported that the
total acidic groups in biochar increased from 0.3 mmol/g to 1.35 mmol/g after high
intensity grinding of the biochar %°. Recent studies proved that more oxygen/hydrogen
functional groups were introduced into activated carbon during the ball milling and
increased the hydrophilicity of activated carbon !> 16, As noted in Table 2-1, after Cr(VI)
adsorption no carboxylic groups were detected on the HAC. This can be accounted for
by the shielding of these groups by adsorbed Cr(VI) as explained below. Therefore, the
COOH groups played a vital role in Cr(VI) adsorption. The increase in hydroxyl surface

density after adsorption is due to Cr(OH)3, which is formed from the reduction of

Cr(VI).
Table 2-1 The surface chemical properties before and after ball milling AC and HAC
treated with Cr(VI)
Total acidi
otal acidic Carboxyl Phenolic, hydroxyl,
Sample group (mmol/g) lactols (mmol/g)
(mmol/g) -COOH -OH
Pristine AC 1.31 0.31 1.00
AC after milling HAC 1.84 0.97 0.87
HAC after Cr(VI) adsorption 1.94 ND 1.94
ND is no detectable
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Figure. 2-3 N> adsorption-desorption isotherms (BET) of pristine AC, HAC and HAC

treated with Cr(VI).

The N> adsorption and desorption isotherms and pore size of pristine AC, HAC,
and after adsorption are shown in Fig. 2-3. Referring to the classification of
physisorption isotherms #%¢, the N, adsorption and desorption curves of the three
materials fitted well with the type IV adsorption isotherm (IUPAC classification). The
hysteresis loop in Fig.2-3 ascribed to H4 type means a narrow slit-like pore structure,
commonly seen in micropore activated carbon materials *¥7. The higher surface area of
HAC can be associated with its smaller particle size in comparison to that of AC. After
adsorption of Cr(VI), the surface area of HAC decreased and the pore size increased,
which is due to the filling of adsorbed Cr in the pores. Figs. 2-4 and 2-5 show SEM
photomicrographs of Cr-loaded HAC. As noted, there is chromium on the surface and
inside of the HAC, being the content of chromium on the surface much higher than that
inside the particle. A similar texture to that seen in Fig. 2-5 has been reported by Wang
et al. (2020). They reported the formation of an eskolaite (Cr,O3) layer on the AC
surface, which lowers the Cr(VI) adsorption capacity of AC and the diffusion of Cr(VI)

to the interior of the AC particle.
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Table 2-2 Pore structural parameter of AC, HAC, and HAC after Cr(VI) adsorption

Average  particle Specific surface area Pore size (A)

Materials

size (um) (m?/g) (BET) (BJH)
Pristine AC 20 846 19.0
HAC 4 929 15.3
HAC after Cr(VI) 4 876 18.5
adsorption

Elements ~ Weight % ; Elements ~ Weight %

O 85.4 e O 745

Cr 14.6 Cr 255

558
Spectrum 1

2 4 [ 8
ull Scale 1029 cts Cursor: -0112 (0 cts) ull Scale 1029 cts Cursor: -0.112 (0 cts)

+. 5
Spectrum 2

200pm Electron Image 1 200pm Electron Image 1

Figure. 2-4 SEM photomicrograph and quantitative analysis EDX pattern after HAC
adsorption at pH 7.

Crand C

Chromium laye

ET 30pm

Figure. 2-5 SEM figure and SEM-EDX elements mapping of HAC after adsorption at

pH 7.

As can be seen in Figs 2-4 and 2-5, chromium was detected on the surface and
inside of the HAC particle, being the content of chromium on the surface much higher
than that inside the particle. Table 2-2 compares the summary statistics of surface area
and pore size analysis results, it noticeable from this table that the chromium in the

HAC lowered the specific surface area and mean pore size of the HAC from 929 m?/g
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to 876 m*/g and 15.3 A to 18.5 A, respectively. A similar texture to that seen in Fig. 2-
5 has been reported by Wang et al. (2020) in Cr-loaded AC particles after adsorption at
pH 3 468 They reported the formation of an eskolaite (Cr,03) layer on the AC surface,
which lowers the Cr(VI) adsorption capacity of AC and the diffusion of Cr(VI) to the
interior of the AC particle. Besides, the increased BET surface area of HAC generated
by ball milling may be explained by the decreased particle size and the deformation of

the carbon structure.

2.3.2.2 Raman spectra investigation

D-band G pand
1
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=
2 : Pristine AC Ip/16=1.05
5 1
| ! '
5 I ! 1,/15=1.12
. -~
| I
I [ I,/1=1.14
1 : HAC after adsorption
1
T L ! T T
800 1200 1600 2000 2400

Raman shift (cm™)
Figure. 2-6 Raman spectra of pristine AC, HAC and HAC after adsorption of
Cr(VI).
Fig. 2-6 shows the Raman spectra of AC, HAC, and HAC after Cr(VI) adsorption.

the D-band (1320cm!) and G-band (1563cm’!) in the spectra reveal the degree of lattice
distortion of any carbon material, The D-band represents the stretch vibration of sp?
hybridized carbon, while the G-band is related to the sp? graphited carbon #%8. Tt has
been reported that the ratio of the intensity of D-band versus G-band (In/Ig) indicates
the level of graphitization or structural order of carbon materials “%°. As noted in Fig 2-
6, the In/lg of HAC increased from 1.05 for pristine AC to 1.12 and further increased
to 1.14 after adsorption of Cr(VI). The increase of Ip/Ig for HAC revealed that ball
milling enhanced the formation of sp® defects in the carbon structure. Moreover, the
increase of sp-bonding hybridized carbon atoms of HAC after Cr(VI adsorption may
due to the reduction of surface oxygen-containing functional groups 4°°. Various studies
have demonstrated that the reduction of surface oxygen-containing functional groups

caused the formation of amorphous carbon structure ! 4°2, The increase of surface
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functional groups for HAC by ball milling seems to be contradictory with the increase
of disorder of structural carbon. This inconsistency may be due to the relatively more
produced hybridized carbon atoms by ball milling compare to the increase of oxygen-
containing groups.

The content of C, O, N, and S in HAC and HAC after Cr(VI) adsorption was
determined through XPS and the results are presented in Table 2-3. It is seen that the C
content decreased after Cr(VI) adsorption and the O element increased. The decrease
of carbon content can be related to the decline of C-containing surface functional
groups, coupled to the reduction of Cr(VI) to Cr(III). The increase of O content can be
associated with the chromium oxide resulting from the Cr(VI) reduction, proving that

a chromium species containing oxygen formed from the Cr(VI) reduction.

Table 2-3 The elements analysis of HAC and treated HAC with Cr(VI)

C N O S
HAC (%) 91.24 0.93 6.86 0.97
Treated HAC (%) 84.58 0.50 13.01 1.91
2.3.3. Adsorption kinetic
31az = HAC-pH6 0.251b
2 : 2225?7 0207
LT: 1 M — (- 0154
% 01w, ) = 0.10]
-l - 0.051
2
0.007
SO0 05 1o 15 20 00 05 10 15 20
t t

S5 4 3 2 a0 00 04 08 12 16
Int {172

Figure. 2-7 The linear fit for experimental date of Cr(VI) removal by HAC and
AC under pH 6 and 7, (a) Pseudo-first order, (b)Pseudo-second order, (c) Elovich, (d)

Interparticle diffusion
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To investigate the adsorption kinetics of aqueous Cr(VI) adsorption on pristine AC
and HAC, and recognize the divergence of the rate constant before and after ball milling.

The kinetics models of Pseudo-first order, Pseudo-second order, interparticle diffusion,

and Elovich were employed and the general forms as Eqs (2-4)-(2-7) 43494,

Pesudo-first order model
In (T, = T}) = Inl, — kqt (2-4)

Pseudo-second order model

i:i_}_ 1 (2'5)

Iy To koIZ

Weber-Morris Interparticle diffusion model

I't=kyt/2 +1 (2-6)
Elovich model

I, = Bln(aB) + Blnt (2-7)
where ['e(mg/g) is the adsorption density at equilibrium, ['t(mg/g) is adsorption density
at time t, ki (h™!) is the rate constant of Pesudo-first order model, k> (mg/g-h) is the rate
constant of Pesudo-second order, k3 and I are the constants of interparticle diffusion, a
(mgg'h™) and B (gmg!) are the initial sorption rate of adsorbate and desorption
constant, respectively.

As shown in Figs. 2-7, the Cr(VI) adsorption data were linearly fitted with
adsorption kinetic models, the detailed parameters for models were presented in Table
4. The Cr(VI) removal is described well with Pseudo-second order kinetic model for
HAC and AC under pH 6 and pH 7 with higher correlation coefficients (r?), suggesting
that the interaction between the Cr(VI) and the functional groups of the HAC and AC
is of the chemical type. As described in Table 2-4, the rate constant of k, at pH 6 was
nearly 3 times greater than that at pH 7 for HAC, and the rate constant for HAC under
pH 6 and 7 both increased after ball milling compared to the pristine AC. Indicating
that the adsorption rate was highly favorable with the hydrogen ion strength and the
developed Cr(VI) removal capacity on HAC was associated with the quicker chemical

reaction between Cr(VI) and surface functional groups. Besides, the chemical reaction
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associated with the Cr(VI) adsorption was significantly related to the proton

concentration, in agreement with studies reported previously 27471495497,

Table 2-4 The adsorption kinetic model parameters for Cr(VI) removal by AC and

HAC under pH 6 and 7

HAC Pristine AC
Models pHO6 pH7 pHO6 pH7
Pseudo-first order
I'e (mg/g) 1.97 3.39 10.28 6.36
ki (h'h) 1.56 1.71 1.30 0.59
r? 0.461 0.746 0.972 0.627
Pseudo-second order
I'e (mg/g) 20 15.38 14.08 8.77
k> (mg/g-h) 8.39 2.88 0.53 2.23
r? 1.000 0.998 0.983 0.999
Elovich
a(mgg'hM) 1.3x10° 1.9x10%! 199.0 1946.5
B(gmg™) 0.97 0.30 1.86 1.06
r? 0.755 0.951 0.978 0.985
Interparticle diffusion
kiq1 122.39 111.24 30.64 30.94
I 0.81 0.81 0.13 0.16
r2 0.924 0.910 0.967 0.951
kia2 0.73 1.78 7.20 3.40
I 18.86 12.79 3.98 4.55
r2 0.880 0.892 0.986 0.799

The diffusion process of aqueous adsorbate into adsorbent can be elucidated by the

Interparticle diffusion model. Briefly, the adsorbate ions transfer through bulk solution

into the external surface of the adsorbent and then transfer into the internal surface

followed by adsorption in the active sites of adsorbent 4°%. As can be seen in Fig. 2-7

(d), the diffusion route of Cr(VI) into AC and HAC contains two steps. The first stage

of adsorption dominants the removal rate of Cr(VI) by AC and HAC since the

interparticle diffusion rates at the first stage (kiq1) for AC and HAC were both higher

than that of the second stage (kiaz). The kiq1 of HAC under pH 6 and 7 were nearly 4

times higher than that of AC, this finding has identified that the rate of Cr(VI) transfers

from the bulk solution to the surface of AC was improved after ball milling

pretreatment.
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2.3.4 Adsorption isotherm
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Figure. 2-8 Non-linear fit of adsorption isotherm models (a) AC (b) HAC (pH 7,
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Figure. 2-9 Non-linear fit of D-R model for (a) AC and (b) HAC (pH 7, 50g/L).

Langmuir, Freundlich, Dubinin-Radushkevich (D-R), and Temkin models were

employed to delineate the adsorption behavior of Cr(VI) #°, the non-linear equations

of those models were presented as follows;

Langmuir equation

_ KL l—‘OCe
1+K},Ce

I'e
Freundlich equation

Fe = K.CM'™

e

(2-8)

(2-9)
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Temkin equation

Te = 2 1n (K;C,) (2-10)

bt

D-R equation

Fe =T ,.e k¢ &=RTIn (1 + Ci) 2-11)

e

where I'e (mg/g) is the equilibrium adsorption density, ['o (mg/g) is the theoretical
monolayer adsorption density, Ki (L/g) is the Langmuir constant, Kr is the Freundlich
isotherm constant, Ce (mg/L) is equilibrium concentration, n is the Freundlich isotherm
exponent, R (8.314 J/mol/K) is the universal gas constant, T (K) is the absolute
temperature, bt (J/mol) is the Temkin isotherm constant, Kr (L/g) is the Temkin
isotherm equilibrium binding constant, 'max (mg/g) is the theoretical saturation density,
Kb (mol? kJ2) is the D-R isotherm constant, ¢ is the Polanyi potential.

Figs. 2-7 and 2-8 were the non-linear fit of Langmuir, Freundlich, Temkin, and D-
R isotherm models, the computed theoretical parameters of the models were provided
in Table 2-5. The higher correlation coefficients of the Freundlich model fitted the
experimental data satisfactorily and this observation could support the hypothesis that
the adsorption of Cr(VI) on AC and HAC was multi-layer. The values of n for HAC
were all over 2 while values of n for AC were all below 2, which indicated the
adsorption was favorable for HAC under ambient temperature >%°. Table 2-6 listed the

adsorption density comparison of different AC materials with this study.
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Table 2-5 The parameters of adsorption isotherm models for HAC and AC

AC HAC
Models 295 303 313K 295 303 313K
Langmuir TIo(mg/g) 189 21.5 224 31.6 31.7 32.6
K. (L/mg) 0.003 0.005 0.005 0.014  0.009 0.014
r? 0.438 0.600 0.704 0919 0.851 0.947
Freundlich Kg 0.002 0.158 0.441 3.843  5.523  5.179
I/n 1.303 0.714 0.567 0306  0.260 0.277
r? 0942 0982 0.973 0962 0970 0.971
Temkin br (J/mol) 153.2 239.6 310.0 4237  491.8  429.6
Kr (L/g) 0.003 0.007 0.013 0.128  0.353  0.224
r? 0.904 0.997 0.945 0949  0.941 0971
D-R I'max 25.5 225  20.68 24.64 2466  25.99
(mg/g)
Kp (mol* 0.058 0.017 0.008 59E-4 14E-4 24E+4
kJ?)
r? 0.950 0.977 0.793 0.706  0.545  0.697

Table 2-6 Comparison of Cr(VI) adsorption density onto various AC materials

Adsorbents Adsorption density (mg/g) pH  Refs
Commercial AC 20.0 7 S0l
Polysulfide rubber modified AC 8.9 4 502
Pomegranate husk AC 10.0 6 503
Chestnut oak shells AC 6.0 7 504
Tannic acid immobilized AC 0.5 7 505
Hazelnut shell AC 8.0 8 506
Granular AC 7.2 7 S07
Fe-modified AC prepared from 2.5 7 >08
Trapa natans husk

Micron-scale iron modified AC 1.3 6 106
AC derived from seagrass 0 >4 509
Ball milled AC 28.9 7 This study

2.3.5. Adsorption thermodynamic

Application of Mechanochemical Procedure on Aqueous Cr(VI) removal with
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The thermodynamic parameters enthalpy change (AH) and entropy change (AS)
can be calculated by the function of InKc versus 1/T, the equation shown in Eq (2-12).
Gibb’s free energy change (AG) can be determined through the Van’t Hoff equation (Eq
(2-13)).

InK, = = - (2-12)

AG = —RTInK, (2-13)
Where AH (kJ/mol) and AS (J/mol k) were established by the slope and intercept of
Eq(12). The adsorption process is endothermic if the value of AH is positive, otherwise,
it's exothermic. Equilibrium constant K¢ equal to T'e/Ce 27 or the intercept of the plot
of In(T'e/Ce) versus I'e ', the negative value of AG (kJ/mol) means the adsorption
process prolongs spontaneously under ambient conditions.

The detailed values of AH, AS, and AG of Cr(VI) adsorption on HAC and AC are
given in Table 2-7. The values of AG for HAC and AC were both negatives, signifying
that the adsorption of Cr(VI) was spontaneous and the values AG of HAC under
different temperatures were both higher than that of AC, which implied the spontaneity
of adsorption was unfavorable energetically and more spontaneity for HAC after ball
milling >!'. The value of AH was positive for HAC and AC indicated the Cr(VI)
adsorption process was endothermic. Positive values of AS of HAC and AC related to

the disorderliness of the system.

Table 2-7 The adsorption kinetic model parameters for Cr(VI) removal by AC and
HAC under pH 6 and 7

Adsorbents T(K)  AG (kJ/mol) AH (kJ/mol) AS (kJ/mol k)

295 -11.80

HAC 303 -12.12 0.001 0.04
313 -12.52
295 -17.69

AC 303 -18.17 0.01 0.06
313 -18.77

2.3.6 Cr(VI) removal mechanism
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2.3.6.1 The pH-speciation of Cr(III) and Cr(VI)
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Figure. 2-10 The speciation diagram of (a) Cr(VI) and (b) Cr(III).
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Fig. 2-10 is the pH-speciation diagram for 1000 mg/L Cr(VI) and Cr(III), which

were built using equations (14)-(21). HCrO4 and CrO4* are predominant at pH 6, while

CrO4* predominates at pH 7. As shown in Figure 2-10 (b), Cr(OH)s(s) is the

predominant species both at pH 6 and pH 7. The aqueous solution chemistry

equilibriums for Cr(VI) and Cr(III) species are shown in Eqs (2-14) to (2-21) 312514,

where k is the chemical reaction equilibrium constan

H,CrOs=HCrO4 + H*

HCrO4 = CrO4*+ H*

2HCrOy4 = CI‘2072' + H,O

Cr?

"+ H,O=Cr(OH)*" + H*

Cr(OH)** + H,0 =Cr(OH)", + H*

Cr(OH)", + 2H,0 =Cr(OH)s(aq) + H'

Cr(OH)s(aq) + HoO=Cr(OH)s + H*

Cr(OH)3(aq) =Cr(OH)s(s)

t 515

k = 1004
k= 1064
k=10
k=107356
k=10"627
k=1026!
k=101033
k=10*17

(2-14)
(2-15)
(2-16)
(2-17)
(2-18)
(2-19)
(2-20)
(2-21)

It is noteworthy to remark that most studies on Cr(VI) removal have been

undertaken at acidic conditions where HCrO4™ and Cr** are the predominant species.

Under these pH conditions, Cr2O3(s) has been reported to be the end chromium product

Application of Mechanochemical Procedure on Aqueous Cr(VI) removal with
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on AC 68470 Our work was carried out at pH 6 and 7. Under these pH conditions,

Cr(OH)3(s) was the chromium product on the AC as discussed below.

2.3.6.2 Chromium species on HAC
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Figure. 2-11 The elution experiments with chromium-loaded virgin AC (a) and HAC
(b) after adsorption at pH 7 (1.0 g/100ml treated pristine AC or HAC, 0.2 M H>SO4
and 0.1 M NaOH, 295K)

Fig. 2-11(a) and (b) show the amount of Cr(IIT) and Cr(VI) desorbed from AC and
HAC, after treatment with Cr(VI) at pH 7, using a 0.2 M H>SO4 and 0.1 M NaOH
aqueous solution. Firstly, it is noted that Cr(III) desorbed from the carbons at acidic pH
conditions, while Cr(VI) desorbed at basic pH. The Cr(Ill) in the eluants at acidic
conditions likely results from the dissolution of Cr(OH)3s, leading to say that this is the
Cr(IIT) species which formed from Cr(VI) adsorption. Cr(VI) in the eluants at basic
conditions suggests that Cr(VI) co-adsorbed with the Cr(OH)3(s) as CrO4>. At basic
pH, OH" ions deprotonated the surface COOH groups, which is turned into the
electrically negative COO- group. As a result, the adsorbed CrO4* on the COOH is
repelled and migrated to the aqueous solution. Desorbed Cr(VI) was 10.3 mg/g from
HAC, much greater than the Cr(VI) desorbed from AC, which was 5.3 mg/g. Dissolved
Cr** from HAC reached 6.3 mg/g, almost 3 times greater than the Cr** desorbed from

AC. The much greater amount of chromium desorbed from the HAC in comparison to

80

Application of Mechanochemical Procedure on Aqueous Cr(VI) removal with
additives of activated carbon and Fe’/Fe,Os

Content of Cr(VI) (mg/g)



M.C.Yi Fang

that desorbed from AC confirmed that high-intensity ball milling improved the
adsorption performance of AC. More functional groups, especially carboxyl, were
created on the AC surface, which in agreement with the work reported by !7-485
The chromium elution under acidic and alkaline solution can be stated as Eqs (2-
22) and (2-23), respectively.
HAC:--Cr(OH)3(s) + 3H" — HAC + Cr** + 3H,0 (2-22)

HAC-COOH:-CrO4* + OH" — CrO4* + HAC-COO" + H.0 (2-23)

2.3.6.3 Proposal on chromium removal mechanism

Cr(OH);

Reduction

Adsorption

Activated carbon (AC) (-20 pm) Highly intensive grinding
activated carbon (HAC) (4pm)

Figure. 2-12 Schematic of Cr(VI) removal by HAC induced by ball milling.

The tests on chromium elution from the Cr-loaded HAC showed that Cr(III) as
Cr(OH)s(s) and Cr(VI) as CrO4* were on the surface of HAC. The Cr(OH);(s) formed
a layer on the HAC particle, as seen in Figs 2-4 and 2-5. This Cr(OH)3(s) resulted from
the reduction of adsorbed Cr(VI) to Cr(IIl). According to Fig 2-10(b), Cr(OH)3(s) is the
stable Cr(IIl) species at pH 6 and 7. The reduction of Cr(VI) to Cr(Ill) has been

516-518

proposed to be due to m-electron in activated-carbon-basal planes . The reduction

of Cr(VI) to Cr(Ill) and the surface precipitation of Cr(OH)3 can be expressed as

follows:
CrO4* + 8H' + 3¢ = Cr**(aq) + 4H20 (2-24)
Cr**+ 3H,0 = Cr(OH)s(s) + 3H* (2-25)

Adsorption of Cr(VI) may proceed through hydrogen bonding on the surface COOH

Application of Mechanochemical Procedure on Aqueous Cr(VI) removal with
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groups, as follows:
HAC-COOH + CrO4* = HAC-COOH: - CrO4* (2-26)

The encouraged capability of HAC on Cr(VI) sequestration was dominantly
contributed by the increased surface oxygen-containing functional groups and the
refined particle size in the presence of higher surface area. Meanwhile, the reduction of
surface oxygen-containing functional groups was verified by the results obtained from
Raman spectra and Boehm’s titration. Additionally, the adsorption thermodynamic
revealed that the spontaneity of Cr(VI) adsorption on HAC increased after ball milling.
Fig. 28 shows a schematic representation of the increase in functional groups on the
AC after high-intensity grinding and the adsorption of the chromium species on the

functional groups.

2.3.7 Reusability and regeneration of HAC
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Figure. 2-13 The (a) reusability and (b) regeneration of HAC under pH 7.0 (5
g/100ml HAC, 1000mg/L Cr(VI), 295K)

Fig. 2-13(a) shows the Cr(VI) removal efficiency of HAC as a function of time
subjecting the HAC to several consecutive adsorption runs at pH 7, the HAC was
recycled to the next adsorption step without removing the loaded chromium. Cr(VI)
removal was 92% when the HAC first contacted the Cr(VI) aqueous solution. This
removal efficiency decreased steadily with the number of adsorption cycles, being 75%
for the first cycle and 60% and 57% for the following. As noted in Figs 2-4 and 2-5,

Cr(OH)s(s) is reported in the HAC pores and as a layer on the HAC surface. It follows
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that Cr(OH)3(s) was definitively responsible for this decrease in removal efficiency as
the number of cycles increased. The Cr(OH)3(s) blocked off the diffusion of Cr(VI) to
the interior of the HAC particle. As noted in Fig. 2-11, at acid conditions, soluble Cr**
is the predominant species, so with an acid wash, it is expected that the Cr(OH)3(s) in
the pores and surface of the HAC will be removed leaving a particle with a free path
for diffusion and further adsorption of Cr(VI). This was confirmed by subjecting the Cr
loaded HAC to an acid wash then the regenerated HAC was subjected to another cycle
of adsorption. Fig. 2-13(b) shows that the removal efficiency of Cr (VI) by HAC
increased from 92.2% to 96.3% after acid regeneration. The uptake efficiency of Cr(VI)
on HAC decreased with the recycling due to the formation of Cr(OH)3(s) as foregoing

discussed.

2.4. Conclusions

The density of surface functional groups of activated carbon can be significantly
improved by high-intensity grinding. Thus, the sequestration capability of commercial
AC on Cr(VI]) increases, and the removal of aqueous Cr(VI) can be undertaken under
near-neutral pH. The feasibility and potential of HAC modified by ball milling on the
practical application were developed. Besides, carrying out the Cr(VI) adsorption at
near-neutral pH leads to the formation of Cr(OH)3(s) on HAC. Cr(OH)s3(s) can be easily
removed off by acid washing through which the HAC surface is regenerated and
thereby regains its original adsorption capacity, and can be recycled to the Cr(VI)
adsorption step. Once the adsorbent material has been regenerated, it can be used up to
three stages without significantly losing its absorption capacity. The results obtained in
this work showed that Cr(VI) adsorption of HAC at near-neutral pH proceeds through
two mechanisms. One mechanism is the reduction of Cr(VI) to Cr(IIl) and hydrogen
bonding of CrO4> with COOH surface functional groups, and another is the Cr(III)
precipitation to Cr(OH)3(s) in pores and surface of the HAC. This Cr(OH)3(s) could be
removed by acid washing of the HAC, while the Cr,04> was removed by alkaline
washing of the HAC. The studies of adsorption kinetic and isotherm show that the
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Pseudo-second order model and Freundlich fitted the adsorption data well, implying
the chemisorption and multi-layer adsorption of Cr(VI) on HAC and AC. The
intraparticle model study confirmed that the transfer rate of Cr(VI) from the bulk
solution to the surface of AC was increased after ball milling. The thermodynamic study
indicated that the adsorption of Cr(VI) by HAC and AC is endothermic and the
spontaneity of Cr(VI) adsorption on HAC was higher. The Work is yet needed to further
improve the removal efficiency of the HAC for its recycling. This involved determining
the performance of the HAC after a two-step treatment of the Cr-loaded HAC, under

acidic and alkaline conditions.
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Chapter III. A new insight into the restriction of Cr(VI) removal
performance of activated carbon under neutral pH condition

3.1. Introduction

Chromium abounds in nature and is highly toxic in the form of CrO4*- and Cr,07*
through bioaccumulation 3. The chromium pollution of water, land, and environment
has attracted the interest of experts as electroplating plants, stainless steel
manufacturing plants, leather manufacturing plants, and refractory plants have
progressively appeared #7-320-521 Cr(IIT) presents less mobility, toxicity, and solubility
than Cr(VI) and generates sparingly soluble chromium hydroxides 322, The reduction
of Cr(VI) to Cr(Ill) is rapid at acidic conditions, meanwhile, the readily available
electron is required for the reduction process 2% 324, It is well known that removing
Cr(VI) from water by reduction and precipitation is a viable option *7- 523527,

Conventional reducing agents are sulfur and iron salts 2% 5%

, post-treated effluent
contained sulfate, and iron salts would contaminate water and soil. Furthermore, the
mandatory wastewater discharge would result in high costs.

The bulk of published studies on Cr(VI) removal by low-cost and readily accessible
activated carbon (AC) demonstrated that removal capacity was greater in acidic
conditions than alkaline conditions. This suggests that the Cr(VI) elimination is
strongly pH-dependent 2748 33% The removal efficiency of Cr(VI) by activated carbon
prepared from teakwood sawdust was 100% at pH 2 while it was below 20 % at pH 10
331 Table 3-1 shows the capacity of several ACs to remove Cr(VI) in acidic and alkaline
environments. At low pH, the removal capacity was favored because the positively
charged surface of Cr(VI) advanced the adsorption of anion Cr(VI) 2. It is worth
noting that the pH-speciation of Cr(VI) reveals that HCrOs~ dominated below pH 6,
whereas CrO4* dominates above pH 7 333, Furthermore, prior studies have found that
positively charged AC produced by protonation at a low pH value tends to attract

chromate anions, which is thought to be the main mechanism for Cr(VI) adsorption >3,

It was discovered that as pH dropped, the reduction and adsorption process enhanced
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Table 3-1 Comparison of Cr(VI) removal under different pH by various carbon

materials

Carbon materials

Cr(VI) removal capacity (mg/g)

Refs

AC derived from Posidonia
Oceanica seagrass

Biochar derived from corn
straw

Powdered AC

Biochar derived from waste
glue residue

AC prepared by calcination
wheat bran

Commercial AC

KOH activated porous corn
straw
AC derived from an acrylonitrile-

divinylbenzene copolymer

Acid Alkali
condition condition
30.5 (pH 3) 0 (pH>4)
125(pH 2) 50 (pH 6)
46 (pH 2) 8 (pH7)
206.7 (pH 2) 90 (pH 6)
22 (pH 2) 0 (pH 10)
21 (pH 2.5) 13 (pH 5.5)
98.3 (pH 3) 33.7(pH 7)
80 (pH 2) 9 (pH 8)

535

536

491

537

538

539

540

To our understanding, there have been few investigations on systematic chromium

adsorption and reduction study when pH rises over 7, to shed light on a substantial drop

in AC performance. Most studies have only focused on the unfavorable effect of

electrostatic repulsion between chromate anions and negatively charged AC surface at

high pH values 4304541 Besides, an earlier study failed to elucidate the removal paths

at pH higher than 6 because the surface negatively charged bamboo bark-based AC that

unfavored the adsorption of Cr(VI) anions, hence the reduction process of Cr(VI) to

Cr(III) at high pH was omitted 2. Cr(III) speciation as a function of pH was depicted
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clearly by Lopez-Valdivieso’s study showing that Cr(OH)3(s) predominates at pH over
6.4 393, The effect on the removal of Cr(VI) under alkaline conditions of the AC surface
loaded Cr(IIl) precipitate was especially neglected. Early reported studies on the
synthesis of eskolaite (a-CrO3) nanoparticles through AC following adsorption of
Cr(VI) have shown that CrOs was the reduced species of Cr(VI) on AC 46% 343,
Recently study showed that the Cr,Os reduced the adsorption rate of Cr(VI)
significantly 468,

Compared to the consensus that the electrostatic repulsion led to the poor Cr(VI)
removal efficiency of AC at alkaline conditions, the effect of AC surface coated Cr203
precipitate on removal performance was not fully understood. This work aimed to study
the effect of powdered AC (PAC) surface formed Cr,03 precipitate on Cr(VI) removal,
SEM-EDX (scanning electron microscope-energy dispersive X-ray analysis), and XPS
(X-ray photoelectron spectroscopy) were used to investigate the surface morphology
and the chemical properties. Desorption and regeneration experiments were used to

confirm the role of Cr,0s. The insight gained from this study would help to expand the

longevity of AC and the recovery of Cr via AC.

3.2. Materials and methods
3.2.1. Characterization of PAC particle

To scrutinize the composition of loaded-chromium on PAC after Cr(VI) removal,
three types of de-passivation agents were examined to desorb the adsorbed/reduced
chromium on PAC. The formation process of the chromium layer on PAC at pH 3 and
7 was inspected by carrying out consecutive desorption tests following each Cr(VI)
adsorption. SEM-EDX (JSM-6610LV, JEOL, Japan) and XPS (K-Alpha, Thermo
Scientific, USA) were employed to characterize the distribution of chromium and the
chemical species of Cr and C on PAC at pH 3 and 7, respectively. The difference of
removal mechanisms under the two pH values was delineated by XPS and Raman
spectroscopy (DXR, Thermo Scientific, USA).
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3.2.2. Materials

All the chemicals were analytical grade and the aqueous solutions were prepared
with deionized water through Barnstead pure II water purification system (Thermo
Scientific, USA). Potassium dichromate (K>Cr,07) was purchased from J.T.Baker and
used for preparing 1000 mg/L Cr(VI) as a stock solution. 1.0 M H>SO4 and 1.0 M NaOH
were used to adjust the pH of the aqueous solutions. HSO4, NaOH, KCl, and 1,5—
diphenylcarbazide were provided by J.T.Baker. Commercial available AC was provided
by Calgon company, its chemical composition was 97% carbon and 3% inorganic
residual. The AC was treated by ball milling and obtained a PAC with an average size
of 4 um, a specific surface area of 929 m?/g, and a pore radius of 15.9 A, PAC used in
this study was reported in our previous work 2. Following the grinding step, the PAC

was dried and stored in a desiccator.
3.2.3. Comparison of Cr(VI) removal at different pH

A comparison was conducted for the PAC removal efficiency at pH 3, 7, and 9 >,
The desired mass of PAC (5 g) was mixed with deionized water (100 mL) for 1 h, then
the pH was adjusted to 3, 7, and 9 using 1.0 M H2SO4 and NaOH aqueous solutions and
monitoring the pH with an Orion 3 star pH meter (Thermo Scientific, USA). 0.2829 g
K>Cr207 reagent was added to the PAC suspension to prepare a 1000 mg/L solution
once the pH was stable. To follow the Cr(VI) uptake a 200 pL aliquot was withdrawn
from the aqueous solution at 3, 5, 9, 15, 30, 60, 360, 1440 min. The withdrawn aliquot
was centrifuged in a centrifuge (Allegra™ 21, Beckman coulter, USA) for 15 min prior
to analysis. The Cr(VI) removal capacity was calculated through Eq (3-1) 3%, wherein
I'(mg/g) is the removal capacity, Co (mg/L) is the initial concentrations and C; is the
concentration at time t, V (L) and M (g) are the volume of solution and dose of PAC,
respectively.

I = (Co-C)V/M (3-1)

3.2.4. Selection of desorption agents
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Three kinds of desorption agents were evaluated to determine their effectiveness for
desorbing the adsorbed chromium species on PAC. Analytical grade K>Cr,O7 acted as
a precursor of the chromium layer on PAC. To obtain adequate loaded chromium on
PAC for assessment, consecutive uptake experiments were undertaken. 5.0 g PAC was
mixed with 1000 mg/L Cr(VI) aqueous solution at a fixed pH of 7 in a glass volumetric
flask. This suspension was stirred magnetically (Thermo scientific, USA) at 100 rpm
to prevent deteriorating of the chromium layer formed on the PAC. A 200 pL sample
was withdrawn from the suspension at 0.25, 0.5, 1, 3, 5,7, 9, 12, 15, 30, 60, 120, 1440
min to determine the concentration of Cr(VI), then the suspension was filtered to collect
the PAC, which was rinsed with deionized water, and dried before the following
removal experiments. Consecutive removal steps were performed with 1000 mg/L
Cr(VI). Dried chromium-load PAC after four repetitive adsorption runs was used for
the desorption testing. All the batch experiments were conducted in duplicate under
ambient conditions. The adsorption capacity at equilibrium for Cr on PAC was
expressed as Eq (3-2)

qp=2.(1000-Ce;)Vi'M; (3-2)
where qp (mg/g) is the content of chromium on PAC, Ce;i (mg/L),Vi (mL) and M; (g)
(i=1, 2, 3, 4) are the equilibrium concentration, solution volume and mass of PAC of
each removal cycle, respectively.

To desorb the loaded chromium from the PAC, 0.2M KCI, 0.2M H>SO4, and 0.1M
NaOH were employed. 0.5g chromium-loaded PAC was mixed with 50 ml of the
desorption agent solution in a glass volumetric flask and stirred at 200 rpm, the
concentration of desorbed chromium after 1, 3, 5, 7, 9, 24, 30, 48, 72, 96, 148 h was
determined, the efficiency of desorption was determined through Eq (3-3).

n =100 x (C; V)/(qp M) (3-3)
where n (%) is desorption efficiency, C; (mg/L) is the dissolved chromium
concentration at t time, V (L) and M (g) are the volumes of desorption solution and
dose of PAC correspondingly. In addition, the performance of PAC treated with Cr(VI)

after desorption with different chemical agents was evaluated.
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3.2.5. The formation process of chromium layer at pH 3 and 7

To ascertain the route of the chromium layer formed on PAC, the chromium
speciation after consecutive adsorption runs was analyzed with selected desorption
agents (0.2M H>SO4 and 0.1M NaOH solution). Four desorption tests followed four
successive removal cycles were performed and the increment content of loaded
chromium on PAC between two successive adsorption runs was determined by Eq (3-
4).

Ag= (Ci-G)V/M (3-4)
where Aq (mg/g) is the increased content of chromium on PAC, C; and C; (mg/L) are
the equilibrium concentration of desorbed chromium after the two successive elution
tests, V (ml) and M (g) are the volume of desorption solution and the dose of PAC after
adsorption of Cr(VI).

The adsorption capacity of PAC loaded with chromium on Cr(VI) after the last
elution assessment was examined, and all the adsorption experiments were conducted

with 1000 mg/L Cr(VI).
3.2.6. Analytical method

A colorimetric approach employing 1,5—diphenylcarbazide and a UV-Visible
spectrophotometer (Thermo Scientific, USA) coupled with a 1 cm quartz cell was used
to determine Cr(VI). 100 pL filtered solution was diluted to 10 ml and mixed with 0.1
mL 49% H>SO04, 0.1 mL 42.5% H3PO4, and 0.4 mL 0.2 % 1,5-diphenylcarbazide
solution, sequentially. The mixed solution stood for 10 min and was then measured by
a UV-Visible spectrophotometer under 540 nm. The absorbance of deionized water was
used as a reference. With prepared 0, 0.02, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8, and 1.0 mg/L
Cr(VI), a standard curve of concentration versus absorbance was constructed, this
standard curve was used to determine the Cr(VI) concentration of the sample. The total
concentration of aqueous Cr was analyzed by atomic absorption spectrometry (AAS,
Varian Spectra 220FS), a 50uL filtered solution was diluted to 10 mL and then sprayed

into the flame of air-acetylene. The chromium ground state atoms formed under a high-
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temperature flame produce selective absorption of the 357.9 nm characteristic spectrum
of chromium hollow cathode lamps, and the absorbance value is proportional to the
concentration of Cr. The standard curve of total Cr was built in the same way as Cr(VI),
and the concentration of total was determined by the standard curve as well. The
presence of soluble Cr species in the solution was Cr(III) and Cr(VI), the concentration

of aqueous Cr(III) was confirmed by the difference between total Cr and Cr(VI).

3.3. Results and discussion

3.3.1 Particle characterization

3.3.1.1 Surface morphology

The surface morphology of PAC after Cr(VI) adsorption under pH 7 was
characterized by SEM-EDX and elements mapping. As seen in Fig.3-1, a chromium

layer adsorbed mostly on the PAC surface. A similar observation was reported recently
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Figure. 3-1 SEM-EDX micrographs (a and b) and SEM coupling with elements
mappings (c and d) of PAC after Cr(VI) adsorption at pH 7.
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3.3.1.2 XPS spectra analysis
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Figure. 3-2 The XPS spectra of PAC treated with Cr(VI) under pH 3 (PAC-pH 3), pH
7 (PAC-pH 7), and fresh PAC; (a) XPS survey, (b) scan of Cr 2p
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Figure. 3-3 High resolution C 1s spectra of PAC, PAC-pH 3, and PAC-pH 7.

To further inspect the chemical species of Cr on the surface of PAC, the XPS
analysis was employed. Figs 3-2(a) and (b) showed the XPS spectra, which were fitted
and deconvoluted into multiple peaks by CasaXPS (version 2.3.23). The peak
referenced as C 1s at 284.8 eV, the Shirley type was designated as the background
subtraction. As presented in Fig. 3-2(a), the Cr 2p peak due to Cr(VI), denoted that the
Cr(VI) was adsorbed onto PAC. The XPS spectrum of PAC after being treated with
Cr(VI) at pH 3 (PAC-pH 3) and 7 (PAC-pH 7) was built as presented in Fig.2(b). The
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Cr 2p region of the photoelectron spectrum was both detected for PAC-pH 3 and PAC-
pH 7, which was consistent with the EDX spectrum shown in Fig. 3-1. Cr 2p involves
two energy levels, 2p 1/2 and 2p 3/2. The XPS spectrum of PAC-pH 3 can be divided
into the Crl, Cr2, and Cr3 peaks, where the binding energies (BE) value of Crl peak
of PAC-pH 3 was 587.5 eV, which was very close to that of Cr,03 (587.4 eV £ (.2) 34,
The BE for Cr2 and Cr3 of PAC-pH 3 were 579.2 and 577.8 eV, respectively, which
can be attributed to Cr(VI) **-*°, Two contributions of Cr1 and Cr2 for the Cr 2p region
of PAC-pH 7 were 587.7 and 578.0 eV, matching well with the binding energy for
Cr(VI) and Cr20334-55!, Due to XPS detection depth was no more than 4 nm from the
sample surface, it can be said that the chromium layers on the surface of PAC-pH 3
were mainly constituted by Cr(VI) and PAC-pH 7 was mainly constituted by Cr203(s)
352 Consistent with the present results, previous studies have demonstrated that the
reduction and adsorption participated principally in the Cr(VI) removal on biomass >
334 Moreover, the peak area ratio (Crl versus total peaks) as determined by CasaXPS
was 69.93% and 39.91% Cr203(s) on the surfaces of PAC-pH 7 and PAC-pH 3,
respectively. This higher content of CroO3; on PAC-pH 7 clearly evidenced that more
Cr203 formed on the PAC at pH 7 than at pH 3, impeding the diffusion of Cr(VI) into
the PAC, leading to a lower level of Cr(VI) removal. Besides, the ratio of O/C on PAC,
PAC-pH 3, and PAC-pH 7 were 0.075, 0.113, and 0.157, respectively (Table 2). This
indicates more O on the PAC after adsorption at pH 7 than at pH 3, due to more Cr2O3
precipitate. As noted in Table 3-2, the ratio of Cr/C on PAC-pH 3 was higher than that
on PAC-pH 7, which further substantiated that Cr(VI) removal efficiency under pH 3
was superior to that under pH 7 and indicated that not only there was Cr>O3 on the PAC

surface but also Cr(VI).
Table 3-2 XPS analysis of PAC before and after treatment with Cr(VI)

Materials o/C Cr/C
PAC 0.075 0
PAC-pH 3 0.113 0.005
PAC-pH 7 0.157 0.004
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The surface functional groups of PAC before and after Cr(VI) adsorption were
investigated using high resolution Cls spectra. The deconvolution of C 1s produced
four peaks, as shown in Fig. 3-3. For PAC, there were four components: C=C (284.8
eV), C-O-C/C-OH (285.5 eV), C-O (286.7 €V), and COOR (286.7 €V) (290.0 eV) 3.
Similarly, the four peaks of PAC-pH 3 were assigned to the C=C (284.8 ¢V), C-OH
(285.8¢V), C-O (286.5 V), and COOR (288.7 V) >°6:557 Meanwhile, the four peaks
for PAC-pH 7 were allocated to C=C (284.8 eV), C-OH (285.8eV), C-O (286.5 eV),
and COOR (289.5 eV) 38, The relative percentages of C-OH for PAC, PAC-pH 3, and
PAC-pH 7 were 23.62%, 6.77%, and 6.53%, respectively, which suggested that the
group of C-OH contributed to the removal of Cr(VI). The oxidation of C-OH to C-O
by Cr(VI) caused the increase of the C-O group **°. Nonetheless, following Cr(VI)
adsorption at pH 3, the relative percentage of COOR on PAC rose from 15.22% to
20.56% and dropped to 10.41% after Cr(VI) adsorption at pH 7. This inconsistency
may be due to Cr(VI) oxidized the surface of PAC at pH 3 and introduced more COOR
groups >*°, while the Cr(VI) exhibited weak oxidative capacity at higher pH >, and the
removal of Cr(VI) under pH 7 consumed the COOR groups through the complex.

3.3.1.3 Raman spectra analysis

D-band G_band

: C I/1,=1.12
M‘PAC'}?H 3 I/1;=1.10

PAC-pH 7 I/Ig=1.14

Intensity (a.u.)

800 I 1 ZIOO I 1 6I00 20I00 I 24I00
Raman shift (cm™)
Figure. 3-4 Raman spectra investigation for pristine PAC, after removal of
Cr(VI) atpH 3 and 7.

Raman spectroscopy investigation was carried out to evaluate the degree of
structural order in carbonaceous PACs, as well as to investigate the difference in Cr(VI)
removal mechanisms at pH 3 and pH 7. As depicted in Fig. 3-4, the two sharp and
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strong bands are associated with the D-band (1319cm!. defect with sp® bonding) and
G-band (1563cm’!, graphitization with sp? bonding) 3. The intensity ratio of D-band
(Ip) versus G-band (Ig) is often used to assess the degree of disorder in graphite
structure in carbon materials *¢!. The value of In/Ig declined from 1.12 to 1.10 after
treatment at pH 3 but increased from 1.12 to 1.14 after treatment at pH 7. As a result,
the existence of defects in PAC was strengthened under pH 7, while at pH 3, a well-
organized carbon structure formed. This divergence could be explained by the different
Cr(VI) adsorption mechanisms at pH 3 and 7. In general, the reduction of surface
oxygen-containing functional groups resulted in the increase of amorphous carbon at
pH 7 490- 492,362,363 " \yhile the oxidation of hybridized carbon atoms caused structural

order to grow at pH 3 3%,

3.3.2. Adsorption performance of PAC at pH 3 and 7
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Figure. 3-5 The adsorption capacities comparison at pH 3, 7, and 9, (a) the full profile
of adsorption, (b) the first 60 min adsorption profile (Initial concentration 1000 mg/L,
50g/L PAC, 295K)

Fig. 3-5 shows a comparison of adsorption performance at pH 3, 7, and 9 for 1000
mg/L initial concentration of Cr(VI). Adsorption at those three pH values both reached
pseudo-equilibrium immediately after 10 mins. Removal capacities for PAC at pH 7
and 3 were 16.8 mg/g and 20 mg/g, respectively, equivalent to 83.86% and nearly 100%
removal efficiency. And adsorption capacity under pH 9 was 7.8 mg/g which was much

lower than that at pH 3 and 7. It indicated that the removal performance of PAC on

95

Application of Mechanochemical Procedure on Aqueous Cr(VI) removal with
additives of activated carbon and Fe’/Fe,Os



M.C.Yi Fang

Cr(VI) was higher at low pH, PAC is probably protonated and attracted more anionic

Cr(VI).

3.3.3. Desorption performance of Cr-loaded PAC with chemical agents
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Figure. 3-7 The effect of chemical agents on desorption performance of Cr-loaded
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The desorption of chromium from the Cr-loaded PAC was evaluated using various
chemical agents including H>SO4, KCI, and NaOH. Abundant chromium-loaded PAC
was prepared at pH 7. As shown in Fig. 3-6, the Cr(VI) elimination experiment using
PAC was repeated four times. The duration time for every removal cycle was 24 hours.
The next removal cycle began once the previous cycle was completed. After four
consecutive repetitive adsorption cycles, the content of chromium on PAC reached
48.6mg/g. The results of the desorption analysis using the three reagents are shown in
Fig. 3-7. It is noted that only Cr(IIl) was dissolved in H2SO4 aqueous solutions, whereas
Cr(VI) was only desorbed in NaOH aqueous solutions. Negligible Cr(III) or Cr(VI)
were detected in the KCI solution when compared to acidic and alkaline aqueous
solutions. These findings agree well with Ouki and Neufeld’s (1997) findings that 3
g/L Cr(IIT) and 8.4 g/L. Cr(VI) were recovered when exhausted carbon was regenerated
under acidic and alkaline conditions, respectively . Due to the great stability of the
adsorbed chromium on the PAC, desorption of Cr(VI) and Cr(III) from the Cr-loaded
PAC with deionized water was minimal. Our results are also in line with those of Jing
et al. (2011), who found that the desorption rate of Cr-loaded AC was low with distilled
water 66,

As shown in Fig. 3-7(a), Cr(IIl) precipitate dissolved gradually in 0.2 M H2SOg,
and 13.0 % Cr(IIT) precipitate was removed under acidic conditions, this process was
depicted by Eq (3-5).

Cr03+ 6H" — 2Cr** + 3H,0 (3-5)

With the NaOH aqueous solution (Fig.3-7 (¢)), 21.3 % Cr(VI) was desorbed, which was
higher than the dissolved Cr(IIl) by the H>SO4 aqueous solution. This seems to
contradict the XPS conclusion that less Cr(VI) adsorbed on PAC-pH 7 surface. A
possible explanation for this might be that more internal adsorbed Cr(VI) in PAC
particles were desorbed by alkaline elution. Cr(VI) adsorbed on AC was previously

shown to be bound to the surface functional groups ¢

. An ion-exchange mechanism
could explain the desorption of adsorbed CrO4* (the dominant chromium species under

alkaline conditions) on surface functional groups by NaOH aqueous solutions, the OH"
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ions substitute for CrO4> anions, as demonstrated in Eq (3-6) .
PAC-(COOH; "), +-*CrO4* (s) + 20H- — PAC-(COOH) (s) + CrO4> + H,O  (3-6)
These findings could be useful in the development of a selective recovery method of

Cr(I1T) and Cr(VI) using acid and alkali aqueous solutions.

3.3.4. Formation process of chromium layer at pH 3 and 7
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Figure. 3-8 The increment of chromium loaded on PAC as consecutive Cr(VI)
removal cycle (295K, 50g/L)

To clarify the influence of pH on the development process of chromium layer on
PAC, H2SO4, and NaOH desorption agents were used to determine the content of Cr(I1I)
and Cr(VI) adsorbed on PAC-pH 3 and PAC-pH 7. Fig. 3-8 compares the results
obtained from elution tests of PAC-pH 3 and PAC-pH 7 after three consecutive
adsorption cycles. It is apparent from the figure that the increment of adsorbed Cr(VI)
is higher than reduced Cr(III) at each cycle for both PAC-pH 3 and PAC-pH 7. Hence
it is conceivable to suggest that the adsorption process prevailed for Cr(VI) elimination.
This finding was also reported by Daneshvar et al. (2019) 3%%. Another significant
observation was that for PAC-pH 3 and PAC-pH 7, the adsorbed Cr(VI) and reduced
Cr(I1T) decreased as the cycles progressed. PAC-pH 3 showed higher Cr(VI) adsorption

and reduction capacity. This may be due to the more generated Cr(IIl) precipitate
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accumulating on the PAC surface over time at the neutral condition, sheltering the PAC

active sites from Cr(VI adsorption.

3.3.5. Performance of Cr-loaded PAC after desorption
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Figure. 3-9 The activity of chromium-loaded PAC-pH 7 after treated with
H>SO4 and NaOH (1000mg/L Cr(VI), pH 7)

The performance of the PAC for Cr adsorption was assessed after chromium was
desorbed from the PAC using the H2SO4 and NaOH. Re-adsorption experiments were
conducted following the third cycle desorption step. As can be seen in Fig. 3-9, 92.43%
removal efficiency of Cr(VI) was achieved by PAC-pH 7 after washing with H2SOs,
whereas only 51.72% removal was attained using NaOH aqueous. Therefore, it can be
inferred that the Cr(IlI) precipitate is mainly responsible for the poor performance of
PAC under neutral conditions. The removal performance after acid washing (92.43%)
was higher than the preliminary removal efficiency (83.86%); this result indicated that
the acid desorption procedure modified PAC properties and introduced surface
functional groups. These results are consistent with those of Guolin Huang et al. (2009),
who improved AC’s Cr(VI) removal capacity by modifying it with nitric acid 463, As a
result, it is proved that PAC’s limited removal capability for Cr(VI) at pH 7 was mostly
due to Cr(IIl) precipitate that formed on the surface of PAC. This finding backs with

the XPS results in that chromium oxide piled up mostly on PAC under neutral
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conditions. The sulfuric acid proved to be a potential chemical agent for the

regeneration of Cr-loaded PAC after treating water contaminated with Cr(VI).

3.4. Conclusions

This study aimed to determine the mechanism of the limited sequestration
capability of PAC on Cr(VI) under neutral conditions compared to acidic conditions.
SEM-EDX substantiated that a chromium layer was formed on PAC, while XPS spectra
corroborated the higher Cr203 content on PAC under alkaline conditions, resulting in
poor Cr(VI) removal performance. Conversely, a lower Cr,O3 content on PAC under
acid conditions is related to the higher Cr(VI) removal capacity. Desorption tests with
H>SO4 and NaOH solution revealed that the precipitated Cr2O3; and adsorbed Cr(VI)
can be selectively desorbed, proving that adsorption and reduction processes
contributed significantly to the Cr(VI) removal. Consecutive desorption assays proved
that the reduction and adsorption capability at 7 declined with time and were both lower
than at pH 3. This is due to Cr(III) precipitate and adsorbed Cr(VI) blocking active sites.
The superior performance on Cr(VI) removal of Cr-loaded PAC after desorption by
H>SO4 further confirmed that the restricted removal performance under neutral
conditions was ascribed to the formation of Cr.O; passivation layer on the surface of
PAC particle. The insights gained from this work may be of assistance to the recycling

of chromium from exhausted AC and extend the lifespan of AC.
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Chapter IV. Conclusions

The pronounced results of the Cr(VI) reduction and precipitation by modified
activated carbon proved that the action of ball milling can refine the activated carbon
particles and improve the surface area, meanwhile, the enriched surface functional
groups accompanied the enhanced hydrophilicity took responsibility for the advanced
Cr(VI) removal at neutral and alkaline conditions. The generated Cr(III) precipitated
on the surface of activated carbon particles, the elution experiments and re-adsorption
test proved that the surface Cr(Ill) oxides layer caused the low Cr(VI) removal
efficiency at higher pH than that at low pH. Moreover, the reduction and adsorption
process both declined as time. The activated carbon after treating with Cr(VI) could be
rejuvenated by acidic washing and the capacity maintained satisfactory even after three
times repetitive Cr(VI) treatment.

The inactivation of Fe? at high pH due to the passivation could be solved by the
motion of ball milling, the surface formed Fe(III)/Cr(III) (hydro)oxides were peeled off
and the fresh core Fe’ exposed to the Cr(VI) aqueous. The Cr(VI) removal experiments
conducted under different DO indicated that the anaerobic conditions mitigated the
consumption of Fe® by competitive oxidant O? and the removal rate was the highest.
The DO improve the depletion rate of Cr(VI) at the first segment through the generated
Fe(IT) by DO, but the Fe(Il) ions were further oxidized by DO as pH increased and the
removal rate decreased significantly. The analysis of XPS spectra denoted that
reduction and precipitation dominant the elimination of Cr(VI) by Fe%/Fe;O3 micro

particles.
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