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Resumen

En este trabajo estudiamos la dependencia temporal en la transformación de estados de no-
equilibrio utilizando la teoŕıa de no-equilibrio de la ecuación generalizada de Langevin (NE-SCGLE
por sus siglas en inglés) en un sistema flúıdo que interactua a través de un potencial repulsivo
de esfera dura más una atracción de pozo cuadrado (HSSW por sus siglas en inglés). Existe una
inmensa cantidad de materiales utilizados en la vida cotidiana que no pueden ser descritos uti-
lizando métodos de termodinámica clásica ni estad́ıstica. Los geles y los vidrios, son ejemplo de
esta clase de materiales. En particular, estos tipos de materiales exhiben comportamientos tales
como el envejecimiento de sus propiedades estructurales y dinámicas, lo cual hace complicado su
estudio por medio de teoŕıas de equilibrio. Por ello, la teoŕıa NE-SCGLE, una teoŕıa de primeros
principios, es utilizada como alternativa al estudio de procesos evolutivos en sistemas fuera de
equilibrio termodinámico.

Una forma de modelar estos materiales es a través de sistemas tipo Lennard-Jones, caracteri-
zados por un juego entre interacciones repulsivas y atractivas de corto alcance, como es el caso del
fluido HSSW. Al someter este tipo de sistemas a procesos de no-equilibrio, tales como enfriamien-
tos súbitos, uno puede obtener sólidos amorfos tales como los geles y vidrios. En este sentido,
una forma de modelar dichos procesos de no-equilibrio es a través de la teoŕıa NE-SCGLE, la cual
nos permite introducir el protocolo de preparación de los sistemas mediante el conocimiento de
los parámetros termodinámicos. De esta forma, uno puede obtener los resultados principales de la
teoŕıa NE-SCGLE de estos procesos, los cuales pueden ser resumidos en los cambios temporales
de propiedades estructurales y dinámicas que caracterizan al sistema.

En particular, estos procesos de solidificación amorfa son descritos a través de sistemas que
sufren un arresto dinámico, en el cual las part́ıculas que lo conforman, escencialmente pierden su
capacidad de difundirse. Por ello, el estudio de las propiedades dinámicas resulta especialmente
crucial en la formación de sólidos amorfos, mientras que las propiedades estructurales nos permiten
entender el ordenamiento entre las part́ıculas que conforman a un sistema. El estudio de ambos
tipos de propiedades nos permiten no sólo conocer la existencia de estados dinámicamente arresta-
dos, sino que también nos permite clasificarlos. Esto es por ejemplo, a través de la identifición de
comportamientos caracteŕısticos que nos permiten distinguir entre vidrios y geles.

De esta manera, el presente trabajo se centra en mostrar la capacidad predictiva de la teoŕıa
NE-SCGLE en términos de algunas de las caracteŕısticas principales en la formación de geles y
vidrios. En particular, estas caracteŕısticas son mostradas en términos de su dependencia temporal,
la cual nos permite entender los procesos de transformación de estos materiales. A su vez, esto
nos permite proponer una predicción práctica para el tiempos en el cual las transformaciones a
sólidos amorfos ocurren. Tal propuesta es considerada la contribución más relevante del presente
trabajo, la cuál tiene como resultado principal la primer derivación de un diagrama de no-equilibrio
dependiente del tiempo a través de una teoŕıa de primeros principios.
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Abstract

In this work, we study the time dependency of non-equilibrium states through the use of the
non-equilibrium generalized Langevin equation theory (NE-SCGLE) for a fluid with a repulsive
hard sphere plus an attractive square well interaction potential (HSSW). There exist a huge
amount of daily life materials which can not be fully described through classical and statistical
thermodynamics methods. Gels and glasses are an example of these kind of materials. These
kind of materials exhibit non-equilibrium behaviors, such as aging in structural and dynamical
properties, which makes their study difficult through equilibrium theories. Thus, the NE-SCGLE
theory, as a first principle theory, is employed as an alternative for the study of evolution processes
of out of thermodynamic equilibrium systems.

One way to model these kind of materials is through Lennard-Jones-like systems, characterized
by the interplay of repulsive and attractive short-range interactions, such as the HSSW fluid. By
submitting these kind of systems to non-equilibrium processes such as sudden quenches, one can
obtain amorphous solids such as gels and glasses. In this sense, a scheme to model such non-
equilibrium processes can be devised within the NE-SCGLE theory, which allow us to input the
preparation protocol of the systems through the knowledge of the thermodynamic parameters.
Thus, we can obtain the NE-SCGLE main results of such processes, which can be summarized by
the temporal description of the structural and dynamical properties that allow us to characterize
the system.

In particular, such amorphous solidification processes are described through systems dynami-
cally arrested in which, their conforming particles essentially lose their capacity to diffuse. Thus,
the study of dynamical properties is particularly crucial in the formation of amorphous solids,
while the structural properties allow us to understand the ordering between particles that con-
form the system. The study of these both kind of properties allow us not only to recognize the
existence of dynamically arrested states, but also to classify them. This is done for example, by
identifying signature behaviors which allow us to distinguish between gels and glasses.

Thus, the present work focuses on exhibiting the predictive capacity of the NE-SCGLE theory
in terms of signature characteristics in the formation of gels and glasses. In particular, such
characteristics are shown in terms of their temporal dependence, which allow us to understand
the transformation processes of these materials. In return, this enable us to propose a practical
prediction for the time in which the transformations towards an amorphous solid occurs. Such
proposal is considered the most relevant contribution of the present work, which leads to the main
result: the first time-dependent non-equilibrium diagram from a first principles theory.
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Mart́ınez, Beatriz Morales Cruzado, Jesús Hector Castillo Sotelo, Carlos Robles, Cristian Ro-
driguez Escalante, Gabriel Corella, Zaid Ignacio, Maximino Perez, Elizabeth Flores, Daniel López,
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Chapter 1

Introduction

This thesis proposes a fundamental definition and practical determination of non-equilibrium phase
diagrams, and offers them as a novel tool for the theoretical interpretation of the widespread
empirical reports of the experimental evolution of suddenly quenched liquids (or melts) in the
process of fabrication of amorphous solid materials. This proposal is based on the application of
the non-equilibrium Self-Consistent Generalized Langevin Equation (NE-SCGLE) theory to the
description of the irreversible evolution of the structural and dynamical properties of suddenly
quenched model liquids. This non-equilibrium theory [1] was developed only one decade ago in
another Ph. D. Thesis at Universidad Autónoma de San Luis Potośı (UASLP), and still remains
as the first and only first-principles statistical mechanical theory reported in the international
literature, capable of explaining and predicting the most relevant features of the non-equilibrium
amorphous solidification of liquids. In this context, the present thesis presents the first and only
statistical mechanical description of the irreversible evolution of the properties of a liquid in the
process of formation of non-equilibrium amorphous solids, in a format that extends the ordinary
notion of equilibrium phases and phase diagrams to the full non-equilibrium regime.

To better explain the actual contributions of this work as well as its relevance, let us start by
providing the pertinent contextual material. The basic problem of thermodynamics is to under-
stand and predict the changes of the thermodynamic variables which describe the thermodynamic
state of a system, let it be water, alcohol, carbon or any other substance. In general, this problem is
solved when the associated fundamental thermodynamic relation (FTR [2]), S = S[E,X1, X2, ...],
describing the system, is known. Here S is the entropy of the system, E is the internal energy,
and Xi is the ith extensive variable with which one describes the system (e.g., the volume V and
the number of particles N for monocomponent liquids and gases). Such general formalism allows
us to describe not only changes within the same phase of the system, but in general, the physical
transformation between phases, such as the condensation of gases into liquids, the freezing of liq-
uids into crystalline solids or other possible phase transformation that the system may undergo.
Hence, thermodynamics is a fundamental tool to understand and characterize a system, at least
under conditions of full thermodynamic equilibrium [2, 3].

From classical thermodynamics, one learns that the FTR of a system may be determined
primarily by empirical means. On the other hand, from statistical thermodynamics, one learns
that the FTR can actually be derived from the fundamental interactions between particles through
Boltzmann’s expression S = kB lnΩ, which writes the entropy S (a macroscopic quantity) in terms
of the number Ω of microscopic states of the N -particle system [4]. Statistical thermodynamics
thus provides what is thought to be a complete framework that allows us to understand the
thermodynamics of the system starting from the knowledge of fundamental interactions, which
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can be applied to a great variety of systems. However, in reality we only know how to apply this
formalism in full detail for (thermodynamic) equilibrium states, whose properties are determined
by the solution of a set of equations that derive from, and expresses in mathematical form, the
equilibrium condition of maximum entropy. In this manner, the full catalog of thermodynamic
equilibrium phases of the system, and the conventional thermodynamic equilibrium phase diagram,
are determined.

The problem arises, however, when trying to describe systems that do not satisfy thermody-
namic equilibrium conditions. One of the most fundamental features of equilibrium thermody-
namics is that the state of a system is time independent, i.e., that the thermodynamic properties
of a system in equilibrium remain constant in time. Furthermore, thermodynamic equilibrium
also implies the absence of fluxes. Such conditions lead to several universal conclusions, one of the
most relevant being that these equilibrium properties are independent of the preparation protocol
employed to drive the system to a given equilibrium state. In real life, however, it is known that
changes in the non-equilibrium production process of materials may produce changes in their final
physical properties, one of the most ancient examples being the tempering of steel [5]. A more
colloquial analogy would be the comparison between frying scrambled eggs and scrambling fried
eggs.

Dynamically arrested states constitute a broad category of macroscopic states of materials that
cannot be explained by equilibrium statistical thermodynamics, for the simple reason that they are
not in equilibrium. The evidence for this is the fact that they exhibit aging (i.e., their properties
depend on the time after preparation), and the fact that these properties actually depend on
the very process of preparation. In dynamically arrested states the constituent particles are
almost unable to diffuse. In a more practical and relaxed definition, their mean particle diffusion
coefficient is found to decrease by several orders of magnitude with respect to that of its fluid
or gas counterpart. As a result, the system solidifies, and yet, its structural properties remain
closer to those of a fluid than to those of a crystalline solid. Examples of such states are in every
day materials in the form of gels and glasses, such as yogurts[6], ceramic materials[7] and stained
glasses[8].

The description of dynamically arrested materials is typically given in terms of dynamic (rather
than thermodynamic) properties. Theories that explain the dynamics of liquids at equilibrium
exist, such as the so-called mode coupling theory (MCT) [9, 10] and the self-consistent generalized
Langevin equation (SCGLE)[11]. In spite of their limitation to equilibrium conditions, these theo-
ries have long been used to understand and predict several features of dynamical arrest phenomena
[9, 10, 12]. Fundamentally, the two aforementioned theories are able to link the structure (i.e.,
the average local arrangement of the fluid particles) with the dynamics of the system. Since the
structure is characterized by the elementary or effective interaction forces between the constituent
particles, these theories serve as an extension of statistical thermodynamics to the description of
the macroscopic dynamic properties of the system. It is then within these kind of theories that
the dynamics of fluids still in equilibrium, but near dynamically arrested states, have commonly
been studied [13]. Both MCT and SCGLE provide two major prediction for glass forming liquids,
namely, the existence of an idealized arrest transition (involving strictly non diffusive states) and
of a power-law increase of the relaxation times near arrested states [13, 14, 15, 16, 12].

It is the prediction of such idealized arrested states what allows these theories to determine the
region of a state space (e.g., temperature-density plane), where the system will be able to reach
equilibrium, and the region where the system will become dynamically arrested (in which case it
may become a glass or a gel, depending on the molecular interactions). The locus of these regions
in the control parameters space, along with the corresponding boundaries (or “dynamical arrest
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lines”) indicating the transition from ergodic (equilibrium fluid) to non-ergodic (glass, gel, etc.),
is referred to as the glass transition diagram, a recurring term that will be employed along the
present work for historical reasons [17]. In general, a glass transition diagram complements the
ordinary thermodynamic equilibrium phase diagram with information of kinetic nature. Thus, the
equilibrium phase diagram indicates the phases attained in the absence of kinetic barriers, whereas
the glass transition diagram predicts the regions where this may not be possible. Unfortunately,
the idealized sharp dynamical arrest transitions predicted by both MCT and SCGLE is never
observed in practice, as experiments always reveal the existence of a residual small diffusion, even
for glassy states well beyond the dynamical arrest transitions predicted by these theories. In
addition, since these theories were developed under equilibrium assumptions, they are unable to
explain essential non-equilirbium fingerprints of arrested materials, such as aging, which consists
of the increasingly slow but endless evolution of the system’s properties, such as their viscoelastic
or structural response, commonly observed in the formation of gels and glasses [14, 15, 18].

In this context, the extension of these (or other) theories to the description of non-equilibrium
states remains as a major theoretical challenge for modern statistical thermodynamics. Histor-
ically, at the end of the last century A. Latz launched the first attempt to extended MCT to
the description of aging[19], whereas a non-equilibrium extension of the self-consistent generalized
Langevin equation (NE-SCGLE) theory was developed one decade later [1]. Unfortunately, the
endeavor started by Latz, in the context of structural glass formers, was not really continued by the
MCT community, as demonstrated by the lack of concrete applications in the context of structural
glass forming liquids. In the meanwhile, in spite of the considerably smaller scientific community
behind it, the NE-SCGLE theory immediately succeeded in demonstrating its usefulness in the
detailed description of non-equilibrium processes, by means of its successful application in several
concrete directions. Some examples are the aging of soft mono- and multi-component repulsive
systems[20, 21, 22], as well as dipole-dipole interacting systems[23, 24].

One recent application of the NE-SCGLE theory that will be particularly relevant for the
present thesis is its application to Lennard-Jones-like systems [25]. These systems involve a short
range attractive interaction plus a strong shorter-ranged repulsion (such as the hard sphere plus
attractive Yukawa (HSAY) interaction potential), and hold a special place in the study of classical
fluids due to their role in the understanding of the nature of the gas-liquid transition. Conventional
statistical thermodynamics allows us to outline the corresponding coexistence and spinodal lines in
the thermodynamic state space of this system. The coexistence line determines the region in which
the two phases (i.e. gas and liquid) are expected to coexist under equilibrium conditions, while
the spinodal line is the boundary of stability of uniform metastable states within such coexistence
region. Thus, inside the spinodal region, the small inherent thermal fluctuations of the system
become unstable and are amplified to grow in size through what is commonly known as spinodal
decomposition, whose effective final result is the complete phase separation of the system [3]. As it
happens, however, for sufficiently fast and deep quenches, such spinodal decomposition processes
may be interrupted by the emergence of dynamic arrest conditions, leading to the formation of
physical gels, which are rather common non-equilibrium amorphous materials [26, 27].

It is precisely these dynamically arrested spinodal decomposition processes experimentally
observed in systems represented by Lennard-Jones-like models what emphasizes the relevance
of the NE-SCGLE framework [28, 27]. As said above, one of the main results of both, MCT
and the equilibrium SCGLE theory, is their prediction of the so-called glass transition diagrams.
These glass transition diagrams, however, do not include a description of dynamically arrested
states inside the thermodynamically unstable spinodal region, where the input required by these
theories (the structure factor of the homogeneous equilibrium state) does not exist. This limitation
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was removed by the NE-SCGLE framework, whose most fundamental input is not the equilibrium
structure factor, but the second functional derivative of the entropy S with respect to the local
density.

As described in detail in Refs. [25, 29], this subtle but relevant difference allowed the NE-
SCGLE theory to yield the first fundamental theoretical description of arrested spinodal decompo-
sition. This was first obtained from the analysis of the long-time asymptotic limit of the solution
of the NE-SCGLE main equations for specific non-equilibrium instantaneous isochoric quench-
ing processes. Outside the spinodal region, this method confirmed the glass transition diagram
originally provided by the equilibrium (MCT and SCGLE) theories. Inside the spinodal region,
however, its predictions unveiled a complex and fascinating scenario describing the formation of
non-equilibrium arrested phases with sponge-like structures, typical of gels and porous glasses.
The resulting diagram, enriched with these predicted amorphous solid states, was thus referred
to as the non-equilibrium glass transition diagram. Its long-time asymptotic nature allowed the
direct comparison of such novel diagrams, with the ordinary equilibrium phase diagrams, and to
spell out the interference between an ordinary gas-liquid phase transition and the more mysterious
and fascinating transitions to glass and gel states.

Summarizing these non-equilibrium predictions only in terms of the long-time asymptotic (equi-
librium or non equilibrium) diagrams comes at the cost of ignoring the rich and relevant time
dependence of the processes of formation of non-equilibrium amorphous phases. This informa-
tion, however, is precisely the most relevant fingerprint of the glass and the gel transitions, as
demonstrated by the comparison of the full time-dependent solutions of the NE-SCGLE equations
with simulation and experimental results for a few illustrative quench processes [29, 30, 22]. The
practical and fundamental relevance of the full time dependence of these processes, however, can
hardly be overestimated. Every day enormous amounts of experimental information is produced
in the world, which reports the time-dependent phase transformation of many materials during
their process of fabrication.

The information thus obtained is reported in empirical non-equilibrium time-dependent “phase
diagrams”, in which the time after preparation is a fundamental variable. In such reports, the time
is frequently expressed in logarithmic scale, due to the strikingly slow relaxation involved in the
aging of dynamically arrested materials. Illustrative examples are the so-called time-temperature-
transformation (TTT) diagrams, widely employed in metallurgical processes and in the fabrication
of borosilicate glasses [31], or the phase separation, gelation and vitrification processes of colloidal
clay suspensions[32]. In these cases, relevant delayed effects in the material response are commonly
observed prior to the observation of notable changes in their properties. These experimental data
are especially relevant for virtually every industrial sector that depends on the precise fabrication
or transformation of amorphous materials. It is in this context that the need arises of a funda-
mental theory capable of predicting and describing the intricate evolution of these non-equilibrium
materials.

Addressing precisely this issue is, thus, the main aim of the present dissertation, whose most
important contribution is the development of a fundamental statistical mechanics description
of the experimentally-determined time-dependent non-equilibrium glass transition diagrams illus-
trated by the referred time-temperature-transformation (TTT) diagrams. For this, we apply the
non-equilibrium Self-Consistent Generalized Langevin Equation (NE-SCGLE) theory to a generic
model fluid with well-defined interparticle interactions described by a pair potential u(r). In this
manner we describe the non-equilibrium evolution of the structural and dynamical properties of
the system as a function of the (waiting) time t after it was suddenly quenched to a point (n, T )
of its density-temperature state space. This work builds upon previous developments involving
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several specific model systems [1, 20, 25, 30, 29]. Such previous works, however, focused only in
the description of a single quench, whereas in the present contribution we discuss the physics that
emerges when considering a collection of quenches to state points in a finite region of the (n, T )
plane.

A second major aim of this thesis is to reveal the time-dependent scenario predicted by the NE-
SCGLE theory regarding the interference between the gas-liquid equilibrium phase transition, and
the non-equilibrium glass- and gel-transitions that lead to the amorphous solidification of liquids,
into glasses, gels, and porous glasses. This expanded scenario constitutes a natural extension of
the ordinary scenario of equilibrium phases predicted by statistical thermodynamics, starting with
van der Waals’ theory of the gas-liquid transition. Like van der Waals, here we shall also have
in mind a simple model fluid whose particles interact with a pair potential composed of a strong
short-ranged repulsion plus a longer-ranged attraction (from now on, systems of this kind will be
referred to as Lennard-Jones–like liquids).

Finally, a third main contribution of this thesis refers to the theoretical description of the
growth and arrest of density heterogeneities during the process of arrested spinodal decomposition.
These heterogeneities describe the non-equilibrium evolution of the morphology of the system.
These three aims of the present thesis thus map onto three main contributions, described in three
technical manuscripts. The first major scientific contribution is summarized in reference [33]
and the second in reference [29]. A manuscript that summarizes the theoretical description of
morphological evolution is still in preparation for publication.

Hence, in order to fully exhibit these contributions, the present thesis is divided in seven chap-
ters. In chapter 2, we present a general overview of the equations that constitute the essence of
the NE-SCGLE theoretical framework. These general equations describe the time evolution of the
relevant properties, such as the local mean density, its covariance, the (waiting) time dependent
intermediate scattering function and the local mobility. Along the chapter, we discuss the deriva-
tion and approximations leading to such set of equations. Given a noticeable absence of a careful
review of the fundamentals of the theory, filling this gap is also a relevant contribution of this
chapter.

Chapter 3 focuses on the precise background of the glass transition diagrams for Lennard-
Jones–like systems within the NE-SCGLE framework. Thus, in this chapter some of the asymptotic
relations derived in chapter 2 are applied for a model system, namely, a hard sphere plus square
well (HSSW) fluid. It is worth to notice that this is the first time that this model system is
described within the NE-SCGLE framework. The relevance in considering this model comes from
the fact that it exhibits a gas-liquid spinodal line, thus delimiting an inaccessible region to any
equilibrium theory such as MCT or SCGLE. As shown in this chapter, this is not an impediment
for the NE-SCGLE theory, which is employed to determine the corresponding non-equilibrium
glass transition diagram, that includes a hard-sphere-like glass-transition (also predicted by the
SCGLE) and two competing dynamical arrest transitions inside the spinodal region.

Chapter 4 discusses the full waiting -time evolution of the HSSW fluid for an ensemble of non-
equilibrium processes, allowing to emphasize various fundamental non-equilibrium fingerprints
involved in the interference of the gas-liquid, gel and glass transitions. These fingerprints are
related to the prediction of different aging and latency effects in the dynamical properties of
the HSSW liquid, which are systematically studied across the non-equilibrium glass transition
diagram. Thus, this chapter paves the way for one of our main contributions, namely, the proposal
and derivation of a waiting-time non-equilibrium glass transition diagrams.

Chapter 5 deals with the main objective of the present dissertation. This is done across two
sections. In the first one, the practical threshold for the mobility to describe dynamical arrested
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states and its context are discussed. In the second one, the main results leading to the waiting-time
dependent non-equilibrium glass transition diagrams are presented. Specifically, these diagrams
are obtained through the full waiting-time description of the NE-SCGLE framework across an
extensive set of thermodynamical parameters. Thus, it is precisely the capacity to connect the
ideas behind such analysis, as well as its implementation, what distinguish the present work
from previous contributions. In particular, the resulting diagrams are in stark contrast with the
asymptotic diagrams shown in 3, as the time dependency is explicitly stated. On the other hand,
the resulting time dependent diagram are embedded around the concepts discussed in chapters 3
and 4, allowing us to present a clear view of the involved dynamical arrest phenomena.

Chapter 6 addresses t the third contribution of our work , organized in three sections. In the
first of them, an equation for the evolution of a locally dependent mean density n(r, t) is derived,
a property which is expected to describe the system’s morphology. This equation is obtained
through a linear approximation performed for one of the main equations of the theory, whose
solution requires an initial condition. In the second section, a simple theoretical approach for the
initial condition is explained and employed. Then, on the third section, the theoretical predictions
are displayed and discussed.

Finally , in chapter 7 we provide our concluding remarks. The achievement of the presented
objective conforms what is thought to be the next step in the understanding of non-equilibrium
materials with what is hopefully an unified first principle theoretical framework, capable of ex-
tending the equilibrium concepts given by statistical thermodynamics. Such understanding is the
principal justification of the present work and all advances made for this understanding are far
from falling short. For perspective, two and a half decades have passed since the famous quote of
the Nobel prize physicist P. W. Anderson ”The deepest and most interesting unsolved problem in
solid state theory is probably the theory of the nature of glass and the glass transition. This could
be the next breakthrough in the coming decade.”[34]. This statement was, as a matter of fact, made
without the added complexity of competing behaviors with other non-equilibrium states, and yet
such clear breakthrough is still to be seen.
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Chapter 2

The NE-SCGLE theoretical framework

This chapter summarizes the fundamental basis of the non-equilibrium self-consistent generalized
Langevin equation (NE-SCGLE) theoretical framework. Such fundamental basis lie in areas of
statistical and thermal physics as diverse as the classical theory of equilibrium homogeneous and
non-uniform liquids, the thermodynamic and hydrodynamic theory of irreversible processes, and
the stochastic description of physical fluctuations. Building the NE-SCGLE theoretical framework
upon such diverse fundamental basis has been a rather slow process, requiring many specific steps,
which have been reported in a correspondingly long series of apparently disconnected reports.
There is, thus, an urgent need for a unifying review, and this chapter describes our attempt to fill
such a gap.

With this purpose in mind, let us start by noticing that the NE-SCGLE theory was developed
in two distinct sequential stages, and its formulation involved two hierarchical levels of abstraction
and generality. The first stage involves the application of the fundamental perspective provided by
Onsager’s general and abstract formalism for the relaxation and thermal fluctuations description
in equilibrium systems, for the derivation of the SCGLE theory, which describes the dynamics
in fully ergodic sates. The second stage refers to the extension of this equilibrium theory to the
non-equilibrium domain, leading to the full NE-SCGLE theory, which turns out to be a general
non-equlibrium theory of irreversible processes in liquids with temporal and spatial molecular
resolution. To review the main steps in the construction the NE-SCGLE theory, this chapter is
divided into four main sections, the first three being composed around the equilibrium version of
the theory, where relevant theorems involving theory of fluctuations are briefly summarized for
reasons of self-containedness. Then the core set of equations for the SCGLE theory are derived and
some relevant limits and properties are obtained. In the last section, the non-equilibrium version
is explained in terms of two main equations, one for the evolution of the mean local density and
another one for its covariance. Due to the intricacies of the solution of these two equations, which
involves a generalization of the SCGLE core equations, the actual NE-SCGLE theory is left at the
end of the chapter.

2.1 The mathematical nature of the generalized Langevin

equation (GLE)

In this section, the fundamental basis of the self-consistent generalized Langevin equation (SC-
GLE) theory is summarized. We refer to a relevant mathematical theorem that imposes strong and
general conditions on the stochastic models employed to describe thermal fluctuations. This leads
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to the so-called generalized Langevin equation (GLE), whose mathematical structure incorporates
these imposed mathematical conditions as important and exact relationships between the phys-
ical properties involved. Many times these exact conditions, such as the fluctuation-dissipation
relation, are perceived merely as phenomenological results. Being exact conditions, however, they
are instrumental in deriving other important exact or approximate equations describing the re-
laxation of thermal fluctuations of specific physical properties in concrete systems. A detailed
example will be found in the next section, which refers to the description of density fluctuations
in a liquid. Here we only state the content of these theorems, whose mathematical proof can be
found elsewhere[35].

Let a be a n-dimensional vector of stochastic variables

a(t) =


a1(t)
a2(t)

...
an(t)

 , (2.1)

described by the most general linear stochastic equation with additive noise, of the form

da(t)

dt
= −

∫ t

0

G(t− t′)a(t′)dt′ + f(t), (2.2)

with initial condition a0 = a(0) of zero mean < a0 >= 0, driven by a stochastic n-dimensional
vector f(t) of also zero mean < f(t) > and uncorrelated with a0, i.e. < a0f

T (t) >=< f(t)aT0 >=
0. The formal solution of (2.2) is

a(t) = χ(t)a0 +

∫ t

0

χ(t− t′)f(t′)dt′, (2.3)

where χ(t) is the propagator defined by the inverse Laplace transform (LT) of

χ̂(z) =
(
zI + Ĝ(z)

)−1

. (2.4)

For this stochastic process, the following three statements are equivalent:

Statement A: a(t) is stationary, i.e.

< a(t+ s)aT (t′ + s) >=< a(t)aT (t′) > (2.5)

Statement B : f(t) is stationary and G(t) is such that generalized Langevin equation can be
written as

da(t)

dt
= −ω ◦ χ−1 ◦ a(t)−

∫ t

0

L(t− t′) ◦ χ−1 ◦ a(t′)dt′ + f(t), (2.6)

where
χ =< a(0)aT (0) >, (2.7)

and L is defined as
L(t− t′) = LT (t′ − t) =< f(t)fT (t′) > (2.8)

Statement C : an exact fluctuation-dissipation relation exists between L(t− t′) and G(t− t′),
namely,

L(t− t′) = (G(t− t′)ω − 2δ(t− t′)ω)θ(t− t′) + (G(t′ − t)ω − 2δ(t′ − t)ω)θ(t′ − t). (2.9)
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2.2 SCGLE Theory

In this section we derive the set of equations that conform the SCGLE theory for the description
equilibrium dynamics. This set consist of an equation for the intermediate scattering function
F (k, t) (ISF), another for the self part of the ISF Fs(k, t), and a third for an unknown memory
function. For the ISF and its self part, the expressions are first derived for a general multi-
component system. For clarity and simplicity, however, a closure relation for the memory functions
is derived only for a monocomponent system.

In the last section, several theorems that stochastic variables which are described by the gen-
eralized Langevin equation were summarized. Now, in order to derive general expressions for the
ISF and its self part, the local density fluctuations

δn(r, t) =


δn1(r, t)
δn2(r, t)

...
δnν(r, t)

 , (2.10)

along with its fluxes (also referred to as current density)

δj(r, t) =


δj1,x(r, t)x̂+ δj1,y(r, t)ŷ + δj1,z(r, t)ẑ
δj2,x(r, t)x̂+ δj2,y(r, t)ŷ + δj2,z(r, t)ẑ

...
δjν,x(r, t)x̂+ δjν,y(r, t)ŷ + δjν,z(r, t)ẑ

 , (2.11)

are selected as said stochastic variables, in which

δni(r, t) ≡
Ni∑
j=1

δ [r − rj(t)]− ni, (2.12)

is the local density fluctuation of the Ni identical particles of the i species for a mixture of ν
species, and where ni ≡ Ni/V is the mean particle density of the i specie in the system, and

δji,z(r, t) ≡
Ni∑
l=1

k̂ · vl(t)δ [r − rl(t)]− 〈ji〉z , (2.13)

where vl ≡ ∂rl/∂t is the velocity of the l particle of species i and 〈ji〉 stands for the ensemble
average of the flux of species i and where k̂ stands for the unit wave-vector. These variables allow
to define the stochastic vector

δa(k, t) =

[
δn̂(k, t)

δĵ(k, t)

]
, (2.14)

in which

δn̂l(k, t) =
1√
Nl

Nl∑
k=1

eik·rk , (2.15)

δĵl(k, t) =
1√
Nl

Nl∑
k=1

k̂ · vkeik·rk , (2.16)
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are the Fourier transform (FT) of δnl(r, t) and δjl(r, t) times 1/
√
Nl, respectively, and where the

ensemble average (denoted by 〈〉) of the particle flux is considered zero 〈j〉 = 0, in other words,
the particles movement occur without any directional preference.

This stochastic variable follows the general form expressed by Eq. (2.6), for which the problem
now becomes the identification of each of the terms. For example, when considering an homo-
geneous and isotropic system, the static correlation matrix χ ≡ < a(0)aT (0) > must have the
form

χ =

[
S(k) 0

0 χjj

]
, (2.17)

where S(k) ≡ 〈δn(k, 0) ◦ δnT (−k, 0)〉 with ◦ being the matrix multiplication operator, and where
χjj ≡ 〈δj(k, 0) ◦ δjT (−k, 0)〉 = kBTM

−1 (where the equipartition theorem is being employed),
with kB being the Boltzmann constant, T the temperature and M the diagonal matrix of masses
for multiple particle species with M]ij ≡ δijMi entries.

In addition to the last consideration, through a contraction of the description [36], a single
equation for one of the variables can be obtained. Such contraction is, in general, proposed in
terms of a known phenomenological relation between the variables, such as the continuity equation
for a system in which the number of particles is conserved

dδni(r, t)

dt
≡ ikδji. (2.18)

Besides its use in the aforementioned contraction of the description, this equations allows to gain
insight about the memory and the entries of the anti-symetric matrix ω terms, which are now
constrained to the structures

L =

[
Lnn = 0 Lnj = 0
Ljn = 0 Ljj

]
, (2.19)

and

ω =

[
0 ωnj = −ikχjj

ωjn = ikχjj 0

]
. (2.20)

The conditions imposed over the terms of Eq. (2.6) allow us to write the set of equations

dδn(k, t)

dt
= −ωnjχjjδj, (2.21)

dδj(k, t)

dt
= −ωjn ◦ χ−1

nn ◦ δn(k, t)−
∫ t

0

Ljj(t− t′) ◦ χ−1
jj ◦ δj(k, t) + fj(k, t), (2.22)

which in return leads for the contraction of the description. In Laplace space, such contraction
reads

δn̂(k, z)− δn(k, 0) = −ωnj ◦ χjj ◦
{
I + L̂jj(z) ◦ χ−1

jj

}−1

◦{
j(k, 0)− ωjn ◦ χ−1

nn ◦ δn̂(k, z) + f̂j(k, z)
}
,

(2.23)

where the flux term has been replaced by

δĵ(k, z) =
{
I + L̂jj(z) ◦ χ−1

jj

}−1

◦
[
j(k, 0)− ωjn ◦ χ−1

nn ◦ δn̂(k, z) + f̂j(k, z)
]
. (2.24)

Equation 2.23 can be written in terms of the ISF, defined for stationary systems as F (k, τ) ≡
〈δn(k, t) ◦ δnT (−k, t′)〉, where τ ≡ |t− t′| is the elapsed time between states at t and t′, and for
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which the arbitrary initial condition can be set at t′ = 0. Thus, an equation for the ISF is obtained
by multiplying Eqn. 2.23 by δnT (k, 0), and then taking the ensemble average, leading to

F (k, z) =
{
zI +

[
I + L̂jj(z) ◦D−1

0

]−1

k2D0S
−1(k)

}−1

S(k), (2.25)

where S(k) is the initial condition of F (k, τ). This same procedure can also be applied to a tracer
particle instead of all the particles, which leads to the same kind of equation for the self part,
namely

Fs(k, z) =
{
zI +

[
I + L̂

(s)
jj (z) ◦D−1

0

]−1

k2D0

}−1

. (2.26)

2.2.1 Memory functions approximations

As the general expressions for the ISF and its self part were just derived, the question is now how to
compute the memory functions L

(s)
jj (z) and Ljj(z) appearing in Eqs. (2.25) and (2.26). To answer

this question, the derivation of reference [12] for a memory kernel, along with the approximations
used for the simplified version of the theory [37] are followed for the simplified case of a mono
component system.

Let us consider a slightly different set of stochastic variables δn∗(r, t), and the velocity of the
tracer particle vT , where the difference is that for these variables the frame of reference is now
centered around a tracer particle. For this set of variables, the set of equations given by the
generalized Langevin equation formalism are now [12]

m
dvT
dt

= −ζ0vT (t) + fT (t) +

∫
dr∇u(r)δn∗(r, t), (2.27)

dδn∗(r, t)

dt
= [∇neq(r, t) · vT (t)]−

∫ t

0

dt′
∫
dr′D∗(r, r′, t)δn∗(r, t) + f(r, t), (2.28)

where m corresponds to the mass of the tracer particle, ζ0 is the friction produced by the solvent,
u(r) is the interaction potential between the tracer and the other particles, fT (t) is the random
force produced by the solvent, f is the fluctuation term associated with D∗ through the fluctuation-
dissipation theorem (see eq. (2.8)) with ω =< δn∗(r, 0)δn∗(r′, 0) > and where D∗ plays the role
of the unknown memory function G in equation (2.2).

By substituting in Eq. (2.27) the formal solution of Eq. (2.28), the expression

m
dvT
dt

= −ζ0vT (t) + fT (t)−
∫ t

0

∆
↔

ζ(t′)dt′ · v(t′) + F (t), (2.29)

is obtained, where the fluctuating force F (t) is a fluctuation given by the tracer interaction with
the other particles, related to the friction memory kernel δζ through the fluctuation-dissipation

theorem (Eq. (2.9)), and where ∆
↔

ζ is given by the exact result[12]

∆
↔

ζ = −
∫
dr

∫
dr′[∇u(r)]χ(r, r′; t)[∇′neq(r′)] (2.30)

in which the propagator χ∗ is solution the of Eq. (2.4). Then, by denoting the convolution
of two functions

∫
dr′′F (r, r′′)G(r′′, r′) ≡ F ◦ G and by using the Wertheim-Lovett relation

[∇neq] = −βσ ◦ [∇u], the exact solution for ∆
↔

ζ can be expressed as

∆
↔

ζ = kBT [∇neq†] ◦ ω−1 ◦G∗(t) ◦ ω−1 ◦ [∇neq], (2.31)
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where G∗(t) ≡ χ∗ω is the Van Hove function referred to the tracer particle.

The functions G∗ and ω∗ are referred to the tracer particles, with a explicit dependence on
r and r′. This implies that these functions are, in general, three particle correlation functions.
Nevertheless, one could think in these two properties just as the common two particle correlation
functions with a perturbation held by the tracer particle. When such perturbation is neglected,
the ”homogeneous fluid approximation” is recovered [12, 36], for which ω(r, r′) = ω(|r − r′|) and

G∗(r, r′) = G∗(|r − r′|). This approximation allow us to express the tensor ∆
↔

ζ in terms of the
traced framed ISF F ∗ ≡< (exp{ik · [rT (t)−rT (0)]}) · (

∑
ij exp{ik · [ri(t)−rj(0)]}) >, where rT (t)

and ri(t) are the position of the traced and the i-th particle from a laboratory-fixed frame. With
such definition, then the decoupling approximation is employed, for which F ∗ ≈ F (k, t)Fs(k, t).

Finally, by considering spherical interacting particles, the tensor ∆
↔

ζ must be diagonal, such

that the tensor ∆
↔

ζ = ∆ζ(t)∆
↔

I , along with Eq. (2.31), the following expression for ∆ζ∗ ≡ ∆ζ/ζ0

is obtained

∆ζ∗(τ) =
D0

24π3n̄

∫
V

k2

[
S(k)− 1

S(k)

]2

F (k, τ)Fs(k, τ)dk, (2.32)

which is an expression that now relates a memory function with the ISF and its self part. As
the exact relation of the memory kernel just derived with the memory functions L

(s)
jj and Ljj(z)

remains unknown, and in order to close the system of equations, various approximate closure
relations have been proposed [12, 37]. In this work, we will adopt the simplest the proposals,
which as shown in Ref. [37], can be summarized by the following equations

L
(s)
jj = Ljj, (2.33)

L
(s)
jj = ∆ζ∗(τ)λ(k), (2.34)

where

λ(k) =
1

1 + (k/kc)2
, (2.35)

is an interpolating function, with kc being the theory only adjustable parameter, which in this
work is set as kc = 1.305× 2π in order to conform with previous results [25].

This set of approximations leads to the evolution equations for the LT of the ISF and its self
part

F (k, z) =
S(k)

z + k2D0S−1(k)
1+λ(k)∆ζ(z)

, (2.36)

Fs(k, z) =
1

z + k2D0

1+λ(k)∆ζ(z)

. (2.37)

These equations, along with Eqs. (2.32) and (2.35) form a complete and self consistent set of
equations that summarizes the SCGLE formalism. The only external input in this set of equations
comes in the form of the static structure factor S(k), which is just the initial condition of the ISF.
Once this external input is known, an iterative method, such as the one explained in Appendix A
can be employed in order to give solutions to obtain the solution of these coupled equations.
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2.3 Derived dynamical properties and relevant asymptotic

limits

Once the central equations for the dynamical variables F (k, τ), Fs(k, τ) and ∆ζ∗(τ) have been
derived, let us emphasize that the SCGLE theory is able to provide other important dynamical
properties. The most relevant of such properties , which will also play a central role in the descrip-
tion of the non-equilibrium version of the SCGLE to be discussed in what follows, is the long-time
diffusion coefficient D. This property is directly related to the mean-squared displacement (MSD)
W (τ)

W (τ) ≡< |r(τ)− r(0)|2 >, (2.38)

through the (correlation) time dependent diffusion coefficient

D(τ) ≡ 1

6

dW (τ)

dτ
, (2.39)

in the limit
D ≡ lim

τ→∞
D(τ). (2.40)

In particular, a relationship between these properties and the memory function ∆ζ(τ) can be
derived from the general Langevin equation for a tracer particle. Taking the inner product of Eq.
(2.29) with v(0) and using the LT it follows

m(zv̂(z)− v2
0) = ζ0v̂(z)−∆ζ̂(z)v̂(z), (2.41)

where v̂(z) is the Laplace transform L of < v(t) · v(0) >, namely v̂(z) ≡ L[< v(t) · v(0) >], and
with v2

0 ≡< v(0) · v(0) >. From the last equation, one can solve for v̂(z), which yields

v̂(z) =
v2

0

mz + ζ0 + ∆ζ̂(z)
, (2.42)

which in the over-damped limit can be approximetly written as

v̂(z) ≈ v2
0

ζ0 + ∆ζ̂(z)
. (2.43)

In this equation both, the equipartition theorem (v2
0 = 3kBT , with kB being the Boltzmann’s

constant), along with the Stokes-Einstein relation (ζ0 = kBT/D0, where D0 is the free particle
diffusion coefficient) can be employed to rewrite the last equation as

v̂(z) ≈ 3D0

1 + ∆ζ̂∗(z)
. (2.44)

Finally, by taking into account the relationship between the velocity auto correlation and the
diffusion equation derived from its definition, we may write

D̂(z) =
v̂(z)

zd
. (2.45)

Hence, an equation for D∗ ≡ D(τ)/D0 can be written as

D̂∗(z) =
1

z(1 + ∆ζ̂∗(z))
, (2.46)
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whose inverse Laplace transformation (ILT) is

D∗(τ) = 1−
∫
D∗(τ ′)∆ζ∗(τ − τ ′)dτ ′. (2.47)

A similar procedure can be done in order to obtain an equivalent expression for the MSD, i.e.
by considering zŴ (z) = D̂(z). As for the long time diffusion coefficient, the limit can be easily
evaluated in Eq. (2.46) as limz→0 zD̂

∗(z), which yields

b =
1

1 +
∫∞

0
∆ζ∗(τ)dτ

, (2.48)

with b ≡ D/D0 being the mobility of the system. This equation then becomes an operative way
to calculate the system mobility once the history of the memory function ∆ζ∗(τ) is known. On
the other hand, this equation allows for a straightforward interpretation of ∆ζ∗(τ) as correlation
time dependent friction function.

Finally, from the main set of equations (Eqs. (2.32) and (2.35)-(2.37)), it is possible to derive
asymptotic long-time equations which play the role of order parameters in the determination of
dynamically arrested states. By defining the non-ergodicity parameters

f(k) = lim
τ→∞

F (k, τ), (2.49)

fs(k) = lim
τ→∞

Fs(k, τ), (2.50)

from Eqs. (2.36) and (2.37), the limits limz→0 zF (k, z) and limz→0 zFs(k, z) can be evaluated.
Such procedure results in

f(k) =
S(k)

1 + k2S−1(k)γ
λ(k)∆

, (2.51)

fs(k) =
1

1 + k2γ
λ(k)

, (2.52)

where γ ≡ D0/ limτ→∞∆ζ∗(τ). These limits are used to evaluate limτ→∞∆ζ∗(τ) in Eq. (2.32),
leading to

γ−1 =
1

3(2π)3n̄

∫
dk

k2 + [S(k)− 1]2λ2(k)

[λ(k)S(k) + k2γ][λ(k) + k2γ]
, (2.53)

a relatively simple equation that can be solved once the structure factor S(k) is known. Physi-
cally, the parameter γ is nothing but the square localization length, which plays the
role of a dynamic order parameter within the SCGLE.

For equilibrated fluids, these non ergodicity parameters are equal to zero, which is equivalent to
state that the system fully relaxes to equilibrium. This behavior is then observed as a divergence
for the value of γ and a non-zero value for the mobility. Conversely, for dynamical arrested
states, the non-ergodicity parameters and memory function are expected to have non-zero values,
a behavior typical of solid materials, where particles are not free to diffuse. In this case, γ becomes
finite, while the asymptotic long value of the mobility is zero. The described behavior can also be
explained in terms of the MSD, as γ = limτ→∞W (τ), a relationship derived from the definition of
γ, D(τ) and Eq. (2.46).
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2.4 NE-SCGLE Theory

This section provides a brief review of the generalization of the SCGLE description of the dynamic
properties of liquids, now to systems undergoing non-equilibrium processes, which results in what
we refer to as the non-equilibrium self-consistent generalized Langevin equation (NE-SCGLE)
theory [1]. The NE-SCGLE framework is set upon the Onsager-Machlup’s linear response theory,
for which the main ideas are first presented. Onsager-Machlup’s theory basically states that when
considering a M -dimensional vector a(t), whose M elements are a set of extensive variables,
one can represent the state of a(t) as a multivariate stochastic process[38, 39]. Although, in
general, such process is non-stationary, it might be partitioned into small intervals that are locally
stationary [40]. For each of the resulting locally stationary process, still represented by the vector
a(t), the mean value a(t) is described by a non-linear equation of the form

dā(t)

dt
= R[ā(t)], (2.54)

while its fluctuation around an equilibrium value δâ(t) ≡ â(t)− aeq can be modeled by Onsager
linear response theory. Hence, the expression

dδa(t)

dt
= −L[aeq] · ε[aeq] · δa(t), (2.55)

describes the evolution of the fluctuations, where L[aeq] ≡ −(∂R[aeq]/∂a)a=aeq · ε−1[aeq] is the
kinetic matrix, and where ε is the thermodynamic matrix with elements

εij[a] = − 1

kB

(
∂2S[a]

∂ai∂aj

)
, (2.56)

in which S[a] corresponds to the entropy of the system in terms of the extensive variables conform-
ing the vector a(t). With such premise, two main results that conforms the core of the NE-SCGLE
formalism, can be derived. The first is an equation for the covariance matrix σ(t) ≡ δa(t)δa†(t),
which can be written as

dσ(t)

dt
= −L[a(t)] · ε[a(t)] · σ(t)− σ(t) · ε[a(t)] ·L†[a(t)] +L[a(t)] +L†[a(t)]. (2.57)

The second result states that, for locally stationary fluctuations δa(t + τ) = a(t + τ)− ā(t), the
variable δa(t + τ) follows the description made by the most general linear stochastic differential
equation

dδa(t+ τ)

dτ
= −ω[ā(t)] · [σ(t)]−1 · δā(t+ τ)−

∫ τ

0

dτ ′L[τ − τ ′; ā(t)] · δā(t) + f(t+ τ). (2.58)

This last expression, as a matter of fact, perfectly resemble the generalized Langevin equation
(Eq. (2.6)). When comparing these two equations, the difference resides in the time dependency
of the mean value of a for the above one. On the other hand, the theorem presented in the first
section of this chapter still holds true [1].

The NE-SCGLE is obtained when when one considers the local density n(r, t) as the only entry
of the abstract vector a(t). For such variable, the evolution equation is given by the empirical
Fick’s law, which in its most general description is given by

∂n̄(r, t)

∂t
= D0∇ · b(r, t)n̄(r, t)∇βµ[r; n̄(r, t)], (2.59)
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where D0 is the free particle diffusion coefficient, b(r, t) is the local mobility, whose dependence on
the position (non-homogeneous fluid) and time is explicitly stated, with β ≡ (kBT )−1 and where
µ ≡ ∂S/∂n(r, t) is the chemical potential. For such variable, the linearization of Eq. (2.59) leads
to the identification of L as

L ≡ −D0∇ · n̄(r, t)b(r, t)∇δ(r − r′). (2.60)

The last expression allow us to write the evolution of the covariance as

∂σ(r, r′; t)

∂t
=D0∇ · n̄(r, t)b(r, t)∇

∫
dr2ε[r, r2; n̄(t)]σ(r2; r′; t)+

D0∇ · n̄(r′, t)b(r′, t)∇
∫
dr2ε[r

′, r2; n̄(t)]σ(r2; r; t)− (2.61)

2D0∇ · n̄(r, t)b(r, t)∇δ(r − r′).

Eqs. (2.59) and (2.61) are the most general description of the NE-SCGLE framework, and allow
us to describe the evolution of the mean local density along with the evolution of the covariance.
On the other hand, a general solution to these expressions becomes a highly involved problem to
solve, as they are coupled by the system’s dynamics through b(r, t). To solve this proble, thus, one
requires a closure relation allowing to also solve for the non-equilibrium mobility. The mobility is
then the only unknown variable besides the externally known chemical potential (directly related
with the entropy and ε).

In order to solve for the mobility b(r, t), a local isotropy and homogeneity approximation is
employed, hence allowing us to find a similar expression as Eq. (2.48). For the covariance, this
approximation is expressed as σ(r + x, r + x′, t) ≈ σ(|x − x′|, r, t), which allow us to write the
FT of Eq. (2.61) as

∂σ(k, r; t)

∂t
= −2k2D0b(r, t)n̄(r, t)ε̂(k; n̄(r, t))σ(k; r, t) + 2k2D0b(r, t)n̄(r, t). (2.62)

Another way of expressing the above equation is in terms of the static structure factor, through
the relation S(k; r, t) = σ(k; r, t)/n̄(r, t), leading to

∂S(k, r; t)

∂t
= −2k2D0b(r, t)n̄(r, t) [S(k; r, t)− 1/n̄(r, t)ε̂(k; n̄(r, t))] . (2.63)

On the other hand, the locally stationary approximation permit us to express Eq.(2.46) in terms
of nonstationary time-correlation functions C(x, τ ; r, t) ≡ δn(r + x, t+ τ)δn(r, t) [40, 1]. This,
along with the fact that the derivation of the SCGLE main set of equations (Eqs. (2.32), (2.36))-
(2.37)) can be done without the use of any equilibrium condition, but just a clever identification
of terms in stationary conditions [1], leads to the generalization of such set, which reads

F (k, z; r, t) =
S(k; r, t)

z + k2D0S−1(k;r,t)
1+λ(k)∆ζ(z;r,t)

, (2.64)

Fs(k, z; r, t) =
1

z + k2D0

1+λ(k)∆ζ(z;r,t)

(2.65)

∆ζ∗(τ ; r, t) =
D0

24π3n̄

∫
V

k2

[
S(k; r, t)− 1

S(k; r, t)

]2

F (k, τ ; r, t)Fs(k, τ ; r, t)dk. (2.66)
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Likewise, the mobility holds the same relation with the nonstationary time-correlation memory
function reading

b(r, t) =
1

1 +
∫∞

0
∆ζ∗(τ ; r, t)dτ

. (2.67)

Thus, this coupled set of equations allow us to close the relationship between the evolution of the
mean density and the structure (Eqs. (2.59) and (2.63)).

Nevertheless, a general solution for these general equations is non-trivial. It is only for specific
processes that semi analytic solutions have been found, as it is the case of instantaneous trans-
formation processes. For example, let us consider an instantaneous isochoric quenching process
of an homogeneous and isotropic system. The conditions imposed by this process follows the
consideration n̄(r, t) = n̄, thus, the solution of (2.59) becomes trivial. In addition, the evolution
of the static structure factor simplifies as

∂S(k; t)

∂t
= −2k2D0b(t)n̄ [S(k; t)− 1/n̄ε̂f (k; n̄)] , (2.68)

where the suffix in ε̂f denotes the evaluation of the thermodynamical property ε̂ at the final state
(see Eq. (2.56)), and where the mobility is expected to be homogeneous b(r, t) = b(t). With such
simplification, a solution for S(k; t) can be given when considering the variable transformation

u(t) =

∫ t

0

b(t′)dt′, (2.69)

which allow us to write (2.68) as

∂S(k;u)

∂u
= −2k2D0n̄ [S(k;u)− 1/n̄ε̂f (k; n̄)] , (2.70)

whose solution reads

S(k;u) = [n̄ε̂f ]
−1 + {S0(k)− [n̄εf ]

−1}e−2k2D0n̄ε̂fu(t), (2.71)

where S0(k) ≡ S(k, t = 0) is the initial static structure factor, related with the thermodynamical
ε property by S(k;n, T ) = n/ε̂(k;n, T ) under equilibrium conditions. In this solution, the u time
shrouds the corresponding evolution time, nevertheless, the simplicity of the solution allow us to
evaluate (2.64)-(2.67) for any value of u. This allow us to trace the time once the evolution of
the mobility is solved in the u-space. In addition, the transformation also allows to determine the
time of arrest ua, predicted through the solution of [1, 41]

γ−1(ua) =
1

3(2π)3n̄

∫
dk

k2 + [S(k;ua)− 1]2λ2(k)

[λ(k)S(k;ua) + k2γ(ua)][λ(k) + k2γ(ua)]
, (2.72)

where ua is the first u value for which a finite value of the non-equilibrium dynamic order
parameter γ is found. The complete derivation of this last expression can be found elsewhere
[1], nevertheless, the same mathematical steps employed to derive its equilibrium counterpart Eq.
(2.32), can be employed for the now waiting-time dependent dynamical properties, namely Eqs.
(2.64)-(2.66). Given the definition of u (Eq. (2.69)), ua is actually found for infinite waiting times
t → ∞ as b(ua) converges to 0. Such prediction, inherent to the solution, remarks the subtle
difference between the equilibrium dynamics and the non-equilibrium process dynamics, for which
the waiting time is now relevant to the description.
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In this section, we have presented the NE-SCGLE theory as an extension to the SCGLE
theory. Nevertheless, one could start directly from the non-equilibrium perspective and consider
the SCGLE theory as a particular case in which both the mean local density and its covariance, are
constant. For such consideration, the set of equations that conforms this non-equilibrium theory
are reduced to the equilibrium expressions derived in the previous sections.

2.5 Summary

In this section we have reviewed the fundamental basis and derivation of the NE-SCGLE theory
of irreversible processes in liquids, which is obtained from the extended non-equilibrium version
of Onsager’s abstract and general description of thermal fluctuations and is then complemented
with a set of simplifying approximations. This first led to the equilibrium SCGLE theory of the
dynamic properties of liquids, analogous to the well-known mode coupling theory (MCT), with
both theories restricted to equilibrium condition. The SCGLE theory was latter extended to full
non-equilibrium conditions, leading to the NE-SCGLE theory, which has no counterpart in the
literature.

In particular, the NE-SCGLE formalism is distinguished by Eq. (2.59) and Eq. (2.68), which
describe the non-equilibrium evolution of the mean value and the covariance of the fluid’s local
particle density n(r, t). On the other hand, the solution of these equations requires to first solve
the problem already posed by the SCGLE set of equations (Eqs. (2.64)-(2.67)). The concrete
application of the NE-SCGLE framework for instantaneous isochoric quenches starts with the
formal solution of Eq. (2.68) given in Eq. (2.71), while the trivial solution of Eq. (2.59) (n(r, t) =
cte.) is imposed. For this formalism, the only external input is given in terms of the free energy
functional derivatives. Concretely, such derivatives are expressed in terms of the chemical potential
µ and the thermodynamic matrix ε (related to the static structure factor under thermodynamic
equilibrium). In the next chapters, the solution of these equations is discussed for a concrete
system.
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Chapter 3

Stationary diagrams of the HSSW fluid
system.

In the previous chapter the fundamental bases of the NE-SCGLE framework were described, and
its main equations were discussed. The main purpose of the present chapter is to introduce and
define with precision the concept of non-equilibrium glass transition diagram, and to explain its re-
lationship with its predecessor, the equilibrium glass transition diagram (generated by equilibrium
dynamical theories such as MCT or the SCGLE theory), and with conventional and long estab-
lished thermodynamic equilibrium phase diagram. These three different diagrams provide different
and complementary perspectives of the location of the various equilibrium and non-equilibrium
phases, in the state space of the system.

Thus, this chapter is divided in three major sections and a summary. The first of them
illustrates the concept of equilibrium phases and phase diagram with the classical description of
gases and liquids and their equilibrium coexistence, very much as van der Waals explained it more
than one century ago. Here, however, we frame van der Waals arguments on the identification of
a simple (mean field) approximation for the free energy functional for the specific class of model
systems referred to as Lennard-Jones–like fluids. These concepts may be textbook material in
conventional course of classical and statistical thermodynamics.

We cannot say the same regarding the concept of equilibrium glass transition diagram, devel-
oped only within the last three decades. As explained in the second section, this diagram describes
the boundary in the thermodynamic state space of the system between the region where no kinetic
barriers are met, hence being able to reach thermodynamic equilibrium, and the region where it
is predicted to become dynamically (or kinetically) arrested. Such predictions, however, do not
derive solely from free energy considerations. Instead, they are determined from dynamic arrest
conditions such as Eq. (2.53), provided by equilibrium dynamical theories (MCT or SCGLE).
These theories require as an input the equilibrium static structure factor of the homogeneous
fluid, which does not exist inside the spinodal region.

As explained below in section three, however, this limitation is eliminated by the non-equilibrium
SCGLE theory. The NE-SCGLE unveils the precise manner in which, the emergence of kinetic
impediments to reach thermodynamic equilibrium, leads to the formation of unexpected non-
equilibrium amorphous states. The identification of these non-equilibrium phases and the regions
of state space where they are expected to be formed constitutes the non-equilibrium glass transition
diagram.

As mentioned before, here we shall restrict our discussion to Lennard-Jones like systems,
whose particles interact through a strong short range repulsion plus a longer-ranged attraction.
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The non-equilibrium glass transition diagram of Lennard-Jones like systems was first proposed in
reference [25], in the context of the hard-sphere plus attractive Yukawa (HSAY) model fluid. The
present chapter mostly reviews the work explained in that reference. However, our own original
contribution here is to perform a similar systematic discussion employing a different Lennard-Jones
like model system, namely, the analytically simpler hard-sphere plus square well (HSSW) fluid,
which will be studied in the rest of the present thesis.

3.1 Thermodynamic equilibrium phase diagram

This section illustrates the classical concept of equilibrium phases and phase diagrams with van
der Waals theory of the gas-liquid transition, which we derive from a simple (modified mean
field, MMF) free energy, applied to a specific Lennard-Jones–like fluid, namely, the HSSW model.
The reason to start this discussion at the level of the MMF free energy, and not from van der
Waals equation of state itself, is that a free energy functional also generates the equilibrium static
structure factor Seq(k), which is the input in the equilibrium (MCT and SCGLE) dynamical
theories. In addition, its second functional derivative is the fundamental input of the NE-SCGLE
theory. Using the same free energy and the same model potential, provides the same basis for the
determination of the three diagrams that we wish to compare.

The MMF approximation can be summarized as an approximation done to the free energy F ,
which we write as the superposition of a hard core part FHS and an attractive part FA, such as

F [n, T ] = FHS[n, T ] + FA[n, T ], (3.1)

and in which the hard core part is its exact solution when FA is neglected. Within the MMF
approximation, the attractive part is then approximated as

FA[n, T ] = −kBT
2

∫
dr

∫
dr′n (r) fA (|r− r′|)n (r′) , (3.2)

where

fA(r) =
[
e−βu(r) − 1

]
θ (r − σ) , (3.3)

with

θ (r − σ) =

{
0 r < σ

1 σ < r
, (3.4)

and in which u(r) is the two particle interaction potential.
This approximation allow us to write down the second functional derivative of the free energy,

which in return leads to the the direct correlation function c(r)[42]

c(r) = cHS(r) + fA(r), (3.5)

where cHS(r) is the exact direct correlation function of the Hard Sphere system. Within this ap-
proximation, cHS(r) is given by the analytical expression obtained by Wertheim using the Percus-
Yevick approximation [43] along with the Verlet-Weiss correction [44]. This approximation then
leads to the structure factor S(k)

S(k) =
1

1− nĉ(k)
, (3.6)
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where ĉ(k) is the FT of c(r)

ĉ(k) = ĉHS(kVW ;φVW ) + f̂A(k), (3.7)

with

ĉHS(k) =
24φ

k∗

[
α

(
a(k∗) + a′(k∗)

k∗2

)
+ β

(
b(k∗) + b′(k∗)

k∗3

)
+ δ

(
d(k∗) + d′(k∗)

k∗5

)]
, (3.8)

in which

α = −(1 + 2φ)2/(1− φ)4, (3.9)

β = 6φ(1 +
1

2
φ)2/(1− φ)4, (3.10)

δ = −φ(1 + 2φ)2/2(1− φ)4, (3.11)

a(k∗) = sin(k∗) (3.12)

a′(k∗) = −k cos(k∗) (3.13)

b(k∗) = 2k∗ sin(k∗)− 2 (3.14)

b′(k∗) = (−k∗2 + 2) cos(k∗) (3.15)

d(k∗) = (−k∗4 + 12k∗2 − 24) cos(k∗) (3.16)

d′(k∗) = (4k∗3 − 24k∗) sin(k∗) + 24 (3.17)

kVW = k(φVW/φ)1/3 (3.18)

φVW = φ(1− φ/16) (3.19)

and where k∗ ≡ kσ is the dimensionless wave vector magnitude, φ ≡ nπσ3/6 is the volume fraction
and T ∗ ≡ kBT/ε is the dimensionless temperature.

Let us now properly introduce the Hard Sphere Square Well interacting fluid system used to
exemplify the theories capabilities. The two particle interaction is given by a hard core spherical
interaction of diameter σ plus an attractive well of depth ε and range λσ (with λ > 1), which
reads

u(r) =


∞ r < σ

−ε σ ≤ r < λσ

0 λσ ≤ r

. (3.20)

A schematic representation of this potential is shown in Fig. 3.1 for the case λ = 1.50. Within
the current work, the case λ = 1.50 will be fixed for no other reason that to conform to equivalent
attractive lengths of other Lennard-Jones like potential previously studied within the theory [25].
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Figure 3.1: HSSW potential with λ = 1.50

The election of this interaction potential yields to the attractive part of the direct correlation
function

f̂a(k) =
4πF (T ∗)

k∗

[
cos(k∗)− λ cos(k∗λ)

k∗
+

sin(k∗λ)− sin(k∗)

k∗2

]
, (3.21)

in which
F (T ∗) = e1/T ∗ − 1, (3.22)

that closes the scheme in order to compute both S(k) and ε(k).
Within this approximations, it is possible to draw the equilibrium phase diagram of the system.

For such purpose the mechanical equation state of the system must be derived. From statistical
thermodynamics, it is known that the thermodynamics properties can be linked to the distribution
of particles. In particular, the relation S(k = 0) = nkBTχT ≡ χ∗T [42] is used in order to link
the structure factor with the isothermal compressibility of the system χT . From this relation the
isothermal compressibility of the system is obtained as

χ∗T =
1

χ∗−1
T,HS − 8φ(λ3 − 1)F (T ∗)

, (3.23)

which yields the mechanical equation of state, namely

P ∗HSSW = P ∗HS −
24

π
(λ3 − 1)T ∗F (T ∗), (3.24)

where P ∗ = σ3P/ε,

P ∗HS =
6φT ∗

π(1− φ)3
(1 + φ+ φ2 − φ3) (3.25)

χ∗T,HS =
6T ∗

π

[
8φ− 2φ2

(1− φ)4
+ 1

]
, (3.26)

thus allowing us to estimate both, the binodal (also known as coexistence) and the spinodal lines.
It is a common understanding that the binodal or coexistence line traces the limit between

single thermodynamic phase states and the coexistence of two phases. For the current HSSW
model, it traces down the thermodynamic state limit between gas and liquid coexistence states
and single phase states. On the other hand, meta-stable homogeneous states inside the binodal
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line, are commonly acknowledge to be stable homogeneous phases of the system. Being the current
model for the structure a mean field model, such homogeneous meta-stable phases are the ones
under consideration within the current work. Nevertheless, the binodal line can still be identified
through Maxwell construction for isotherms below the critical temperature T ∗(c)[3].

On the other hand, the spinodal line delimits the region in which meta-stable homogeneous
phases can be found. For states inside the spinodal line, the internal fluctuations of the system
are expected to grow to macro sizes through what is known as a spinodal decomposition process,
which inevitably separates the system in the corresponding phases [2]. This spinodal line can be
theoretically computed when the compressibility of the system is expected to change its sign [2].
Thus, for the current model, the condition reads

− 8(λ3 − 1)φs(1− φs)4F (T ∗s ) + 8φs − 2φ2
s + (1− φs)4 = 0. (3.27)

In Fig. 3.2 the resulting equilibrium phase diagram is presented, where the black solid and black
dashed lines corresponds to the spinodal and binodal lines, respectively.

In addition to the spinodal and binodal lines, the freezing line is also represented in this figure
by two different criteria. One is the Hansen-Verlet criterion [45] represented by the gray dashed
line, which is a structural condition in which the main peak of the structure factor reaches a given
height, for which the value S(kmax) = 3.1 is employed. The other freezing criterion is Löwen’s
freezing criterion [46], in which instead of using the structure of the system, the condition states
that freezing occurs when the long time diffusion coefficient is approximately 10% that of the free
particle. Hence, Löwen’s freezing criterion, indicated by the gray solid freezing line, is found by
solving the SCGLE equations for the states described by D∗ = 0.10.
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Figure 3.2: HSSW equilibrium phase diagram for λ = 1.50. The spinodal (black solid line) is
traced by solving Eq. (3.27), the binodal (black dashed line) is traced by Maxwell equal area
rules[2]. For the freezing line we compare the structural empirical Hansen criterion S(kmax) = 3.1
with the Löwen’s dynamic empirical criterion D∗ = 0.10
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3.2 Glass transition phase diagram

As explained in detail in chapter 2, both the SCGLE and its non-equilibrium extension are capable
to derive asymptotic equations for the system dynamics. The solution of such asymptotic equations
are commonly employed to find regions in the parameters space of a system where dynamically
arrested states are predicted to exist. Within the literature, these diagrams are commonly known
as glass transition diagrams, firstly named after the Mode Coupling theory results[17]. On the
other hand, these non-equilibrium phase diagrams have been extended to what we now call non-
equilibrium glass transition diagrams within the NE-SCGLE framework. The subtle difference
between these two is that the last diagrams are obtained through an explicit preparation protocol,
i.e. a non-equilibrium instantaneous quenching process. In this section, we shall only refer to
the glass transition diagrams obtained by the SCGLE theory in order to highlight the relevant
differences when the NE-SCGLE is employed instead.

Let us now use the HSSW system to illustrate the glass transition phase diagrams. Within the
SCGLE perspective, the glass transition phase diagrams can be obtained through the dynamical
parameter γ (see Eq. (2.53)) once the equilibrium structure factor has been determined. Hence, for
such purpose, the recently explained MMF is employed. In Fig. 3.3 the resulting glass transition
phase diagram is shown. In this diagram, the region in which γ acquires a finite value is delimited
by the black solid line, denominated as the dynamical arrest transition line. The states below
such line and above the spinodal corresponds to dynamically arrested states (black squares).
Additionally in Fig. 3.3, the value of the mobility b is presented for several states through a color
scale of state centered squares, where the black color is used for b = 0. As a consequence, each
state inside the dynamically arrested region is represented with a black color.

Just as explained in chapter 2, γ can be directly associated with the MSD. As a consequence of
this relationship, γ is interpreted as the squared localization length. Thus, for a system of diffusive
particles this quantity diverges, whereas for dynamical arrest γ becoms finite. For the latter
cases, this localization length is often compared with Lindemann’s melting criterion [12, 47, 25].
Lindeman’s criterion states that, for crystalline solids, melting occurs when the system particles
vibrates a distances comparable to 10% the inter-particle distance. Compared to such criterion,
the square root of γ for the glass transition in a purely HS system is found to be around

√
γ ≈ 0.1σ

at the transition isochore φ
(g)
HS ≈ 0.582, where the inter-particle distances is roughly l ≈ σ, a value

that results reminiscent of Lindemann’s melting criterion. This reminiscence is, as a matter of
fact, maintained along the glass transition curves for multiple systems, such as the HSAY [29].
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Figure 3.3: HSSW glass transition phase diagram for λ = 1.50. The mobility b ≡ D∗L value is
represented for different states with a color scale, where the black is used for b = 0. The black
solid line marks the glass transition line, while the gray solid line represent the spinodal line. The
red circle is the bifurcation point, where the glass transition line meets the spinodal line.

In Fig. 3.4 a) the behavior of γ along the the dynamical arrest transition line is considered.
As seen in this figure, this line extends from the HS limit to the bifurcation point. The value of
γ1/2 normalized by the interparticle distance l ≈ n−1/3 along the dynamical arrest transition line
is shown in Fig. 3.4 b). In this figure it is observed that although γ1/2/l is not a constant, its value
ranges in between 0.1 and 0.15, supporting the comparison between its value and Lindemann’s
melting criterion for the current HSSW system.

Up to this point, the SCGLE theory has only been used to describe the predicted dynamical
scenario presented in a phase diagram. Nevertheless, any equilibrium theory does have predicting
limitations for attractive systems in which spinodal regions arise, a region in which the theory
cannot be used to make any sort of reliable predictions due to the lack of an equilibrium structural
input such as S(k, n, T ). As already mentioned, however, within the NE-SCGLE this fundamental
limitation is bypassed.
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Figure 3.4: a) γ vs the volume fraction along the dynamical arrest line for the HSSW system
with λ = 1.50. b) Localization length normalized by the interparticle distance γ1/2/l for the same
states as a), with l = n−1/3.

3.3 Non-equilibrium glass transition phase diagram

Similar to the equilibrium SCGLE theory, the non-equilibrium SCGLE theory is able to describe
the asymptotic dynamics of non-equilibrium processes, which in return provide the prediction of
non-equilibrium glass transition diagrams. For a given proposal for the thermodynamical property
nε(k), this non-equilibrium formalism is able to extend the description of dynamical arrested states
into spinodal regions. As mentioned before, the application of this theoretical framework for the
description of systems with attractive interactions was first carried out by J/M. Olais et al. [29]
for a HSAY fluid. Similar to the case of the glass transition phase diagrams, these diagrams are
obtained through the solution of asymptotic limits, in which the limit limt→∞ γ(S(k; t)) is under
consideration, hence the waiting time of the system is not a variable. In this section the results of
this procedure on the current HSSW fluid model system are shown as a prelude to the waiting-time
dependent phase diagrams to be discussed in chapter 5.

The non-equilibrium glass transition diagram obtained for the HSSW system is illustrated
in Fig. 3.5. The results found for the system under consideration agree qualitatively with the
results previously reported for the HSAY system [29], which in this work are briefly discussed and
analyzed. The displayed non-equilibrium diagram, is obtained through the analysis of multiple
instantaneous isochoric quenches within the theory. Such quenches start from an initial infinite
temperature limit (i.e., starting from an initial hard-sphere limit), and are then instantaneously
cooled down towards different temperatures, as indicated. For states out of the spinodal region,
the diagram results identical to that of the equilibrium version of the theory, where the asymptotic
long-time value of the mobility is finite. However, two important differences arise when compared
to the glass transition phase diagram. The first one is that the spinodal line is also a dynamical
arrest transition line. The second one is that the glass transition line enters the spinodal line
and continues inside separating the dynamical arrested states into two clearly distinctive arrested
regions, leading to a diagram with a total of three identifiable regions. Region I consists in the
equilibrium fluid region, while region II and III are the arrested regions. These last two regions
respectively differentiate between gel-like and glass-like arrested states. Explaining how such
differentiation can be made is the main goal of the current section.



37

 0

 0.5

 1

 1.5

 2

 0  0.1  0.2  0.3  0.4

T

φ

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

b

I

II

III

Figure 3.5: HSSW non-equilibrium glass transition phase diagram for λ = 1.50. The mobility
b ≡ D∗L value is represented for different states with a color scale, where the black is used for
b = 0. The black solid line marks the glass transition line, while the gray solid line represent the
spinodal line. The red circle is the bifurcation point, where the glass transition line meets the
spinodal line.

The boundary between regions II and III in the non-equilibrium glass transition diagram
is mainly determined through the analysis of γ, a quantity used as an arrest order parameter.
However, other properties such as the structure factor, the time-dependent MSD and mobility of
the system also present distinctive signatures in these regions[29]. In Fig. 3.5, the glass transition
line at the left side of the bifurcation point is identified when a discontinuity in γ(Tf ;φ) appears.
This discontinuity is observed when fixing on an isochore lower than that of the bifurcation, and
then following the value of γ at different final temperatures. In Fig. 3.6 a) γ−1 vs the final
temperature is shown for two isochores: one at the left of the bifurcation point φb (φ = 0.10,
empty circles), and another one at the right (φ = 0.25, solid circles). For φ = 0.25, for instance,
one observes the features of the HS-like glass transition, where γ−1 jumps discontinuously from
zero to the value ∼ 102, which lies in the glass transition line predicted by both SCGLE and
NE-SCGLE. For φ = 0.10, however, one observes a different behavior, where γ−1 becomes finite
at the spinodal temperature Ts(φ = 0.10) and increases continuously below. At a critical value
Tc(φ = 0.10), however, the parameter γ−1 jumps discontinuously and acquires essentially the same
value of Tc(φ = 0.25). This behavior, in fact, is what reveals that the glass transition line actually
penetrates the spinodal region.

Following the previous discussion of the glass transition phase diagram, in Figs. 3.6 b) and
c), the description of the Tc discontinuity is now extended for states inside the spinodal region.
Such states are now are highlighted with dashed lines, which allow us to follow the discontinuity
in γ(Tf ) for states inside the spinodal region as one quenches into a Tc final temperature. In Figs.
3.6 b) and 3.6 c), the Tc temperature is approached from below (i.e. limε→0 γ(Tf−ε) with ε > 0) in
order to follow the glass-like behavior of γ. For temperatures Tf < Tc a small localization length
still comparable to 10% of the particles mean distance is found. This allow us to interpretate
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the discontinuity as the continuation of the glass transition line inside the spinodal. Hence, the
resulting behavior of γ serves as a reinforcement of the idea that the high density dynamical arrest
transition is followed inside the spinodal for states below Tc the discontinuity.

On the other hand, recalling the behavior of γ for final states inside region II within Fig. a),
the arrest is thought to be comparably ”loose”, as much larger localization lengths are found. In
this region, the localization length is at least comparable to the particles mean distance, meaning
at least one magnitude greater than that of typical glass-like arrested states. In addition, the
value of the localization length is found to increase and diverge as the final temperature meets
the spinodal temperature Ts, as shown in Fig. 3.6 a) for the φ = 0.10 isochore. In summary,
the NE-SCGLE predicts that the spinodal temperature is also an arrest transition line with a
diverging localization length. These results are in agreement with previously reported findings for
the HSAY system which exhibits this kind of behavior[25]. As a consequence, the general findings
are expected to hold for systems with similar kinds of interaction potentials. Nevertheless, a work
that systematically accounts for differences between multiple interaction potentials falls out of the
scope of the current work and might be an investigation line worth exploring in the future.
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Although the behavior and analysis of γ reveals many important features of the dynamics
of the HSSW system, a strict direct comparison of this quantity with experimental and simula-
tion data is hard, if not impossible, to find. Thus, the state description with such property is
obscure in nature, and insufficient to establish a connection with common gel-like systems. On
the other hand, the predictions of the theory are not limited to such order parameter, and other
properties such as the asymptotic structure actually reveal signatures of gel-like systems. This is
illustrated in Fig. 3.7, where asymptotic long-time structure factor predicted by the NE-SCGLE
along the φ = 0.10 isochore for distinct final temperatures is shown. For quenches in region II
(Tf = 0.7 − 1.3), the increase of a maximum at low wave-vectors is a fingerprint of the spinodal
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decomposition process, which is predicted by the theory to be interrupted by a dynamical arrest.
This behavior indicates the development of large structures, whose characteristic size increases
as the final temperature approaches from below the spinodal line. This is emphasized in Fig.
3.7 by the left arrow. Notice that, in contrast, the local structure (observed in the second peak
at kσ ≈ 2π) decreases approaching the spinodal. The information revealed by the asymptotic
structure factor complements that provided by the parameter γ−1, emphasizing the localization of
particles through the process of formation of remarkably large aggregates, which are characteristic
of the development of gel states [26]. These results, allow us to interpret the dynamical arrested
states of region II as gel-like states produced by a frustrated spinodal decomposition through an
arrest mechanism, while reassuring the glass-like nature of region III.
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Figure 3.7: Asymptotic structure factors for the HSSW fluid system with λ = 1.50 at φ = 0.10
isochore for the final temperatures Tf = 1.3, 1.1, 0.9. 0.7 and 0.5

Even though the presented non-equilibrium diagram is obtained as an asymptotic solution of
NE-SCGLE equations, the rich landscape of arrested states predicted by the theory serves as a
summary of the theoretical predictions. On the other hand, localizing the related phenomenology
within the thermodynamic phase spaces allow us to discriminate and make more profound and in-
teresting inquiries and analysis, such as the evolution of the dynamics. Finally, it becomes relevant
to note the qualitative agreement of these theoretically predicted diagrams and the ones obtained
by experiments[27] and simulations[48], even though differences in the particle interactions exist.

3.4 Summary

In this chapter, we have exemplified the determination of the three diagrams, the thermodynamic
equilibrium phase diagram, the glass transition diagram and the non-equilibrium glass transition
diagram, for the HSSW fluid. To obtain such diagrams, a structural approximation was proposed
within the MMF formalism. In equilibrium, the structural approximation, yields to the mechanical
equation of state, allowing us to trace the thermodynamic equilibrium phase diagram. In terms of
both, the SCGLE and the NE-SCGLE theories, the structural approximation allow us to compute
the dynamical arrest parameter γ, which is then employed to obtain the arrest diagrams.
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In both of these diagrams, we are able to trace back the dynamical arrest transition from the
HS limit. Nevertheless, for the particular case of the glass transition diagram, the description of
the dynamical arrested states ends when the glass transition line meets the spinodal line, since
the equilibrium theory cannot be applied inside the spinodal region. In stark contrast, the non-
equilibrium glass transition diagram is able to identify the continuation of the glass transition line
inside the spinodal region. Additionally, the spinodal line is also found to delimit a dynamical
arrest transition for what is thought to be gel-like arrested states. These states are enclosed by
the spinodal and glass transition lines (region II of the non-equilibrium glass transition diagram),
and the identification of a gel-like state can be done in terms of the resulting structure factor.
On the other hand, this chapter only attends the discussion of asymptotic properties, whereas
the evolution towards these states has been postponed. It is precisely within the evolution of
properties, such as the dynamics, that other typical fingerprints are presented within the formation
of gels and glasses. Thus, the next chapter addresses the evolution of the predicted dynamical
properties for the predicted states of the non-equilibrium glass transition diagram.



41

Chapter 4

The kinetic perspective of the glass, gel
and gas-liquid transitions and their
interference.

In chapter 3 the non-equilibrium glass transition diagram of the HSSW system, obtained by the
NE-SCGLE theory, was presented. Nevertheless, such theoretical predictions do not provide the
evolution of the system towards the development of an arrested state. In this regard, the present
chapter aims to review the NE-SCGLE predictions for the time-evolution of the dynamical prop-
erties of the HSSW liquid towards the distinct arrested states discussed in the previous chapter.
For these non-equilibrium states, complex effects such as aging and retarded responses of dynam-
ical and structural properties, can take place, thus making their description, from a theoretical
perspective, a hard problem to solve. In this chapter, the predictions on the transient dynamics
and the underlying interference between the transitions described in the non-equilibrium glass
transition diagram are discussed. A collection of such theoretical predictions for the HSAY fluid
system is found within what we have referred to as the second scientific contribution of this thesis
(ref. [29]). Nevertheless, for self-contained purposes, in this work is done for the HSSW system.

Concretely, this chapter reviews the latency effects and multi-step relaxations of dynamical
properties predicted within the gel-like arrested states. As the name implies, the latency phe-
nomena is characterized by the description of almost stationary properties, which present sudden
changes when enough time is given. These latency have been experimentally observed, for instance
in rather common physical properties like the viscoelastic modulus [18, 49, 50]. On the other hand,
from the NE-SCGLE theory perspective, these latency effects have been predominately studied
through the time-dependent diffusion coefficient, whereas other properties. such as the MSD and
the self part of the ISF, also exhibit similar or related effects. Thus, the interference between the
non-equilibrium phases is studied through the analysis of these properties along the boundaries
found within the non-equilibrium glass transition diagram.

4.1 NE-SCGLE results & discussion

In what follows we will consider the solution of the full set of equations of the NE-SCGLE (we
refer to Eqs. (2.68)-(2.67)) for isochoric quench processes, such as those discussed in the previous
chapter. For such reason, a similar numerical method as the devised in reference [20] is em-
ployed. Details upon the discretization of the integro-differential coupled equations can be found
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at Appendix A, while the implementation of the rest of the equations is done straightforwardly.
The complete numerical implementation of all these methods resulted in a high efficiency pro-
gram located in the public repository https://github.com/LANIMFE/HS_HSSW_quench_NESCGLE,
available to everyone to use and modify, and from which all the results from this chapter can be
reproduced.

Hence, in order to analyze the evolution of the dynamical properties of the system, we shall
consider a sequence of quenches. For instance, for the φ = 0.15 isochore, we consider quenches,
all of which initiate at the same HS limit condition (given at T → ∞), with final quenching
temperatures Tf = 0.60, 0.70, ..., 1.40. For such quenches, the solution of the NE-SCGLE set of
equations directly leads to the evolution of the waiting-time dependent structure factor, the ISF,
its self part, the MSD and the mobility. In order to describe such evolution, the dimensionless
waiting time convention t∗w = σ2/D0tw will be employed when referring to the waiting time tw.
This convention allow us to compare the ”waiting time”, a laboratory time frame, with the needed
time for a free particle to diffuse a distance equivalent to its own diameter.

The behavior of the inverse of the mobility for the proposed set of quenches is illustrated in
Fig 4.1 a). As a reference, for the selected isochore, the predicted glass-transition temperature is
around Tc(φ = 0.15) ≈ 0.85, while the spinodal line is found approximately at Ts(φ = 0.15) ≈ 1.30.
From the inverse of the mobility, a clear distinction is observed for states between Ts and Tc
(region II of the non-equilibrium glass transition diagram), which are highlighted by red solid
circles discussed below, and states underneath Tc (region III). States inside region II and III of the
non-equilibrium glass transition diagram will be from now on, simply refered as gel- and glass-like
states respectively.

For the glass-like states (green curves), a power-law behavior is predicted in the evolution of the
mobility since small waiting times. Such behavior is in fact the typical aging behavior predicted in
repulsive glass systems [20]. Hence, it allow us to strongly corroborate a similar aging phenomena
across the predicted asymptotic glass-like arrest region. In contrast, for gel-like states, a behavior
similar to that of equilibration (yellow curve) is first observed, where a transient plateau develops
prior to a power-law increase. This first behavior ends at the time highlighted by the red solid
circles in each mobility, at a time which we denominate as latency time tl. Such time is estimated
by the condition db(t)

dt
≈ 1 once the plateau is formed, and it is only found for gel-like states. Notice

that tl becomes smaller as the final temperature decreases and the latency effects disappear in the
vicinity of the critical value Tc for the transition to a glass-like state.

On the other hand, the increase of tl along the temperature is found to diverge at Ts. Such
divergence is in fact described by a power law tl ∝ (1− T/Ts)α, with T being the final quenching
temperature. For the current HSSW system at both, φ = 0.15 and φ = 0.20 isochores, the
exponent α ≈ 2.1 is predicted, as presented in Fig. 4.1 b). In comparison with experimental data,
this kind of behavior is actually observed along the viscoelastic modulus, where a waiting time
occurs prior their measurement in gel-like materials [18, 51]. For the storage modulus of silica
nanocolloidal suspensions, similar power-laws behaviors are actually reported, with α ≈ 2.5 for
the volume fraction φ = 0.20, and α ≈ 3 for φ = 0.43, where the latency time apparently diverges
along a threshold temperature T0 [18].

In this sense, the exponent predicted by the theory is actually found to be dependent on the
system, as well as on the structural approximations, while, for the current HSSW fluid, the density
is found to play a lesser. For example, for the HSAY system within the mean field structural ap-
proximation (MF), the exponent α = 2.5 for the φ = 0.20 isochore is found [29]. When comparing
to the current HSSW fluid, the differences can be explained in terms of the non-equilibrium glass
transition diagrams, where the spinodal temperature, as well as the glass transition temperature

https://github.com/LANIMFE/HS_HSSW_quench_NESCGLE
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Figure 4.1: a) Inverse of the mobility for the HSSW system for the isochore φ = 0.15 from the
HS limit (T →∞) to Tf = 0.60, 0.70, 0.80, 0.90, 1.00, 1.10, 1.20, 1.30 and 1.40. b) Latency time
vs 1− Tf/Ts for the isochores φ = 0.15 and φ = 0.20 along with the corresponding power law fit
tl ∝ (1− Tf/Ts)α with α = 2.1

are found to be dependent upon the structural approximations and interaction potential parame-
ters. On the other hand, within the theoretical prediction, the density does seems to play a lesser
role for α, where, as seen in Fig. 4.1 b), the same exponent is found for two different isochores.

Let us now discuss the NE-SCGLE predictions regarding the MSD and the self part of the
ISF. In Fig. 4.2 the MSD (left column) and the self part of the ISF for k∗ = 1 (middle column)
and k∗ = 2π (right column) are presented for the same isochore φ = 0.15, for three distinct
final temperatures, Tf = 0.80 (purple lines), 0.90 (blue lines) and 1.30 (green lines), at increasing
values of waiting times from left to right. To serve as a reference, the asymptotic values of each
quantity for the three quenches are indicated with empty circles of the same color of each process,
and where the yellow color is used to represent the initial value. Let us emphasize that the final
temperature where conveniently selected in order to highlight representative features of glass-like
states (Tf = 0.80), gel-glass interference (with Tf = 0.90 being just above the gel-glass transition
line) and gel-like states ( Tf = 1.30 just below the spinodal temperature). The two chosen wave
vectors, k∗ = 2π and k∗ = 1, where included in order to track the structural relaxation at (inverse)
length scale of order of particle’s size and larger size respectively.

Thus, Figs. 4.2 a)-c) show the evolution of the MSD and the self part of the ISF for a
shallow quench inside the gel-like arrested region, where a long latency time is predicted. In
terms of the MSD, negligible changes are observed for times smaller than tl as compared to the
initial value (yellow line). At t > 104, however, an aging process is observed, where the MSD
evolves gradually towards its asymptotic limit (green empty circles). Hence, for sufficiently long
waiting times (t > 104), the gradual development of a plateau in the MSD is observed. This
plateau is a signature characteristic of dynamical arrested systems, and can be related to γ by
γ[u(t)] ≡ limτ→∞W (τ ; t), as stated in chapter 2. As a consequence, the value of this plateau is
consistent with the divergent behavior of γ for quenches close below Ts. The predicted plateau for
the MSD in this quench, has a much greater value than that of the glass-like state (purple empty
circles), which indicates a comparably greater localization length of the system particles.

In terms of the ISF, an analogous behavior as the one described by the MSD is observed. In
this quantity, for t < tl, only small deviations from its equilibrium initial value are observed, while
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the development of a plateau is followed afterwards. Let us emphasize that the ISFs presented
in Figs. 4.2 b) and c) are shown in a log-log scale instead of the typically used normal-log scale.
Such scale is employed in order to highlight the signatures present in a dynamical arrest system,
which as observed for the current quench, occurs at much smaller values (∼ 10−4 for k∗ = 2π and
∼ 10−2 for k∗ = 1) when compared to glass-like states. In this sense, the typical arrested scenario
can remain hidden when observed in a normal-log window, as it is the case for the asymptotic
values of the current process observed in the rest of the ISF figures (green empty circles of Figs.
4.2 e), f), h) and i) ).

The behavior of the ISF for such shallow quench close below Ts can be argued to be compatible
with the physical image portrayed by the MSD and γ. For this quench, the ISF shows signs of a
fairly structurally relaxed system, even at large structural scales and long waiting times. This fact,
along with the high value plateau of the MSD at long waiting times, describe a system in which
its particles are able to diffuse for very long distances and times prior to a solid-like response.
For glasses, the dynamical arrest is commonly understood in terms of locally compact structures,
where nearest-neighbor particles impede the diffusion of one and other through either caging or
bonding (where the latter might occur in attractive systems) [52]. For the current process, the
system particles are able to diffuse a latency distance dl =

√
bltl ≈ 18σ, with bl being the mobility

value of the plateau in gel-like states. Such value is well-past the nearest-neighbor distance, hence
we can conclude that the mechanism in which the dynamical arrest happens in gel-like states such
as this one, differs from the typical caging or bonding mechanism.

On the other hand, and as has already been emphasized in terms of the mobility, the difference
between equilibration and the formation of a gel state are difficult to be observed as the final
temperature of a quench approaches the spinodal temperature from below, since the latency time
becomes dramatically larger. For such cases, the divergence in the latency time implies longer
waiting times in which the dynamical properties appears to be like a typical equilibrium system,
while making the dynamical arrest features harder to observe (i.e. higher values of the MSD
plateaus and lower values in the structural relaxation plateaus). In return, such behavior leads to
the possibility of other non-predicted physical routes to take place, such as the complete gas-liquid
spinodal decomposition process. In this regard, the theory is only able to describe the early stages
of the phase separation [25]. For high enough density fluctuations values, additional effects not
contained within the NE-SCGLE formalism, such as the surface tension and convection, might
take place, driving the system to the expected full phase separation[25, 53].

Thus, the interplay between gelation and full phase separation of the system remains unclear.
Nevertheless, an argument can be made that such interplay could be mediated in terms of the
latency time. This is due to the fact that the latency time can be employed to measure the evolution
of the fluctuations prior to the aging like behavior which drastically damps the evolution of the
system. In return, a boundary between the gel-like arrested region and the spinodal decomposition
process dependent upon the process latency time has been previously proposed [29]. On the other
hand, as multiple other proposals for such boundary have been made[25], with not even a single
one being corroborated by other means. Hence, we have decided not to include a more extensive
discussion of such boundary in the present work.

The dynamic description just presented allow us to complement the macroscopic view of gels,
thought as soft solids. The softness or rigidity of a material is commonly understood in terms of
the shear or rigidity modulus, which is the ratio between a shear stress and the shear strain of
a system. For gel materials, such rigidity is expected to be comparably low in contrast to other
solids (small, yet finite values of shear modulus) [54]. Thus, the softness trait of gels might as well
be related with the high diffusion capacity of the particles along the transient dynamics.
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On the other hand, when considering lower final temperature quenches within region II, a
different scenario appears. Such scenario is characterized by a competence between gel- and glass-
like arrested dynamics. As illustrated in Figs. 4.2 d)-f), the interplay is highlighted by states in the
neighborhood of the glass transition, where a double step relaxation is observed for the considered
dynamical properties. For instance, in terms of the MSD the competing behavior traduces in
a sudden change of its slope at intermediate correlation times, which for small waiting times
resemble the glass-like behavior observed in the figure down below and in the asymptotic glass
solution highlighted by the purple empty circles. Thus, such sudden change is actually thought to
be the beginning of a caging- or bonding-like behavior in the MSD, yet at later stages, a gel-like
arrested dynamics takes places. In such later stages, this feature is observed as a double step
relaxation, where the diffusion appears to be slightly damped prior to a stronger arrest behavior.
When compared with the previous case, the plateau developed at later stages is considerably
smaller, indicating a comparably smaller localization length. In addition, one may also notice a
faster resemblance of the MSD to its asymptotic behavior (empty blue circles). This is reminiscent
of the decrease of the latency time as Tf decreases, approaching the glass transition.

At the level of the ISF, the competition between the two transitions is manifested in a stretched
relaxation, more pronounced for the case k∗ = 1. Let us take notice that, in contrast to the previous
case, the y-axis of Figs. 4.2 e) and 4.2 f) is now shown in a normal scale, a convention more widely
employed in reports where this quantity is presented. For k∗ = 2π, the plateau formed at long
waiting times have a height comparably larger than the high temperature case, yet in this scale,
it remains almost imperceptible. On the other hand, at k∗ = 1, the developed plateau can be
seen within the presented window, thus indicating a structurally more compact state, which still
allows for diffusion distances comparable to particle size (dl ≈ σ). In addition, for this wave-vector
number, the tendency of the ISF evolution towards the glass transition is noticeable. Similar to
the MSD behavior, for the largest evolution times, this tendency is observed as a double step
relaxation, where at intermediate correlation times, the ISF follows after the asymptotic glass
values (purple empty circles) prior to its decay towards a plateau.

Finally, in Figs. 4.2 g)-i) we illustrate the evolution of the dynamical properties for states
inside the glass transition. In these states, the MSD quickly evolves towards the asymptotic γ
plateau, while the self part of the ISF show signs of aging. Within the theory, this behavior is
typically observed in pure repulsive glasses, such as the ones predicted in high density Lennard-
Jones systems [29, 20, 22]. Hence, the observed evolution, serves as a further corroboration of the
glass-like states present along region III of the asymptotic arrest diagram.

For glass-like states, the asymptotic property γ tells us about a dramatically smaller localization
length when compared to gel-like states (see discussion about the Tc glass transition temperature
in the previous chapter). At the level of the MSD, this change is captured by a sudden decrease
in the transient plateau when compared to the previous case. Allow us to remark that, as long
as a glass- and a gel-like states are compared, such change occurs in the vicinity of the gel-glass
transition. This tight arrest is also observed in the ISF, where the formed plateaus are considerably
higher for all wave-vector numbers when compared to the previous cases. In this sense, the now
easily visible plateau formed at k∗ = 2π for the transient evolution of the ISF, tell us about a tight
dynamical arrest which agrees with the scenario presented by the localization length of glasses
γ1/2 ≈ 0.1σ. In addition, although it is not possible to define the same latency distance for glass-
like arrested, this localization length can be used as a rough estimate of one, implying diffusive
distances of at least one order of magnitude lower to gel-like states.

On the other hand, and in stark contrast to the previous case, there are no visible signature
features of gel-like dynamics once the glass-dynamics takes place. This is due to the glass-like
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Figure 4.2: MSD (left column) and ISF for two different wave-vector numbers k∗ = 1 (middle
column) and 2π (left column) for three different final quenching temperatures Tf = 0.80 (purple
lines), 0.90 (blue lines) and 1.30 (green lines), where the dashed lines corresponds to their respective
asymptotic value, while the yellow color corresponds to the initial state condition. Each solid line,
from left to right, represents the property at an increasing value of the waiting time t = 100.5n,
with n being an integer between −4 and 6 for Tf = 0.80, up to 8 for Tf = 0.90 and up to 12 for
Tf = 1.30.
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dynamics occurs at a much faster rate than gel-like dynamics, hence the interference is only
captured along gel-like states. For gel-like states, such as the previous case, the small hints that
glassy dynamics are about to take place is what allow us to observe a double step relaxation
behavior in the ISF and the MSD. These tendencies for the current properties has been previously
reported along simulations of glass and gel former systems[55, 56, 57], thus making them a well-
known fingerprint for gel-glass interplay described by the NE-SCGLE theory.

4.2 Summary

As a conclusion, the NE-SCGLE theory is able to describe many of the underlying features present
within the arrested spinodal decomposition processes. Such features consist in the prediction of a
power law increase in the inverse mobility as the temperature increase towards its spinodal value,
the existence of a latency time and the double-step relaxation found at lower temperatures near the
gel-glass transition line. The theoretical results presented in this chapter are found to qualitatively
agree with those obtained for the HSAY fluid, and hence, might be generic for systems with similar
interactions. On the other hand, the evolution of the kinetic properties presented in this section
serves as a cornerstone in order to address the main objective of the present dissertation, where
the evolution of kinetic properties must be analyzed across a multitude of states.

In addition, the presented results serve as a perspective to tackle more complex system. Partic-
ularly, the phenomenology just described is found across a variety of systems, such as hard sphere
polymers[55], soft attractive interaction systems[56, 57], Laponite systems[49], and colloidal sus-
pensions of silica[18]. Thus, a perspective of this work is to quantitatively explore the similarities
and differences between experimental results and theoretical predictions when employing systems
with more similar particle interactions, such as mixtures, soft cores and non-spherical interactions.
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Chapter 5

Waiting-time dependent non-equilibrium
glass transition diagrams

In chapter 2 a general method to predict dynamically arrested states was presented in terms of
the asymptotic solutions of the NE-SCGLE equations. These solutions lead to the development
of non-equilibrium glass transition diagrams, exemplified in chapter 3 using the HSSW fluid as a
representative system. Such diagrams, however, do not provide a complete physical description of
the predicted non-equilibrium transitions, since they do not include any specific information on
the waiting time evolution of the structural and dynamical properties of the system in question.
As shown in the previous chapter, this information is crucial in order to obtain a comprehensive
physical picture of the different (and competing) non-equilibrium transitions predicted for the
HSSW model, which includes aging and latency effects for the dynamics that are experimentally
found in systems with essentially the same kind of interactions [18].

A possible manner to amend this dearth is to incorporate time as another variable in the
typical thermodynamical and out-of-equilibrium representation of the HSSW system, as it has been
illustrated in the context of gel and glassy states in colloidal Laponite suspensions [28, 32] or the
time-temperature transformation (TTT) diagrams of borosilicate glasses [31]. Thus, in this chapter
we explain how to include such time-dependent description in the previously developed non-
equilibrium glass transition diagrams. More specifically, we show and explain how this can be done
in terms of the mobility function b(t), leading to the development of waiting-time dependent non-
equilibrium glass transition diagrams. Let us emphasize that both the proposal and determination
of such diagrams are the main scientific contributions of this work, since they provide for the very
first time a first-principles description of such time-dependent non-equilibrium transitions in the
thermodynamic space of a system.

generic method to predict dynamical arrested states was presented in terms of the asymp-
totic solutions of the NE-SCGLE formalism. Such solutions have lead to the prediction of non-
equilibrium glass transition diagrams, exemplified in chapter 3. Although these diagrams allow us
to trace the system states in terms of the thermodynamical variables, they do not take into account
the complete picture of the non-equilibrium transitions. Particularly, the rich time-dependency
given by the aging and latency effects just described in 4, is left out of such description. For
experimental system, these effects are actually measured and taken into account when describ-
ing non-equilibrium states transitions [18]. An example of this is the consideration of time as
another variable along the typical termodynamic phase space of systems. Such is the case of col-
loidal Laponite suspensions [28, 32] and the time temperature transformation diagrams (TTT) of
Borosilicate glasses[31].
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5.1 The mobility function b(t) as a dynamical arrest pa-

rameter

As discussed along chapters 3 and 4, the non-ergodicity parameter γ can be used (within both, the
SCGLE or NE-SCGLE) to characterize dynamically arrested states, and also to determine the locus
of different dynamical arrest transition lines in the parameter space of a given system. In particular,
within the context of the NE-SCGLE approach, this parameter allow us to detect competing non-
equilibrium transitions inside the spinodal region of an attractive fluid. However, this parameter
is obtained from the asymptotic long time limit of the NE-SCGLE equations and, hence, does not
provide any information on the waiting time evolution of a system towards the development of an
amorphous arrested state. This hinders the systematic and thorough comparison of the idealized
transitions predicted by the theory provided that any possible measurement must consider a finite
waiting time.

In consequence, neither experiments or simulations are able to witness such idealized glassy
states (as described by the asymptotic limit of the theory) and instead, only a portion of the slowly
time evolving process formation of a non-equilibrium amorphous state is observed. Nevertheless,
various empirical criteria have been proposed to detect the occurance of gel and glassy states. In
the former case, for instance, two properties typically employed for such characterization are the
viscosity and the α-relaxation time τα.

The viscosity η of a system, is a physical property that allow us to quantify the resistance
of a fluid to be deformed. This quantity can be thought to be inversely related to the particle’s
diffusion coefficient or mobility, although the exact relation is in general unknown and depends on
the microscopical features and macroscopic state of the system. For example, for a colloidal dilute
Hard Spheres system, the Stokes-Einstein relationship can be derived, which leads to D0 ∝ η−1,
with η being the fluid viscosity. On the other hand, the α-relaxation time is defined in terms of
the self part of the ISF as Fs(k, τα) = e−1. τα(k) defines a structural relaxation time, in which the
correlation of a particle with itself is lost. It is an experimental fact that this quantity increases
dramatically during the formation of glasses [52, 14], as the diffusion of the constitutive particles
significantly decreases. Thus, we can associate τα with the time it takes for a particle to diffuse a
distance comparable to the wave length 2π/k from an initial position.

The empirical thresholds, although highly agreed within the scientific community, are not set
in stone, and commonly depend depend on the specific system under consideration. In this regard,
we might refer to two main type of glass and gel forming systems, namely, atomic and colloidal
liquids, which are conformed by rather different constituent particles, whose motion is governed by
interactions of distinct nature. In spite of such microscopical differences, many of the underlying
features of both phase and glass transitions are acknowledged to remain rather similar for atomic
and colloidal systems [58, 59, 60]. In consequence, the study of these two kinds of systems have
improved our general understanding on the glass transition [60, 59].

At such, for molecular glasses, the commonly accepted threshold for the glass transition vis-
cosity goes as high as 1012 Pa·s

For real molecular glasses, for instance, a commonly accepted criterion to define a glass tran-
sition is marked by an increase of the viscosity up to values 1012 Pa·s [61, 15, 14]. Comparatively,
water’s viscosity at normal condition is 10−3 Pa·s, while for honey is 102 Pa·s. Then, the differ-
ence in comparison to a glassy system is remarkably large in terms of the orders of magnitudes
of the viscosity. Similarly, a commonly accepted value for the α-relaxation time, used to define a
glassy state in atomic liquids is ∼ 102. This is to be contrasted with the relaxation times found
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for equilibrium fluids, of order 10−12s[14, 15]. Hence, both the viscosity or τα register a similar
increase during the formation of non-equilibrium glassy state.

In the case of colloidal systems, insted, the typical glass transition threshold value for τα is
∼ 105s[61, 59], whilst the typical equilibrium value is of order 100s. A similar condition is found
for the viscosity. In terms of the viscosity, such relative difference is maintained. For colloidal
fluids at small concentrations, the viscosity is constrained to be that of the fluid medium, while
at glassy states it typically shows an increase up to five orders of magnitude [62, 59, 61].

On the other hand, the direct study and analysis of these dynamical properties imposes a
challenge within the theoretical perspective. The study of rheological properties is an area un-
der development within the NE-SCGLE framework, while the wave-vector dependence of the
α-relaxation times makes its analysis a hard problem to tackle. In return, these dynamical and
rheological properties are found to be highly correlated [16, 14] among them, and also coupled
with the mobility [20]. All these notions motivate thus our proposal to characterize the dynamical
arrest transitions of system in terms of the function b(t).

Specifically, in what follows the condition the condition b ≤ 10−5 would be adopted to define
a dynamical arrested state in a practical manner. Such condition relates to the expected colloidal
threshold, which are actually the systems under consideration within the present framework. On
the other hand, it is not the first time that a consideration of low mobility has actually been
employed in order to follow dynamical arrest transition trends, as in the case of molecular dynamic
simulations carried out by Zaccarelli et al [63]. In such work, the authors are able to confirm and
follow predicted dynamical arrest behaviors of HSSW model systems by following the iso-diffusivity
lines of values as low as b(φ, T ) = 5× 10−6[63].

In terms of the theory, this practical condition serves the purpose of localizing the aging be-
havior of processes leading to both, gel- and glass-like arrested states. Furthermore, the condition
provides a practical way of defining each dynamical arrest transition, while also taking into account
the waiting time required for their occurrence, defined as ta(b = 10−5). Thus, our description em-
ploys the mobility to describe waiting time dependent thermal processes. For the current system
undergoing an instantaneous isochoric quenching process, when starting from a HS limit, such
description is reduced to b(φ, Tf ; t). Hence, the analysis of the mobility allow us to provide a
reasonable description of time-dependent dynamical arrest diagrams.

5.2 The time dependent non-equilibrium glass transition

diagram of the HSSW fluid

In this section the major contribution of the current dissertation is presented. To do so, the
systematic solution of the NE-SCGLE is carried out for a large ensemble of possible final states,
spanned by multiple values of the two control parameters φ and Tf . The resulting analysis of
such enormous set of possible final conditions distinguish this from previous works within the NE-
SCGLE theory. In practice, the multitude of final conditions consist in a combination of 40× 16
densities and final quenching temperatures, going from volume fractions as small as φ = 0.01 up
to φ = 0.40 in differences of ∆φ = 0.01, and with final temperatures ranging from T = 0.3 up to
T = 1.8 in differences of ∆T = 0.1. The mobility analysis of such set are the building blocks which
allow us to determine the waiting-time dependent non-equilibrium glass transition diagrams.

Let us start by addressing the manner in which the mobility b(t;φ, T ) will be displayed in terms
of its three dependent variables. As shown in Fig. 5.1, the dependence of this quantity on the
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Figure 5.1: Different planes of b(t;T ;φ) for instantaneous isochoric quenches within the HSSW
system and where T corresponds to final quenching temperature. a) φ-T planes at constant
t = 10−1, 100, 101, 102, 103, 104 and 105. b) φ-t planes at constant T = 0.6, 1.0 and 1.4, along
with the φ-T plane at t = 105. c) t-T planes at constant φ = 0.05, 0.20 and 0.35, along with the
φ-T plane at t = 105.

variables φ, t and T can be described using a three dimensional representation, an also with a color
scale that emphasizes the specific value of b for each value of the three aforementioned parameters.
In this figure, the results obtained for the mobility are emphasized by following different possible
planes where one of the variables is fixed. In general, each of these planes, offers a different
perspective of the function b(t;φ, T ), which allow us to focus on different planes depending on the
application. For example, from the cuts at t = 105, a very similar scenario as the one portrayed
by the non-equilibrium glass transition diagram (see Fig. 3.5) is observed. As a matter of fact, the
main difference between this cut and its asymptotic counterpart, is that the black colored states
of Fig. 3.5 are now denoted by an homogeneous purple, corresponding to a value 0 < b ≤ 10−5.
This subtle difference highlights the fact that the mobility of such states at the finite waiting time
t = 105, is a small non-zero value.

Let us consider the evolution of the (φ, T ) plane, described by the sequence of cuts at constant
values of t shown in Fig. 5.1 a) and also displayed in detail in Fig. 5.2. These planes are of special
interest as they are somehow comparable to the conventional thermodynamic state diagrams,
similar to the case of the asymptotic non-equilibrium glass transition diagrams. The sequence
shown in Fig. 5.2 for t = 0, 10 10−1, 100, 101, 102 and 103 describes the evolution of the system
during the development of both equilibrium (yellow and green colors) and arrested states (purple
color b ≤ 10−5). In Fig. 5.2 the iso-diffusivity lines for b(t) = 10−1 (black dotted lines) and
b(t) = 10−5 are also shown as a reference. Notice that in the former case, this line appears at a
time scale of order 101, whilst for the later this occurs at waiting times ∼ 101. Also for reference,
we show the asymptotic limit of these iso-mobility curves, described by the thick solid dark gray
(beq = 10−1) and light gray (beq = 10−5) lines, as well as the asymptotic glass transition Tc(φ)
(dashed thick light gray line) for inside spinodal states at densities lower than the bifurcation
point (full red circle).

At the initial time, the HS limit is under consideration, which leads to an only volume de-
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Figure 5.2: Evolution of the φ-T planes of b(t;φ, T ) for an instantaneously-quenched HSSW model
fluid at t = 0 a), 10−1 b), 100 c), 101 d), 102 e) and 103 f). The black dotted b)-f) and solid d)-f)
lines corresponds to the iso-mobility (contour) lines b(t;φ, T ) = 10−1 and 10−5 respectively. The
thick solid dark gray b)-f) and clear gray d)-f) lines corresponds to the asymptotic equilibrium iso-
mobility lines beq(φ, T ) = 10−1 and 10−5 respectively, while the red dot represents the bifurcation
point and the dashed thick gray line is the asymptotic glass transition inside the spinodal.
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pendent mobility. Hence, in 5.2 a), columns of the same color with small variations for different
density are observed. In this limit, the mobility values of the reference curves b = 10−1 and
b = 10−5 are actually found at φ = 0.49 and φ = 0.58 respectively. Thus, the iso-mobility columns
corresponding to the reference lines, are not visible within the presented scale.

At later times, the first thing to notice is the gradual and monotonic decrease of b(t;φ, T )
with increasing waiting time in some regions of the φ, T plane, which are indicative of the gradual
slowing down of the microscopic dynamics. This process is observed through the evolution of
state points towards darker colors as t increases. In each of the presented quenches, the exact
evolution of b(t) depends on the specific values of the control parameters, which in return leads
to a strongly inhomogeneous distribution of colors at sufficiently large waiting times. The strong
contrast presented at later stages of the process allow us to glimpse at distinct evolution processes
such as the ones presented in the previous chapter.

In equilibrium conditions, the asymptotic iso-mobility line (thick solid dark gray) of b = 10−1

serves the special purpose of also being the freezing line according to a dynamic empirical criterion
[46]. However, under the current framework, it simply separates the stable from the metastable
liquid regions. Additionally, when the time dependence is included in the description, the iso-
mobility curve (black lines with circles) describes the evolving boundary between the equilibrium
and non-equilibrium regions. Notice that the iso-mobility curve b(t) = 10−1 matches its asymptotic
value at waiting times t ≈ 100. Also important, during the early stage of evolution of the HSSW
system, the motion of particles is presented by fast diffusion-limited clustering of nearest-neighbor
particles. This, however, is only the preamble of a slowly evolving process that involves collective
restructuring processes. At later stages (t > 100) many relevant features are developed in the
time-dependent diagram.

A similar but noticeably slower evolution is exhibited by the iso-b line corresponding to b0 =
10−5 (solid line), which is only observed at waiting times t ≥ 101, as illustrated in Figs. 5.2d)-f).
Notice that this iso-mobility line matches its asymptotic value (thick solid gray line) at time scales
of order 103. Fig. 5.2 describes the continuous time-evolving pattern of the mobility on the (φ, T )
state space, in which the time-dependent iso-b lines serve as sharp, yet artificial visual aids. At
even longer times, however, this evolution becomes less and less perceptible, to the point that it
eventually appears to be stationary. In fact, this already occurs at the waiting time t = 105, whose
snapshot coincides, within the resolution of the figure, with the non-equilibrium glass transition
diagram b(t→∞;φ, T ) = beq(φ, T ) of Fig. 3.5.

The slow dynamic features illustrated in Figs. 5.2d)-f) and the non-equilibrium glass transition
diagram helps to understand the time dependence of the experimental glass transition. The
empirical criterion just proposed in this work serves as a link to the experimental thresholds
proposed for the glass transition. Hence, the condition b(t, φ, T ) ≤ b(a) provides a practical criterion
to determine the occurrence of non-equilibrium transformations into gel and glassy states. This
removes the fundamental difficulties to compare theoretical predictions with experimental and/or
simulated results.

The whole evolution in Figs. 5.2 a)-f) and 3.5, from the beginning to the end, is what is
referred to as a time-dependent non-equilibrium phase diagram. Its kinetic perspective, and its
description of dynamically-arrested phases, constitute the most relevant difference with respect
to ordinary equilibrium phase diagrams, whose proper counterpart, illustrated in Fig. 3.5, is the
non-equilibrium glass transition diagram, now obtained at t→∞ limit of this t-dependent process.

One important question refers to the possible dependence of the kinetic scenario just presented,
on the threshold value of b(a). In general, we found that the basic scenario is essentially the same,
except that in order to observe qualitative features similar to those displayed in Figs. 5.2 d)-
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f) and 3.5, much longer waiting times and much higher resolution in b(t), φ and T , will be
required as the threshold value decreases. What will not change, however, are the long-time
limiting lines b(t → ∞;φ, T ) = beq(φ, T ) = b(g) for b(g) smaller than 10−5, all of which virtually
superimpose (again, within the resolution of the figure) on the solid line of Fig. 3.5. Thus, this
line is the stationary dynamic arrest line beq(φ, T ) = 0, one of the most relevant elements of the
non-equilibrium glass transition diagram, first presented and explained in detail in Ref. [25].

Although the analysis done in the (φ, T ) has been revealing enough, as it can be compared
with common thermodynamical diagrams, the theoretical description allow us to focus in different
chosen variables. In this regard, and as it has been previously stated, other planes might be more
relevant depending on the application. Such is the case of the (T ,t) plane at constant φ and (t,
φ) plane at constant T . These planes are commonly seen in TTTs diagrams and experimental
reports[31, 28]. The analysis done in these alternative planes is shown in Figs. 5.3 a)- c) for the (t,
φ) plane for a supercritical (T = 1.4) and two subcritical (T = 1.0, 0.6) quenching temperatures.
Additionally, the (T ,t) plane is shown in Figs. 5.3 d)-f) for the isochores φ = 0.05, 0.15 and
0.25. In each of these figures, the intersection of the respective plane with the empirical dynamic
arrest transition surface b(t;φ, T ) = b(a) = 10−5 is represented by the colored solid lines. These
lines indicate the time required for the system to pass from a fluid state to an arrested one
(b(t;φ, T ) < b(a)). In particular, the red solid line indicates a transition to the expected glass-like
states (region III of Fig. 3.5) and the pink solid line to the expected gel-like states (region II of
Fig. 3.5).

Let us further discuss the isothermal diagrams. From Figs. 5.3 a)-c) it can be seen that, at a
given isotherm, we only have two or three possible final states. Thus, at supercritical temperatures
(Fig. 5.3 a)) the system is expected to reach equilibrium at low volume fractions, but above a
critical volume fraction φg(T ) that depends on temperature (φg(T = 1.4) ≈ 0.29), a transition will
occur into an arrested state corresponding to a high-density repulsive glass. In fact, the high-T
limit of φg(T ) is precisely φg(T =∞) ≈ 0.58.

In contrast, for subcritical temperatures, illustrated by Figs. 5.3 b) and c), a third possibility
emerges, namely, the formation of arrested sinodal-decomposition gel states, corresponding to
region II in the non-equilibrium glass transition diagram of Fig. 3.5. In fact, for isotherms only
slightly subcritical (not illustrated here), the gel transition will be confined to a small volume
fraction interval around the volume fraction φc of the critical point. For such cases, the transition
is expected to occur after a very long waiting time. This is due to the previously discussed nature
of the latency time, which diverges approaching the spinodal line and, hence, is not contained in
the time-window employed in the present figures.

For completeness, let us focus now on the constant φ planes. In these isochore planes, Figs.
5.3 d) and e) have volume fractions smaller than the bifurcation point (full red circle of 5.2), while
Fig. 5.3 f) represents a higher value case. In these plane, the bifurcation point plays a similar
role as the critical temperature, which is the meeting state point between the spinodal and the
dynamical arrest line as previously discussed in chapter 3. Hence, for densities greater than the
bifurcation point, the typical glass transition is predicted, while for densities lower than that of
the bifurcation point, depending on the final temperature, gel or glassy states might be found.

Finally, in Fig. 5.4, two practical applications in other kind of system are shown and quali-
tatively compared with the planes predicted by the theory for the HSSW model. In Fig. 5.4 a),
the resulting time-dependent non-equilibrium glass transition diagram is shown for plane (t,φ) at
T = 1.0. To serve as a reference, in Fig. 5.4 b) we show similar results obtained from experimental
characterizations of Laponite suspensions [28]. In this figure, the transition from an equilibrium
fluid state to a non-equilibrium one is highlighted by the gray circles, with black the solid line
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Figure 5.3: φ-t planes at constant Tf = 1.4 (a), 1.0 (b) and 0.6 planes and t-T planes at constant
φ = 0.05 (d), φ = 0.15 (e) and φ = 0.25 (f) of b(t;φ, T ). Fluid states are expected at region I
in each of the diagrams, with b(t;φ, T ) > 10−5 boundary condition. The solid red and pink lines
corresponds to the b(t;φ, T ) = 10−5 boundary, while segregating glass-like (red enclosing region
III) from the gel-like (pink enclosing region II) arrested states.
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Figure 5.4: a) Time-dependent non-equilibrium phase diagram for the HSSW system at T = 1.0.
b) Laponite time dependent diagram sketched from the experimental data in Ref. [28] where time
is measured in hours after filtering the sample which was inmediatly obtained after 30 minutes
of stirring, and concentration is weight concentration. c) Time-dependent non-equilibrium phase
diagram for the HSSW system at φ = 0.15. d) Non-equilibrium state transformation of the
borosilicate glass 65SiO2 ·25B2O3 ·10NA2O, reproduced from the time-temperature transformation
(TTT) diagram in fig. 1 of Ref. [31]
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being just a numerical fit for the data. This shows how the NE-SCGLE theory is able to generate
essentially the same time-dependent information required for the description of non-equilibrium
transformations in a quenched liquid. A similar comparison can be made for diagrams at constant
φ which are comparable to the experimental TTT diagrams previously mentioned in Fig. 5.4 d),
reproduced from ref. [31].

From these qualitative comparisons, it can be implied that some of the general features of
these transitions are maintained even though obvious difference exist within the systems. On the
one hand,, the Laponite system is made of electrically charged non-spherical particles, while the
borosilicate glass is a molecular mixture system. Nevertheless, similar states to the NE-SCGLE
predictions are observed within the Laponite system in the same kind of order, a glass region at
higher densities and a gel region for moderate and low densities. On the other hand, although
the phase separation is not strictly predicted within the theory, one could make the case that
such process could be estimated as has been previously done [25, 29]. In terms of the Borosilicate
system, the transparent glass phases could be interpreted as homogeneous phases, waiting for the
transitions to develop. In such terms, the crystalization glass could be interpreted as a vitrification
process in which the full crystalization of the system is frustrated, while the opalescent glass region
is reminiscent of a frustrated spinodal decomposition process.

5.3 Summary

As a conclusion, the methodology just described is capable of describing the general characteris-
tics of the time-dependent transformations of materials. Such methodology consists in following
the solution of the NE-SCGLE equations for the mobility. This is done thoroughly across the
thermodynamic parameters space of the system. In addition, the practical threshold, ba = 10−5,
allow us to track dynamical arrested states through a relaxed condition. This allow us to estimate
a practical time in which a system transition towards a non-equilibrium state is expected to occur.
As a consequence, we are able to obtain the waiting-time dependent glass transition diagrams.

In particular, the described procedure applied to a Lennard-Jones like system allow us to follow
such characteristics along the frustrated spinodal decomposition predicted by the theory. The
resulting waiting-time dependent glass transition diagrams qualitatively agree with experimental
reports of different systems undergoing similar processes. It is then within our expectations, that
the methodology just described, to work similarly for systems with interactions more similar to
the experimental ones, as is the case of mixture and non-spherical interacting systems. Although
the theoretical extension to such kind of system is a reality[21, 64], they fall out of the scope of the
current work. Thus, they conform a promising perspective for the further development of these
time dependent diagrams.
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Chapter 6

NE-SCGLE description of density linear
deviations.

In this chapter, we discuss an extension of the NE-SCGLE theoretical framework which allows
for the description of the mean value evolution of the local density, n(r, t), after an instantaneous
isochoric quench in a fluid is considered. This quantity plays an important role in a system descrip-
tion as, in principle, it allow us to describe the morphological characteristics of a system. Such
characteristics are in fact relevant in non equilibrium processes such as the spinodal decomposi-
tion of metallic alloys and polymer systems [65]. In general, morphology analysis can be employed
to obtain physical insight, as well as to present a visual aid for a system structural description.
Hence, as in the previous chapters, here we exemplify the solutions for n(r, t) of a HSSW system
undergoing distinct instantaneous isochoric quench processes along the (φ, T ) parameters space.

This final chapter is organized in three sections. In the first of them, we discuss the theoretical
approximations involved in the derivation of an equation that describes the time evolution of the
mean local density fluctuations (we refer to Eq. (6.7) below). As shown in what follows, such
equation is obtained from considering the linear deviations of the mean local density, which is
described by the generalized Fick’s equation employed within the NE-SCGLE (i.e., Eq. (2.59)).
The resulting linearized equation, however, requires for an initial condition in addition to the
solution of the NE-SCGLE equations previously discussed. This initial condition is discussed in
the second section of the present chapter along with a method proposed to visualize the results.
Finally, in the third section some concrete theoretical predictions for the evolution of n(r, t) are
presented and discussed for a HSSW model. More specifically, the time-evolving morphology of
this system is studied for a collection of different isochoric quench processes and discussed in the
context of the waiting-time dependent non-equilibrium glass transition diagram and the dynamical
arrest transitions previously characterized.

6.1 Theoretical approximation.

Recalling the full non-equilibrium SCGLE theory in its most general version, summarized by Eqs.
(2.59) and (2.61), the central elements of the theory are the time evolution equations describing
the kinetics for t > 0 of the mean value n(r, t), and the covariance σ(r, r′; t) ≡ δn(r, t)δn(r′, t) of
the fluctuations δn(r, t) = n(r, t)− n(r, t), of the instantaneous local density n(r, t). The growth
and arrest of spatial heterogeneities, which are characteristic of the process of arrested spinodal
decomposition [27, 48] (i.e., quenching inside the spinodal) can be described from the solution of
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Eq. (2.59) for the mean local density. Such equation reads

∂n(r, t)

∂t
= D0∇ · b(r, t)n(r, t)∇βµ[r;n(t)], (6.1)

presented here again for clarity and practical convenience. In order to unveil the evolving mor-
phology of a quenched system, however, the previously assumed homogeneous-fluid approximation,
n(r, t) 6= cte, must be disregarded and replaced, instead, by a non-trivial solution for Eq. (6.1).

In general, such non-trivial solutions become remarkably difficult to be treated both math-
ematically and numerically. In the absence of external fields, however, a simple strategy that
provides a glimpse on the most general features of such solutions might be devised. This strat-
egy starts by writing n(r, t), b(r, t), and σ(k; r, t) as the sum of their homogeneous mean (or
bulk) values n, b(t), and σ(k; t), plus their deviations from homogeneity, ∆n(r, t) (≡ n(r, t)− n),
∆b(r, t) (≡ b(r, t)− b(t)), and ∆σ(k; r, t) (≡ σ(k; r, t)− σ(k; t)). It is at the zeroth order in these
deviations when the spatially-homogeneous version of the NE-SCGLE theory is recovered. Under
such condition, among other properties, the zeroth-order mobility function b(t) is recovered (see
Eq. (2.68)). Unfortunately, in this spatially-uniform version of the theory, the morphological
information embodied in n(r, t) is lost when neglecting ∆n(r, t).

In order to retain at least some of the morphological information, we might rewrite equation
(6.1) to include the deviations ∆n(r, t). Expanding Eq. (6.1) to linear order one gets

∂[n(t) + ∆n(r, t)]

∂t
= D0∇ · [b(t) + ∆b(r, t)][n(t) + ∆n(r, t)]∇[∫

δβµ[r;n(t)]

δn(r′, t)
∆n(r, t)dr +O∆n2(r, t)

]
,

which, by neglecting the mobility fluctuations ∆b(r, t) an considering only the linear terms of
n(r, t), we may write

∂∆n(r, t)

∂t
= D0b(t)n∇2

∫
dr′E(| r− r′ |)∆n(r′, t). (6.2)

This last equation can then be easily solved in Fourier space. Applying the FT to this last equation
follows

∂∆n(k, t)

∂t
= −k2D0b(t)nE(k;n, Tf )∆n(k, t), (6.3)

where E(k;n, T ) is the FT of the functional derivative E [| r − r′ |;n, T ] ≡ [δβµ[r;n, T ]/δn(r′)],
evaluated at the uniform density and temperature profiles n(r) = n and T (r) = Tf . Thus, the
solution of Eq. (6.3) reads

∆n(k, t) = w[k;u(t)]∆n(k, t = 0), (6.4)

where the transformation u(t) ≡
∫ t

0
b(t′)dt′ has been employed and where the function ∆n(k, t = 0)

is the FT of the initial condition ∆n(r, t = 0), and where the propagator w[k;u] is the solution of

∂w[k;u]

∂u
= −k2D0b(t)nE(k;n, Tf )w[k;u], (6.5)

i.e.,
w[k;u] ≡ exp[−k2D0nE(k;n, Tf )u]. (6.6)
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Hence, up to its linear order from deviations, the non-equilibrium evolution of the mean local
density, is given by

n(r, t) = n+
1

(2π)d

∫
dk e−ik·rw[k;u(t)]∆n(k, t = 0), (6.7)

which is the main result of this section. To use this expression, together with Eqs. (2.69) and
(6.6), we need an initial condition ∆n(k, t = 0), as well as to determine the function E(k;n, Tf )
being u(t) and b(t) self-contained within the NE-SCGLE theory. Thus, the NE-SCGLE formalism
provides a closed system of equations, whose solution provides the evolution of the mean local
number density. By imagining a virtually divided space, this result can be employed to solve for
n(ri, t) ≡ ni(t), the mean density value of a subspace centered at ri in a linear approximation.

Even though the physical meaning of the local density can be considered a well-known concept
(in essence, a function which describes the spatial distribution of particles), the expression just
derived actually describes its average. The average of this and all previously defined quantities
refers to an ensemble average, i. e., an average over all possible realizations, which is typically
defined in terms of the particles configurations of positions and momenta. In this regard, even if
an heterogeneous initial condition is given as a frozen configuration at t = 0, the current formalism
is unable to predict a particular trajectory that this configuration might follow. In contrast, the
evolution of the mean local density predicted by the theory, is but an average over all possible
trajectories that an initial density configuration might follow. Such initial configuration, as shall
be later discussed, can be as simple as the average number of particles contained in a virtually
divided space, for example the number of particles present in two halves of a container.

6.2 Initial state condition of a hard sphere system.

In chapter 3 a procedure for the determination of the thermodynamic function E(k;n, Tf ) for the
HSSW system was presented. With this in mind, all that is left to do is to obtain an initial condition
for the local density profile ∆n(r, t = 0). In equilibrium, the initial local density distribution of
a system is given by the inherent thermal fluctuations. For a fluid system, a density fluctuation
is given by the diffusion of the particles within their available space. For example, for a system
of N punctual non-interacting particles that are contained within a volume V , hence having a
bulk number density n ≡ N/V . In such system, the density fluctuations can only be noticed
by looking a frozen configuration of the system, thus observing the specific local position of the
system particles.

For this system, a given density fluctuation can be partitioned in order to be able to describe
the density in several regions of the volume. This is done by dividing the containment space and
looking into the resultant subspaces, i.e. when dividing the the total space in m subspaces, with
volume Vi ≡ V/m for the i-esim subspace. Such partition of the space allow us to measure the
number density ni(t) for the i-th subspace. In general, the measurement of any of the subspaces
can differ from the bulk density n at any particular time, as particles are free to enter and leave
each of the subspaces. This happens even though the average measurement is consistent with the
mean density, as random events take place.

In practice, such distributions can actually be obtained from experimental and simulation data.
On the other hand, theoretical approaches that directly describe the density fluctuations exist in
the form of thermodynamic fluctuations theory [66]. In this work, the initial density fluctuations
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are modeled after a purely repulsive hard sphere system in the simplest form possible, where only
two options are considered, having a particle in a given subspace or not.

Let us consider a system of N particles confined in a total volume given by a box of size
L. By following the same exercise previously described, let us now divide the containment in
sub-space boxes of size l = σ (with σ being the diameter of each particle). Given the size of
the sub-spaces boxes used, the proposal consist in the consideration that the density in each of
the sub-spaces is a result of a non-correlated binomial distribution, which only accounts for two
different events, a sub-space which can either fully contain a particle or that is totally empty.
With such simplification, the probability p1 of finding a particle in a sub-space is given by

p1 = n, (6.8)

with p0 = 1− n̄ being the probability of finding an empty subspace, and whose mean value is n.
Specifically, for all the results presented in what follows, we will consider L = 27σ.

In Fig. 6.1 a) the probability function is plotted for the HS initial condition φ = 0.10, with
φ ≡ nπσ3/6, while in Fig. 6.1 b) we show a slab of width ∆z = σ and area ∆x∆y = (100σ)2,
obtained for one realization. Such slab is, therefore, a cross section of the total system, contained
in a three dimensional box conformed by (L/l)3 = 221 smaller boxes. but a face of the total system,
which consists of a three dimensional arrange of (L/l)3 = 221 total density boxes. In addition,
Fig. 6.1 b) presents the density in a gray scale for the system volume fraction, centered around
its equilibrium value, with white reserved for the lowest value φ = 0, and black for φ > 2φ. In
the presented case, each of the sub-spaces can either have a volume fraction of φ = 0 (white) or
φ = π/6 (black). Although the adopted visual representation is limited to a binary color for the
current case, from now we will employ this convention as it will be relevant in what follows. In
addition, we will stick to slabs of the same size (104σ2) to discuss our results.
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Figure 6.1: a) Probability distrubution for the HS system at φ = 0.10 equilibrium state for boxes
of size l = σ. b) A slab of width σ of the pseudo Montecarlo realizations for a window of size
100σ. As explained in the text, the complete system is composed of 221 boxes of size σ
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6.3 Evolution of density fluctuations.

In this section, the results of solving Eq. (6.7) are shown for several quenching processes. Thus, the
format just described in the previous section allow us to distinguish fine details in the evolution of
the density fluctuations at different stages of each of the quench process considered. The predicted
evolution of the mean local density is shown along Figs. 6.2-6.8, which corresponds to a sequence
of snapshots of this quantity at waiting times t = 0, 10−1, 100, 101, 102, 103 and 104, respectively.
For reference, the snapshot for the visualization of ∆n(r, t) are displayed along these figures using
the (φ, T ) plane in the background, where the center of each snapshot corresponds to the state
point investigated. It is worth to mention that additional data treatment has been considered to
account for physical limits that are not explicitly contained in the above NE-SCGLE equations
(see Appendix B).

Fig. 6.2 in particular, considers the initial values of the density fluctuations along the previously
discussed non-equilibrium glass transition diagram (see Fig. 3.5) resulting non-equilibrium glass
transition diagram (see Fig. 3.5). Recall that this asymptotic diagram (t → ∞) emphasizes the
three main scenarios predicted by the NE-SCGLE for the relaxation of the HSSW after a quench,
corresponding to: Equilibration, for final states that lie in the fluid (region I); gelation, for the
final states enclosed by the gray and black thick solid lines in Figs. 3.5 and 6.2 (revion II); and
vitrification, for final states below the black solid line of the same figures (revion III). Thus, the
asymptotic (thick solid) lines shown in Fig. 6.2 serve the purpose of identifying the kind of process
expected for each of the quenches, whereas the snapshots in Figs. 6.3-6.8 describe the predicted
evolution of the morphology during all the processes considered. For reference, the mobility at
nearby states (i. e., states points in the vicinity of each snapshot) is displayed using the same
color format as in Fig. 5.2. This, for instance, emphasizes (in yellow color) the high diffusivity of
the constitutive particles in the initial states.

Let us now discuss each of the expected processes one by one starting with the equilibration
processes. From the asymptotic diagram in Fig. 6.2, we know that the equilibration of the HSSW
system is expected for quenches that consider a sufficiently large final temperature. These kind
of processes are represented along Figs. 6.2-6.8 by the three upper panels, corresponding to three
isochoric quenches (φ = 0.10,0.15,0.20) towards the final temperature Tf = 1.40. In general, one
expects that the mobility of the particles would not decrease significantly after the equilibration of
the system. Along Figs. 6.3-6.8, this is observed by noticing the evolution of the iso-mobility line
b = 10−1 (black lines with solid circles) which always lies below the equilibrium states described
in the upper panels. Thus, it is expected that, at t = 101, the particles should have diffused at
least a distance greater than that of their radius. Such description is captured by the theory in
terms of the relaxation of the density fluctuations towards the equilibrium density. One notices,
for instance, that any relevant change is predicted for the mean local density (with respect to
the initial configuration) for t ≤ 10−1. At waiting times t = 100, however, the beginning of a
homogenization process of the gray color is observed in the three equilibrium quenches. These
homogenization finally ceases at t ∼ 102, but with a different evolution and final equilibrium value
for each process, thus emphasizing the influence of each initial condition.

The equilibration processes of the mean local density, which starts from the heterogeneous
distribution represented by the black and white regions shown in Fig. 6.2, is rather intuitive and
can be, hence, easily understood. To this endeavor, let us mention that one possible interpretation
of n(r; t) is as a sort of probability distribution. Such idea results simply due to an expected
correlation between the particles’ distribution function and the density in each of the regions of
the space, even if the concrete relation remains unknown. Nevertheless, a naive model can be
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Figure 6.2: Initial local density distributions for multiple quenching process from the HS limit
(Ti =∞) at the isochores φ = 0.10, 0.15 and 0.20, for whose final temperatures are Tf = 0.60, 0.80,
1.00, 1.20 and 1.40. Each fluctuation is centered in its corresponding state, while the employed
grayscale for each isochore is at the bottom. The presented curves along the diagram correspond
to the curves of the non-equilibrium glass transition diagram presented in 3 (see Fig. 3.5). In
addition, the mobility of the states is presented in the same format and scale as in Fig. 5.2.



65

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0.05  0.1  0.15  0.2  0.25

φ

t=10
−1

T

φ

Figure 6.3: Evolution of the local density distribution for t = 10−1 for the same states as 6.2.
The time-dependent phase diagram for the same time is shown as a background with the same
notation as 5.2.
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Figure 6.4: Evolution of the local density distribution for t = 100 for the same states as 6.2. The
time-dependent phase diagram for the same time is shown as a background with the same notation
as 5.2.
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Figure 6.5: Evolution of the local density distribution for t = 101 for the same states as 6.2. The
time-dependent phase diagram for the same time is shown as a background with the same notation
as 5.2.
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Figure 6.6: Evolution of the local density distribution for t = 102 for the same states as 6.2. The
time-dependent phase diagram for the same time is shown as a background with the same notation
as 5.2.
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Figure 6.7: Evolution of the local density distribution for t = 103 for the same states as 6.2. The
time-dependent phase diagram for the same time is shown as a background with the same notation
as 5.2.
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Figure 6.8: Evolution of the local density distribution for t = 104 for the same states as 6.2. The
time-dependent phase diagram for the same time is shown as a background with the same notation
as 5.2.
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employed in order to translate the number density in terms of the volume fraction to a probability
of finding a particle in a given region.

Recall that, in the concrete example under consideration, the total volume is conformed by
cubes of size σ which, at most, can contain one particle inside. When a particle is fully contained,
it yields a volume fraction of φ = πσ3/6 for the respective cube. In terms of the aforementioned
occupation probability, this translates into a probability of 1 of finding a particle inside the region.
Thus, the simple linear approximation pi(t) = 6φi(t)/π for the i-th cube, can be proposed in order
to obtain the probability in terms of the predicted density. Hence, the evolution of the mean
density towards its equilibrium bulk value is described as an homogeneization process of such
(ocupancy) probability distribution over the whole space, explicitly represented by the uniform
gray scale obtained for n(r; t ≈ 102) in all the space. Thus, for t ≥ 102, the probability of finding a
particle in certain space region is the same and independent of the initial condition. In summary,
this interpretation allow us to think in the theoretical results simply as the spatial localization of
low and high probable density regions.

Let us now describe the features of the process of gelation in terms of the spatial resolution
provided by the fluctuations in the mean local density. According to Fig. 3.5 (or, equivalently, Fig.
6.2), these process are expected for quenches with final temperatures Tf = 1.2 and slightly below.
For these processes, essentially three distinct regimes are observed in the evolution of the mean
local density. These are a pseudo-equilibration regime, phase separation and aging. The pseudo-
equilibration regime is characterized by a transient overall homogenization (of a gray scale), which
occurs in the early stage of the gelation processes. For the isochores φ = 0.1 and φ = 0.15, this
occurs during a time scale of order t = 101, whilst for φ = 0.2 this time scale becomes one order of
magnitude larger. This is reminiscent of the proximity of each of the final states to the spindodal
line which, according to the discussion of chapter 4, increases the latency effects.

On the other hand, the pseudo-equilibration regime ends with the development of the phase
separation. This process takes place at some point near the end of the latency time. It is in this
regime when large heterogeneous structures are clearly formed, resembling those obtained through
spinodal decomposition processes. Nevertheless, those quick changes are found to practically stop
almost as soon as they started. This occurs as the heterogeneity appears to freeze in time, which
occurs once the inverse mobility increases as a power law, as discussed before in Sec 4.1 of chapter
4. Thus, when such apparent freeze in the mean density occurs, the system enters to the aging
regime. In this last aging regime, the the mobility gradually decreases as it enters to a never ending
relaxation towards ideal glass value b = 0. As this occurs in each of the dynamically arrested states,
the isomobility line b(a) = 105 (black solid line) evolves increasing the region of arrest, so the state
points considered lie below such line and satisfy the empirically defined condition for dynamic
arrest. Once this occurs, the heterogeneous density distribution are expected to become frozen.

The evolution of the morphology during vitrification is in stark contrast to the scenario observed
for equilibration and gelation. In general, for this process the evolution of the initial distribution
appears to be negligible, almost frozen since the beginning of the evolution. This is a consequence
of the remarkably faster decrease in the mobility (whose inverse follows a power law of waiting
time from the beginning). Thus, within the presented regime it would appear that the particles
are only able to diffuse through a small neighboring region. Allow us to remark that this occurs
for every fluctuation regardless of the neighbor mean density values as we have neglected possible
fluctuations in the mobility.

Within the theoretical model, the local mobility of each mean density heterogeneity is approx-
imated to be the same bulk mobility i. e., b(r, t) = b(t). As a consequence, the aging effects
are applied across the whole system irrespective of the evolution of the mean density in the sur-
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rounding sub-volumes. In general, such approximation is thought to be appropriate, at least, for
moderate densities, such as the ones presented in this work, where the interparticle distance could
be considered small in terms of the particle sizes, i.e. l < 2σ. For these cases, the predicted
asymptotic scenario reveals the final mean traveling distance of the particles to be roughly around
10% of the inter particle distance (see Fig. 3.6). Thus, the diffusion of the particles under the
entirety of the process could be estimated to be near the mean particle distance. In return, the
predicted morphology of the states undergoing a glass transition process could be understood
simply as a first neighbor diffusive process.

Although this might be the first time that a first principles theory is employed for the descrip-
tion of the time-evolving morphology of a liquid during the formation of non-equilibrium states,
the study of such evolution has been the subject of previous studies describing the morphology of
a liquid during the formation of non-equilibrium states [48, 67, 68]. In this regard, the work of
Testard et. al. [48] is of special interest to us due to the system similarities. In the referred work
the authors studied the morphology of a Lennard-Jones binary mixture system with molecular
dynamics for several quenches inside the spinodal region. The morphology description is then dis-
cussed in terms of a contracted description of the particle densities, which allows them to follow
an iso-surface of the density set at ρ̄ = 0.42. The followed surface is set empirically as it allows
them to distinguish between low and high density regions which they distinguish between gas and
liquid phases.

In Fig. 6.9 some of Testard’s general results[48] are presented across the system’s thermody-
namic phase space for the largest evolution time considered. The inset of the figure shows the
thermodynamic region of interest, in which the analysis is made, where the spinodal, binodal and
the glass transition lines are shown as a guide. In the main frame of this figure, the iso-surface of
ρ̄ = 0.42 is shown for several states with two differently colored regions, namely a yellow region,
which delimits the smaller density region, and a green region for the high density region. In these
states, aging glass-like features are reported to occur and the spinodal decomposition process is
predicted to be interrupted due to the change in the particles diffusive behavior. For such cases,
a bi-continous state dependent structure is found, where the dense-phase’s size grows at higher
temperatures and densities.

Similar to Testard’s surfaces, our theoretical predictions can also be presented in order to
distinguish a mean density cut. For example, by selecting a binary view on the color map density
for a given threshold value, the boundary between white and black would be the surface projection
within the observed slab. This procedure is done in Fig. 6.10, where the threshold value is set
at φc = 0.15 cut volume fraction, at a waiting time t = 104. From the theoretical predictions,
the role of the temperature and density can be very well discern. In general, quenching to larger
temperature and density values leads to the development of increasingly larger dense structures,
which agrees qualitatively with the physical scenario that emerges from the results of Testard
et. al., despite some quantitative differences, such as the region in the (φ, T ) where interrupted
spinodal decomposition phenomena is expected to occur. Such differences may be attributed to the
intrinsic differences of the two systems considered, having a slightly different interaction between
particles.

Even though the comparison is qualitative, these results surely add another underlying feature
of the arrested spinodal decomposition process that the NE-SCGLE theory is able to describe.
The visual nature of the system’s morphology allow us to complement the evolution of the other
resulting theoretical properties. Thus, the visualization of the density fluctuations could be em-
ployed as a base for the generation of a better physical insight of non-equilibrium processes. On
the other hand, it is precisely due to the generalities found within these processes across multiple
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systems, what has allowed to establish a connection between the NE-SCGLE theory predictions
of such simple theoretical model and more complex models, as well as with real life systems.

In the presented results, the practically defined arrest condition ba sets a time scale in which
aging behavior is expected to take place. In Figs. 6.2-6.8 these aging effects are manifested in
the interrupted evolution for the density fluctuations, arising from the increasingly smaller value
of b(t) as t increases. A way to quantify such changes can be easily devised by predicting the
asymptotic (waiting) time limit of the density fluctuations. Such fluctuations can actually be
obtained through the simple evaluation of the propagator w(u, k) at the material time ua (see Eq.
(6.7)). Such time corresponds to the asymptotic waiting time which has been employed to find
the non-equilibrium glass transition diagram in chapter 2. Thus, in Fig. 6.11, these asymptotic
solutions are presented within the non-equilibrium glass transition diagram.

Figure 6.11 assures that the density fluctuations subjected at the practical arrest condition
b(t) < ba = 10−5, remains almost constant along the whole process. In addition, the asymptotic
solutions can be employed to analyze the general characteristics and trends of the morphology along
the system’s thermodynamic parameters. This procedure allow us to momentarily forget about
the time description, which would otherwise increase the amount of variables to take into account.
For example, for states inside region II, as the final state of a quench approaches the spinodal
line, the resulting arrested state appears more homogeneous, while the characteristic length of the
local density heterogeneities increases. Thus, an statistical analysis of the mean density evolution
of these asymptotic states could provide a quantifiable measurement of the observed morphology
across the non-equilibrium states.
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Figure 6.9: Number density iso-surface at the threshold value ρ̄ = 0.42 of a Lennard-Jones 80 :
20 (large and small species respectively) binary mixture. The iso-surfaces were obtained from
molecular dynamics simulations undergoing quenches at different final states for t∗ = 104 in units√
mσ2/ε where σ refers to the large particles diameter, ε to the large particles energy scale and

m to the large particles mass. The phase diagram of the system is shown as an inset, where the
localization of the final thermodynamic states are localized within the green region. The surfaces
and the phase diagram data were obtained from ref. [48].



75

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0.05  0.1  0.15  0.2  0.25

φ

t=10
4

T

φ

Figure 6.10: Evolution of the local density distribution for t = 104, equivalent to Fig. 6.8. For this
case, the density color map has been selected to be in a binary state with densities either lower
than the threshold φ = 0.15 (white regions) or higher (black regions).
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Figure 6.11: Asymptotic local density distributions for multiple quenching process from the HS
limit (Ti =∞) at the isochores φ = 0.10, 0.15 and 0.20 to the final temperature Tf = 0.60, 0.80,
1.00, 1.20 and 1.40 for the isochores φ = 0.10, 0.15 and 0.20. Each fluctuation is centered in
its corresponding state within the asymptotic non-equilibrium glass transition diagram and each
isochore has its own color scale at the bottom.

In particular, we are interested in providing an statistical analysis capable of describing the



77

magnitude and spatial distribution of the local mean densities. For these purposes, the covariance
of the local mean density can be employed. In particular, for the coarse-grained description, this
quantity is defined as

σnn′(r, r
′, t, t′) ≡< ∆n(r, t)∆n(r′, t′) >, (6.9)

in which ∆n(r, t) indicates the density fluctuation of a subspace spatially located at r at the wait-
ing time t. Additionally, under the assumption of spatial homogeneity and isotropy, σnn′(r, r

′, t, t′) ≡
σnn′(|r − r′|, t, t′), the definition allow us to compute an average in the covariance for different
distances. The covariance just defined, in the limit r = 0 and t = t′, results in the square of
the standard deviation of the densities distribution σ0(t), allowing us to statistically quantify the
states distributions.

On the other hand, the density covariance, in its current form, is a rarely used property to
describe the structure of a fluid. For this reason, we define a coarse-grained two time-dependent
radial distribution function as

gnn′(r, t, t
′) =

σnn′(r, t, t
′) + n̄2

n̄2
for r > l, (6.10)

whose significance is similar to that of the radial distribution function when considering t = t′.
The main difference to the common interpretation of a liquid radial distribution function, is that
it now refers to the probability of having a fluctuation at a distance r given that there exist an
initial fluctuation at r = 0, in contrast with the typical definition involving a particle located at
a distance r from a reference particle.

In figure 6.12, the results for these statistical properties and the propagator are shown. In this
statistical analysis, the propagator (see Eq. (6.6)) is computed in order to provide an insight of
how does the theory impact these quantities. In Fig. 6.12 a), we show the normalized standard
deviation σ0(t =∞;Tf )/σ0(t = 0;Ti) for each of the three isochores across different final quenching
temperatures. Full symbols are employed for the glass-like arrested states, while empty symbols
are are used to represent states inside the gel-like arrest region.

The standard deviation is a statistical parameter that allow us to quantify the dispersion of
data. For the mean density displayed in Fig. 6.11 such dispersion can be directly correlated
with the distribution contrast, where high and low density regions leads to a high contrast image,
and an homogeneous systems to a low contrast image. Thus, the homogenization tendency as
the final temperature of a quench increases is corroborated by this property. In particular, for
every asymptotic equilibrium state a zero standard deviation is expected. As for the dynamical
arrested states, with the exception of the near gel-glass transition states, the general trend for the
standard deviation is to decay as the final temperature becomes larger. Such tendency is found
for the whole gel region, where the standard deviation reaches the zero equilibrium value as the
final state becomes closer to the spinodal, as well as for most of the glass transition states. On
the other hand, at the gel-glass transition, the standard deviation is predicted to have a sudden
change in its behavior, reminiscent of the γ discontinuity which occurs upon such transition.

In Fig. 6.12 b) the same time correlation function g(r, t = t′ = ∞) is shown for selected
quenches. Particularly, in order to follow the temperature behavior, the quenches at φ = 0.10 for
Tf = 0.60 (purple solid line), 0.80 (blue solid line), 1.00 (green solid line) and 1.20 (yellow solid
line) where selected. Similarly to follow the density behavior, the quenches at φ = 0.15 (blue
dashed line) and 0.20 (purple dashed line) for Tf = 1.00 where chosen. In these plots, correlations
above 1 indicate a positive correlation, where the surrounding densities are expected to be similar,
or at least to have the same sign. Conversely, correlations below 1 indicate negative correlations.
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Then, in terms of g(r, t = t′ =∞), the heterogeneities sizes are directly correlated to the distance
of this property first minimum, as it indicates the most probable distance to find a negatively
correlated density.

Hence, Fig. 6.12 b), allow us to follow the long-distance correlation of the gel-like states (non-
purple color lines) as well as the short-distance correlations formed by the glass-like states (purple
color lines). Within these results, the correlation function captures a systematic increase in the
first minimum distance as the temperature becomes larger and the density decreases. Although
the density behavior might appear counter intuitive at first glance due to the previous analysis,
let us remind that the heterogeneity sizes captured by this property are fixed, and relative to
the mean bulk density of the system, which is in contrast to the threshold set in the previous
discussion. Additionally, for the selected final temperature, the increase in the density results in
a state closer to the glass transition line. Thus, the heterogeneity sizes are found to be dependent
on the proximity of each state to the spinodal and glass transition lines. In particular, for near to
spinodal states bigger heterogeneity sizes are found.

These theoretical predictions derive from the propagator influence over the initial distribution.
As a matter of fact, the simple analysis of the propagator Eq. 6.6 reveals that for any finite u
time, the mean of the density distribution must remain constant due to the limit limk→0w(k, u) =
1. Hence, a way to understand the nature of these predictions is to follow the behavior of the
propagator, which it is done in Fig. 6.12 c) for the same states of Fig. 6.12 b). From the
propagator expression, under equilibrium normal circumstances, an exponential decay is expected.
Such behavior is the result of having a negative defined exponent, as 1/nε and the mobility b are
positive (non-zero) defined for equilibrium states. On the other hand, for states inside the spinodal
region, an expected divergence in 1/nε occurs, which leads to the exponential to become positive
for large wave lengths [25]. It is precisely due to the appearance of such growth at large wave
lengths the reason behind a much richer morphology.

Figure 6.12 serves the purpose of establishing patterns across the thermodynamic phase space
for the predicted asymptotic states. From this figure, a clear difference can be observed from gel
and glass states. For gel states, a large wave length peak in w[k, ua] is formed, while having a
quick decay at smaller wave lengths. In comparison, for glass states, the large wave vector growth
in w[k, ua] is found to be rather insignificant and a much more slow decay for smaller wave lengths
is predicted. In this property, it is its decay towards zero what yields to the homogenization in
an equilibrium state. In return, it is the interplay between the relaxation and growth of different
wave lengths what causes the morphology of gel states, where a clear tendency towards larger
wave lengths and a smaller peak width is observed for states closer to the spinodal. In this regard,
the growth of the heterogeneity sizes can be explained as the peak as the shift of the main peak
towards larger k values, while the overall behavior of the standard deviation is a result of the peak
width becoming smaller, thus allowing more wave lengths to relax. On the other hand, for glassy
states, the slow decay of most wavelengths, even as small as the particle size for states deeper
within the transition, produces the small observed variations from that of the initial state.

The theory propagator reveals that the morphology of the asymptotic states is given by the
relevant arrested wave-length modes in the processes. For gel-like states, these wave-length modes
are large, located near the maximum of the propagator, and leads to an increase in the magnitude
of the associated local densities. For the glass transition, the relevant wave-length modes also
include the comparables to inter-particles distances. On the other hand, and in stark contrast to
the arrested states, for equilibrium states the propagator is expected to relax to zero for any finite
wave-length.
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Figure 6.12: Density distribution properties for the asymptotic evolution at different final tem-
peratures. a) Asymptotic standard deviation σn vs final quenching temperature for the isochores
φ = 0.10, 0.15 and 0.20. b) Same time correlation g(r, t = t′) vs distance for several final states.
c) Asymptotic propagator for several final states.

6.4 Summary

In this chapter we have extended the NE-SCGLE theory in order to describe the evolution of
the mean local density. This was done through a linear approximation in the generalized Fick’s
law. Additionally, and in order to apply the NE-SCGLE evolution description, we have devised
a simple proposal for the determination of the initial mean density fluctuation. The predicted
results were analyzed and dicussed in the context of the waiting-time dependent non-equilibrium
phase diagrams, where different morphologies are predicted depending on the specific features of
the quench process. In particular, large heterogeneous structures are expected for states inside
the gel-like region. For such states, the size of the heterogeneities is found to increase the closer
the final state is to the spinodal, while the magnitude of their fluctuations is expected to decrease
(involving more homogenous structures). For states inside the glass region, the slow dynamics lead
to an apparent lack of evolution of the property, hence, morphologies similar to the initial ones
are found. The just described tendencies of both gel- and glass-like arrested states, qualitatively
agrees with simulation data[48].

Additionally, we have analyzed the asymptotic solutions of the theory, obtained in the limit
t→∞. This allowed us to corroborate the near end state predictions done along the evolution of
the mean density. On the other hand, such asymptotic limit allow us to establish overall behaviors
in terms of the thermodynamic variables of the system. Such behaviors are then quantified through
an statistical analysis which corroborates the previous simple observations. Specifically, this is
done through the standard deviation and g(r, t, t′) correlation function. Finally, the theoretical
results provided by this analysis are explained in terms of the propagator, allowing us to obtain a
better physical insight of our theoretical model.
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Chapter 7

Conclusions

In this work we have achieved each and every of the previously set objectives stated in the introduc-
tion. In this regard, the NE-SCGLE theoretical framework has proven to be a sound theoretical
approach capable of describing several nuances of the dynamic and structural behaviors of the
arrested spinodal decomposition processes. Allow us now to conclude with this chapter by simply
stating the most relevant results, and highlight the most relevant contributions.

In this sense, we shall only mention briefly the first three chapters, as they summarize the
state of the art previous to the current original contributions. Particularly, chapter one served to
state the general context of this work, while chapter two reviews the NE-SCGLE theoretical frame-
work. In chapter three, the concepts of thermodynamic equilibrium phase diagram, glass transition
diagram and non-equilibrium glass transition diagram where introduced and exemplified for the
HSSW fluid. In these diagrams, the phase of a material is stated in terms of its thermodynamic
state, where gel-like and glass-like arrested states are found inside the thermodynamical instability
region, enclosed by the spinodal line.

From chapter four onward, orginal contributions are discussed. Particularly, within the fourth
chapter, the dynamics evolution across the arrested phases in the non-equilibrium glass transition
diagram is discussed. In such evolution, latency effects were observed in the evolution of the mobil-
ity for gel-like arrested states. These effects were found to increase as the states were closer to the
spinodal line and disappeared for glass-like arrested states. In addition, a double-step relaxation
was found for inside gel region states when approaching the glass transition. These theoretical pre-
dictions were found to agree with experimental observation of same or similar quantities. Hence,
in this chapter the second aim of the present work is accomplished.

In chapter five, we accomplished the main aim of the present dissertation through the devel-
opment of a waiting-time dependent non-equilibrium glass transition diagram. In stark contrast
to the discussed diagrams of chapter three, this diagram introduces the waiting time t as a vari-
able in the description of the phase transformation. This is done by the proposal of the practical
mobility threshold b(a) = 10−5, which is followed along time for several quenching processes. The
variable dependence of the process makes for a richer phase space, being some planes being com-
monly represented for certain applications. In addition, the theoretical predictions, are found to
have qualitative similarities to diagrams obtained by experiments for systems exhibiting similar
phenomena.

The similarities found across such different systems serve as a cornerstone to explore and study
systems with more complex interactions. Although not as developed as for the current mono
component repulsive plus attractive spherical interacting system, extensions to the NE-SCGLE
formalism in order to describe mixtures, non-spherical interactions as well as atomic systems.
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Hence, such advances allows for the theory development towards more real gel and glass forming
systems to be a nearby possibility.

Lastly, in chapter six we provided a theoretical description for the morphology evolution, thus
attending the last aim set at the introduction. Such description is based on a linear approximation
to the general Fick’s law contained within the NE-SCGLE framework, whose major result is
summarized by the evolution equation for mean density n(r, t) (see Eq. (6.7)). From this quantity
we were able to describe both, equilibration and dynamical arrested processes morphology. In
these last processes, stark differences are found depending on the expected final state. For states
inside the gel-like arrested region, large density heterogeneities are found, with sizes increasing
when approaching the spinodal line. On the other hand, for states inside the glass-like arrested
region, the evolution of the density is predicted to be frozen at very early stage of the process.
In return, this leads to a very similar morphology to that of the initial state. These theoretical
predictions are then compared with simulation data, for which a qualitative agreement is met.
In addition, an statistically analysis over the mean density corroborated the otherwise simple
observations, and allowed us to quantify the predicted morphology tendencies. In this regard, the
visual representation of the evolution towards dynamical arrested states proved to be a valuable
and powerful tool for the description and physical interpretation of the phenomenology.

As a conclusion, the NE-SCGLE theory has proven to be a formalism capable of describing the
evolution of non-equilibrium states such as gel and glasses. The analysis and interpretation of such
description has allowed us to propose ways to tackle real life issues, be it through the waiting-time
dependent non-equilibrium diagrams proposal or the prediction of morphology changes of non-
equilibrium processes. Thus, the development and application of the NE-SCGLE formalism can
be said to be a fruitful endeavor for the understanding of non-equilibrium phenomena, and this
work is but a step in the long road ahead to reach Anderson’s goal.
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Appendix A

Solution algorithm for the SCGLE
equations

In general, the solution of the SCGLE coupled set of equations (Eqs. (2.32)-(2.37)) is a highly
involving mathematical problem. In this sense, a numerical algorithm that allow us to solve for
a similar set of equations have been previously proposed within the framework of MCT theory
[69, 70]. The concrete task of such numerical algorithm is to find a solution for the dynamical
properties at new correlation times by the discretization of the coupled equations where previous
values of these quantities are taken into account. Thus, in this appendix, we shall now discuss
such algorithm in the framework of the SCGLE coupled equations, which can be broken down into
three major approximations for distinct τ ∗ ≡ τσ2/D0 correlation time regimes: a short, medium
and large time regimes.

Allow us to recall the SCGLE theory set of coupled equations for homogeneous isotropic and
monocomponent systems, which we rewrite in this appendix for convenience reading

∆ζ∗(τ) =
D0

24π3n̄

∫
V

k2

[
S(k)− 1

S(k)

]2

F (k, τ)Fs(k, τ)dk, (A.1)

F̂ (k, z) =
S(k)

z + k2D0S−1(k)

1+λ(k)∆̂ζ
∗
(z)

, (A.2)

F̂s(k, z) =
1

z + k2D0

1+λ(k)∆̂ζ
∗
(z)

, (A.3)

where the hat symbol in F̂ , F̂s and ∆̂ζ
∗

indicates the Laplace transform in the time correlation vari-
able. In these equations, the task ahead requires for the set of properties {∆ζ∗(τ);F (k, τ);Fs(k, τ)}
to be a solution for any given τ . Thus, let us first rewrite Eqs. A.2 and A.3 in order to easily
recognize the inverse Laplace transform (ILT) of these equations by multiplying each of these for
their respective right side common denominator, hence leading to{

z
[
1 + λ(k)∆̂ζ

∗
(z)
]

+ k2D0S
−1(k)

}
F̂ (k, z) = S(k)

[
1 + λ(k)∆̂ζ

∗
(z)
]
, (A.4){

z
[
1 + λ(k)∆̂ζ

∗
(z)
]

+ k2D0

}
F̂s(k, z) = 1 + λ(k)∆̂ζ

∗
(z). (A.5)

These last two expressions allow us to directly employ the derative relation and convolution the-
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orem for the ILT of a function F (τ) = L−1{F̂ (z)}, which respectively read as

L
{
dF (τ)

dτ

}
= zF̂ (z)− F (0), (A.6)

L
{∫ τ

0

F (τ ′)G(τ − τ ′)dτ ′
}

= F̂ (z)Ĝ(z), (A.7)

and where the former one for the case of a convolution can be employed by taking into account
Leibniz integral rule

d

dτ

∫ b(τ)

a(τ)

f(τ, τ ′)dτ ′ = f(τ, b(τ))
db(τ)

dτ
− f(τ, a(τ))

da(τ)

dτ
+

∫ b(τ)

a(τ)

f(τ, τ ′)

dτ
dτ ′ (A.8)

which leads to

L
{
d

dτ

∫ τ

0

F (τ ′)G(τ − τ ′)dτ ′
}

= zF̂ (z)Ĝ(z). (A.9)

Hence, using above results in the ILT of Eqs. (A.4) and (A.5) we may write

dF (τ)

dτ
= λ∆ζ∗(τ)S − k2D0S

−1F (τ)− λ d
dτ

∫ τ

0

∆ζ∗(τ − τ ′)F (τ ′)dτ ′, (A.10)

dFs(τ)

dτ
= λ∆ζ∗(τ)− k2D0Fs(τ)− λ d

dτ

∫ τ

0

∆ζ∗(τ − τ ′)Fs(τ ′)dτ ′, (A.11)

where we have omitted the wave-vector dependence of F (k, τ), Fs(k, τ), λ(k) and S(k) for clarity
reasons, and where we have employed the fact that F (τ = 0) = S and Fs(τ = 0) = 1. In these
last two expressions, Leibniz integral rule can be applied in order to obtain

dF (τ)

dτ
= λ [∆ζ∗(τ)S −∆ζ∗(0)F (τ)]− k2D0S

−1F (τ)− λ
∫ τ

0

d∆ζ∗(τ − τ ′)
dτ

F (τ ′)dτ ′, (A.12)

dFs(τ)

dτ
= λ [∆ζ∗(τ)−∆ζ∗(0)Fs(τ)]− k2D0Fs(τ)− λ

∫ τ

0

d∆ζ∗(τ − τ ′)
dτ

Fs(τ
′)dτ ′, (A.13)

which allow us to easily consider the short time limit of both equations, in which the convolutions
and the difference in the square braces can be neglected, i.e., ∆ζ∗(τ) ≈ cte. and ∆ζ∗(τ)S ≈
∆ζ∗(0)F (τ), leading to

dF (τ)

dτ
≈ −k2D0S

−1F (τ), (A.14)

dFs(τ)

dτ
≈ −k2D0Fs(τ), . (A.15)

These last two expressions have analytical solutions, namely

F (k, τ) = S(k) exp
[
−k2D0τS

−1(k)
]
, (A.16)

Fs(k, τ) = exp
[
−k2D0τ

]
, (A.17)

that can be straightforwardly computed for any S(k) proposal, which in return enables the com-
putation of ∆ζ∗(τ) with Eq. (A.1). Hence, expressions (A.16) and (A.17) conforms the solution
employed in the short time regime of the numerical computation, for which the only constrain is
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for k2D0τ � 1. In this sense, although there is not any real upper limit, for the current work we
employ the short time approximation for correlation times τ ∗ ≤ 10−6, which allows for a significant
wave-vector domain.

In what follows, we shall devise a numerical approximation that allow us to compute the full
solution the coupled set of equations for any given correlation time, namely Eqs. (A.1), (A.12)
and (A.13). This is done through the implementation of local approximations to the functions in
order to be able to compute the differential and integral operators. In particular, we will consider
a grid of the independent variables k and τ for the functions to solve.

For the wave-vector grid we consider the domain k/σ ∈ [0 : 40.96]. In such domain, we
approximate the functions integrals with two Clenshaw-Curtis quadrature[71], one for the sub-
domain k/σ ∈ [0 : 4.096], and another for k/σ ∈ [4.096 : 40.96], in which N = 512 nodes
(points) are considered. For the correlation time grid, we start by considering the domain
τD0/σ

2 ∈ [1E − 7 : 5.12E − 5] with N = 512 points evenly spaced by h = 1E − 7 time dif-
ference. These correlation time grid characteristics are just for the first iteration of the whole
algorithm, where the short time regimes are employed for the first 11 points, prior to the medium
time approximation takes place, while for the large time regimes, the considered domain and time
difference shall change accordingly through what is known as a decimation algorithm [69]. In par-
ticular, for the correlation time variable, we shall consider Newton-Cotes quadratures for integrals
[71], while for the differentiation we simply abide to approximate its definition.

For context, a quadrature is simply the approximation of an integral
∫
f(x)dx ≈

∑N
i f(xi)wi

through a finite sum of the function evaluated in the nodes xi multiplied by the weights i. In par-
ticular, for the Clenshaw-Curtis quadrature, the main idea consists in approximating the function
through a finite cosine series, for which the employed nodes corresponds to evenly spaced values
of the angle variable of the cosine transformation. On the other hand, Newton-Cotes quadratures
consist in a polynomial approximation of the function for evenly spaced values of the independent
variable, i.e., the simplest zero order approximation yields

∫ τN
τ0

f(τ)dτ ≈
∑N

i=1 f(τi)h.
In what follows, we consider these approximations in order to obtain coupled recursive expres-

sions for F (τ), Fs(τ) and ∆ζ∗(τ). We exemplify such procedure for Eq. (A.12), as similar steps
can be taken for Eq. (A.13), while the implementation of Eq. (A.1) is straightforward. Thus,
the objective of this procedure is to be able to represent the evaluation of the function F at a
correlation time τ in terms of prior known and same time values of F and ∆ζ∗ through a non-linear
relationship. Thus, the next steps are centered around establishing such relationship in terms.

Let us start by considering the differentiation for F in the right side of Eq. (A.12) as

dF (τ)

dτ
≈ F (τ)− F (τ − h)

h
, (A.18)

the differentiation for ∆ζ∗(τ) for the convolution of the same equation as

d∆ζ∗(τ)

dτ
≈ d∆ζ∗(τ + h)− d∆ζ∗(τ)

h
, (A.19)

and a right side rectangle approximation for the convolution integral for the first and last interval
of the correlation time τi ≡ ih, reading as∫ h

0

f(τ ′)dτ ′ ≈ f(h)h, (A.20)

and ∫ ih

(i−1)h

f(τ ′)dτ ′ ≈ f(ih)h, (A.21)
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respectively. These approximations allow us to write eq. (A.12) as

Fi − Fi−1

h
=λ [∆ζ∗i S −∆ζ∗0Fi]− k2D0S

−1Fi − λ
(
∆ζ∗i −∆ζ∗i−1

)
F1

− λ (∆ζ∗1 −∆ζ∗0 )Fi − λ
∫ (i−1)h

h

∆ζ∗(ih+ h− τ ′)−∆ζ∗(ih− τ ′)
h

F (τ ′)dτ ′,

where the notation fi = f(τi) is being employed. Thus, regrouping yields

αFi =Fi−1 + hλ∆ζ∗i−1F1 − λ
∫ (i−1)h

h

[∆ζ∗(ih+ h− τ ′)−∆ζ∗(ih− τ ′)]F (τ ′)dτ ′

+hλ∆ζ∗i (S − F1), (A.22)

where we have highlighted in red the terms at τi, and where

α = 1 + hk2D0S
−1 + hλ∆ζ∗1 . (A.23)

The exact same procedure then can be followed for F (s) ≡ Fs (which we now denote and differen-
tiate with the super index for clarity purposes), leading to

α(s)F
(s)
i =F

(s)
i−1 + hλ∆ζ∗i−1F

(s)
1 − λ

∫ (i−1)h

h

[∆ζ∗(ih+ h− τ ′)−∆ζ∗(ih− τ ′)]F (s)(τ ′)dτ ′

+ hλ∆ζ∗i (1− F (s)
1 ), (A.24)

where the same highlight has been made and with

α(s) = 1 + hk2D0 + hλ∆ζ∗1 . (A.25)

The procedure up to this point, allow us to consider Newton-Cotes quadratures for the convolution
interval τ ∈ [h : (i− 1)h] of order as high as i− 2, which could help for better evaluations of the
integral. Nevertheless, in what follows we consider the simple right side rectangles approximation,
leading to

αFi =Fi−1 + hλ∆ζ∗i−1F1 − hλ
i−1∑
j=2

[
∆ζ∗i+1−j −∆ζ∗i−j

]
Fj + hλ∆ζ∗i (S − F1), (A.26)

α(s)F
(s)
i =F

(s)
i−1 + hλ∆ζ∗i−1F

(s)
1 − hλ

i−1∑
j=2

[
∆ζ∗i+1−j −∆ζ∗i−j

]
F

(s)
j + hλ∆ζ∗i (1− F (s)

1 ), (A.27)

which together with Eq. (A.1) allows us to establish a relatively simple system of equations.
In principle, all that is left to do is to solve the system of equations. This may be achieved

through a solution proposal, i.e., a test value for the memory function, namely ∆ζ∗i = ∆ζ∗test, as

it allow us to compute Fi and F
(s)
i with Eqs. (A.26) and (A.27) respectively, and in return can be

employed in Eq. (A.1) to assure the validity or quantify an error of the proposal. A simple, yet
instructional path to find the solutions might be devised by simply exploring the space of solutions
given by the proposals, i.e., proposing a grid of test values, where solutions exists as long as zeros
for ∆ζ∗test −∆ζ∗i can be found, in which ∆ζ∗i is the result of the aforementioned procedure.

Nevertheless, such path to the solution is impractical, whereas an algorithm which can be
automated is desirable. For such reason, a Picard iteration method is employed instead. For such
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method, we start by approximating the test value for the memory function by its immediately
previous value, namely ∆ζ∗test = ∆ζ∗i−1. This is due to an expected smoothness in the functions, yet
one can propose different starting points. Then, we proceed to obtain ∆ζ∗i as previously described.
After that, the relative error

ε =

∣∣∣∣∆ζ∗i −∆ζ∗test
∆ζ∗test

∣∣∣∣ , (A.28)

is computed and compared with an acceptance tolerance tol, which for the current work is set at
tol = 10−7. Next, if ε > tol, the new value is proposed as the new test value, ∆ζ∗test = ∆ζ∗i , which
in return, initiates another iteration of the procedure. This is done until an error value lower than
the set tolerance is found, and extended to the whole correlation time grid.

Thus, the above described procedure allow us, in principle, to solve for F , Fs and ∆ζ∗ for
any time, given that we know at least some prior values of the functions. On the other hand, as
one may notice from the convolution sums of Eqs. (A.26) and (A.27), this procedure becomes
computationally costly very fast as new correlation times are considered, where a new convolution
involving the previous plus the new terms needs to be done. In addition, we are interested to
solve these expressions in a logarithmic scale, as the description of arrest or near-arrest dyanmics
requires the description of longer and longer times. Thus, in practice, this procedure is only
employed for a finite not-so big grid of correlation times, which is what we refer to as medium
times.

In this regard, as has been previously stated, the decimation algorithm takes place for larger
times. The decimation algorithm consist in the storage of half of the points considered in the cor-
relation time grid once the full N points in time have been computed. This is done by considering
a two times greater time step, thus overwriting the properties as

F2i → Fi,

F
(s)
2i → F

(s)
i ,

∆ζ∗2i → ∆ζ∗i ,

h→ 2h.

This procedure essentially allow us to continue applying the medium times procedure, but starting
at the middle times of the grid and now considering the double of the previous maximum correlation
time. In the current work, this procedure is done until a convergence is found for the dynamic
properties, for which we particularly make use of b, computed from Eq. (2.48) once ∆ζ∗. Such
convergence is established in a similar fashion as it has been done for ∆ζ∗, thus defining a relative
error for the mobility

εb =

∣∣∣∣bp − bbp

∣∣∣∣ , (A.29)

where bp is the computed mobility prior to applying the current decimation, and where b is the
computed mobility after the decimation. In order to accept convergence, a tolerance tol = 10−7

is employed. In addition, the condition b ≤ 10−7 is employed to stop the decimation, as it would
imply a practically arrested state.

This thorough review upon the numerical algorithm to solve for the SCGLE coupled set of
equations resulted in an efficient algorithm implementation. The implementation is available
to the public within the repository https://github.com/LANIMFE/HS_HSSW_quench_NESCGLE,
where one can contact the author for further details.

https://github.com/LANIMFE/HS_HSSW_quench_NESCGLE
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Appendix B

Additional data treatment for the
density fluctuations

This appendix main concern is the preservation of physical boundaries when solving the NE-
SCGLE theory equations for the description of mean local density time dependence of isochoric
instantaneous quenches, discussed in chapter 6. Specifically, the evolution of the mean local density
is modeled after Eq. (6.3), where its evolution explicitly depends upon the propagator Eq. (6.6).
In this regard, one should expect for the evolution of n(r, t) to respect simple physical boundaries,
such as mass conservation, restricted to positive values, and the denied possibility of overly high
values of hard core systems (due to volume exclusion). Nevertheless, such considerations are not
strictly taken into account within the proposed equations and solutions. Thus, at extreme cases,
such as when a spinodal decomposition process occurs, some of these physical restrictions might
be violated.

Thus, let us first consider the physical information that can be acquired from the aforemen-
tioned equations, or more specifically, from their solutions for the mean local density(6.7) and the
propagator (Eq. (6.6)) propagator solution , which we rewrite for clarity purposes, respectively
reading

n(r, t) = n+
1

(2π)d

∫
dk e−ik·rw[k;u(t)]∆n(k, t = 0), (B.1)

w[k;u] ≡ exp[−k2D0nE(k;n, Tf )u]. (B.2)

In these equations, a relevant limit is obtained at k → 0, where infinitely large distance are
considered. In such limit, w[k;u] is expected to be 1, for whatever value of u, including the
u(t = 0) = 0 value, which allow us to to consider that at such wave-vector, the quantity n(k→ 0, t)
remains constant. This basically implies the conservation of the mean value n at any given time,
as the initial value of the fluctuations correlations for the wavelength 1/k → ∞ are expected to
be totally uncorrelated, thus the net sum over all fluctuations at such wavelength is expected to
be zero.

Nevertheless, the fluctuations evolution is actually governed by the propagator, which as dis-
cussed in the main text, can increase the magnitude of certain fluctuations for inside spinodal
states. Thus, the issue arise when such growth goes beyond the physical limits, being that there
is not an explicit consideration for them. Specifically, there is the possibility for the i-mean local
density value φ(i) ≡ φ(r = ri, t) (referred to the i position) to have a value φ(i) < 0 or φ(i) > φRCP ,
with φRCP being the random close package of the system (φRCP ≈ 0.64 for HS systems). Hence,
an additional data treatment is proposed in order to take into account for such limits.
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Allow us now to explain a simple procedure which is capable of constraining the physical limits.
Let us consider a system divided in N sub-spaces, described by the evolution of the mean local
density φ(i), with i = 1, 2, 3, ..., N , and where the mean bulk value φ can be approximated as
φ ≈

∑
i = 1Nφ(i)/N . The first step in the data treatment protocol is to distinguish if any non-

physical value for each of the φ(i) exist, so we can further proceed. Once it has been stablished
that such non-physical values are present, the next step is to establish which of the physical limits
presents a bigger issue. This can be estimated in terms of the mean bulk value φ, by simply asking
which boundary is closest to, i.e., if φ < φRCP/2 then negative values are more prominent to be
an issue.

Once the closest physical limit is considered, we then proceed to change the non-physical values
that violate said limit to the physical threshold, i.e., if φ < φRCP/2, then all φ(i) ≤ 0 are set to
0. This procedure does in fact modify the mean value of the distributions, which as previously
stated, was the only thing that we could have assured to be constant, hence, we now need to
fix this problem to at least recover the mean of the densities distributions. Therefore, in order
to maintain the mean value, we make a linear modification to each fluctuation along the less
problematic domain, which for the stated example is every φ(i) > φ. Such linear modification is
the simple multiplication of each local densities by a positive constant A, where A must satisfy
that A

∑
∆φ

(+)
i +

∑
∆φ

(−)
i = 0, where ∆φ(+) = φ+

i − φ̄ is a positive fluctuation (φ+
i ≥ φ̄), and

where ∆φ(−) = φ−i − φ̄ is a negative one (φ−i < φ̄).
The previous proposal does have the disadvantage of modifying the variance of the mean local

densities affected distributions, nevertheless assures for them to at least to respect the physical
boundaries and their mean value. Thus, this procedure is implemented in the results of chapter 6
when needed, which is only for certain states in region II of the non-equilibrium glass transition
diagram of the considered HSSW system.
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Chávez-Páez, and M. Medina-Noyola, “Dynamic arrest within the self-consistent generalized
langevin equation of colloid dynamics,” Phys. Rev. E, vol. 76, no. 4, p. 041504, 2007.
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Ángel, and M. Medina-Noyola, “Crossover from equilibration to aging: Nonequilibrium theory
versus simulations,” Phys. Rev. E, vol. 96, no. 2, p. 022608, 2017.

[23] E. Cortés-Morales, L. F. Elizondo-Aguilera, and M. Medina-Noyola, “Equilibration and ag-
ing of liquids of non-spherically interacting particles,” J. Phys. Chem. B, vol. 120, no. 32,
pp. 7975–7987, 2016.

[24] L. F. Elizondo-Aguilera, E. Cortés-Morales, P. F. Zubieta-Rico, M. Medina-Noyola, R.
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