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Abstract 

 
his work focuses on game theory, with an emphasis on the unique characterization of Myerson’s value 
in partition function games. Drawing inspiration from Shapley’s foundations, Myerson proposed a 

unique solution characterized by three axioms: linearity, symmetry, and the carrier axiom. The research aimed 
to determine if an equivalent characterization was possible using four axioms: linearity, symmetry, efficiency, 
and nullity. As far as we know, there is not such characterization in the current literature. A proposal for a null 
player is introduced, revealing that the derived characterization is not unique. Instead, a family of parameterized 
solutions is presented, demonstrating the diversity of potential outcomes in this context. 
 
Keywords 
1. Game theory 
2. Myerson's value 
3. Games in partition function form 
4. Axioms (linearity, symmetry, efficiency, nullity, carrier) 
5. Null player 
6. Coalitional Games 
7. Shapley's value 

 
Resumen 

 
ste trabajo se centra en la teoría de juegos, con énfasis en la caracterización única del valor de Myerson en 
juegos de función de partición. Inspirado en los fundamentos de Shapley, Myerson propuso una solución 

única caracterizada por tres axiomas: linealidad, simetría y el axioma del portador. La investigación tuvo como 
objetivo determinar si era posible una caracterización equivalente utilizando cuatro axiomas: linealidad, 
simetría, eficiencia y nulidad. Hasta donde sabemos, no existe tal caracterización en la literatura actual. Se 
introduce una propuesta para un jugador nulo, revelando que la caracterización derivada no es única. En 
cambio, se presenta una familia de soluciones parametrizadas, que demuestran la diversidad de resultados 
potenciales en este contexto. 
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1. Teoría de juegos 
2. Valor de Myerson 
3. Juegos en forma de función de partición 
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1 Introduction

"Los fallos de mercado no existen. O bien se trata de
una anomalía que se ha generado por la intervención
siempre violenta del Estado (fallo del gobierno), o,
se trata de un fallo del analista." [Market failures do
not exist. Either it is an anomaly generated by the
always violent intervention of the State (government
failure), or it is a failure of the analyst.]

J����� M����

Game theory, a powerful mathematical tool, finds fundamental applications in various
industries by analyzing situations of conflict and cooperation. Its purpose is to provide

a deep understanding and normative guidelines for the rational behavior of economic agents
facing strategic decisions and complex social interactions.

In industry, this theory is used to model and solve economic and political challenges,
o�ering valuable insights into markets, competition, and strategic alliances. Additionally,
in operations research, it is employed to optimize processes and enhance decision-making.

In game theory, we encounter two fundamental approaches: cooperative games and non-
cooperative games. It is essential to grasp this distinction, which arises from the motivations
and dynamics of participants in a game.

In non-cooperative games (which we will not address), each player makes decisions
independently, without forming agreements with other players. In this context, the primary
objective of each player is to maximize their individual benefit, regardless of the actions or
outcomes of other players.

Conversely, in cooperative games, participants actively seek to negotiate and collaborate,
either as a complete group or in subsets, with the aim of achieving greater joint benefits.
Thus, the most prominent theoretical di�erence lies in the concept of strategy in non-
cooperative games and the concept of coalition in cooperative games.

In this work, we will explore two types of cooperative games: characteristic function form
games and partition function form games. In these models, we will assume that players have
the ability to reach agreements and mutually compensate each other through the transfer of
utility, using, for example, a perfectly divisible resource. If such a resource is not perfectly
divisible, it is considered that players have access to another compensatory resource that is
divisible.

1



2 1. Introduction

Next, an example is presented that illustrates the issue of profit distribution in cooperation
situations among di�erent agents. This example lays the foundation for the formalization
of the theory and the axiomatic analysis of various proposed solutions in the literature, all
within the context of the current work.

Example 1.1 (Market competition) Let’s consider the following game, which describes a
scenario where we have 3 companies competing for a market. When players 1,2, and 3
act individually, each of them obtains a value of 50 monetary units. However, if any of
them join forces, they can capture a larger share of the market and thus gain more profit,
a�ecting the other player. Finally, if the grand coalition is formed, they capture the entire
market and achieve the maximum profit of 200 monetary units.

Partition Value
{1},{2},{3} 50 50 50
{1,2},{3} 120 40
{1,3},{2} 125 45
{2,3},{1} 130 10
{1,2,3} 200

This example, which serves as a compelling introduction to the work we are about to delve
into, sheds light on a common challenge in cooperative game theory: the struggle to ensure
that every player has an incentive to collaborate.

As we progress in this work, we will explore various scenarios, with a particular focus on
those where one or more players may not be productive. In such cases, the need arises to find
an appropriate method for fairly distributing gains or costs. This implies that contributing
players would expect their compensation to be the same, regardless of whether the "non-
productive player" is part of their group or not. This aspect adds a layer of complexity and
relevance to cooperative game theory as it addresses the quest for fair and e�cient solutions
across a variety of industrial and social contexts.

So, with this example as our starting point, we will delve into both types of cooperative
games.

It has been shown that Myerson’s value can be characterized by the axioms of linearity,
symmetry, and carrier (similarly to Shapley’s value), but it was not clear if a unique charac-
terization could be found using the axioms of linearity, symmetry, nullity, and e�ciency
(as is the case with Shapley). This characterization, based on a "null player," is crucial
for understanding how benefits are distributed in cooperation situations where players can
form coalitions.

1.1 State of the Art

Other authors have proposed di�erent definitions to characterize a player as null in parti-
tion function form games. These definitions vary in their conditions and approaches. For
example, Pham Do and Norde [8] defined a player as null if their contribution to any coali-
tion is zero, and if by changing coalitions, the total wealth is not a�ected. Macho-Stadler
[11] proposed a similar definition, but without the condition that the null player does not
generate value by themselves. Hafalir [12] introduced the concept of an e�cient-covering
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null player and compares how what he calls an "e�cient partition" behaves instead of the
original partition, where he explicitly assumes that the remaining players in the coalition
are individuals (individual players without coalitions). Bolger [13] defined a player as null
in the strong sense if their transfer between coalitions does not a�ect the wealth of any
coalition. Skibski [16] introduced the concept of a null player with constant marginality,
which characterizes such a player as one whose contribution to wealth is consistent and
balanced in all possible partitions of the player set.

1.2 Our Contribution

In our work, we have proposed a definition of a null player that focuses on the redistribution
of wealth in the game when the null player is present or absent in a coalition. Our definition
evaluates how the partition P changes when the null player is involved in a coalition
and when they are not. Unlike other definitions, our proposal does not establish specific
conditions on the value of the null player or their impact on other coalitions. We have
analyzed how our definition compares with other proposals in the literature and highlighted
the di�erences in approach and requirements to be considered a null player.

1.3 Thesis Structure

In the next chapter, we will focus on establishing the necessary language and mathematical
notation in sets, which will be fundamental for the further development of our work. This
chapter lays the foundation for understanding the concepts and methods we will use in the
following chapters.

In the third chapter, we will review the existing literature on cooperative games. In this
sense, the content of this chapter will not be original, as our goal is to analyze and compile
the fundamental concepts and axioms that underlie both characteristic function form games
and partition function form games. This review will allow us to understand the theoretical
context in which our work is inserted and will serve as a reference to contrast our results
with those of other researchers.

In the four and final chapter, we will delve into the central problem of the thesis. We will
begin by proposing a definition of the nullity axiom based on Myerson’s carrier axiom.
Then, we will explore the possibility of finding a unique solution that satisfies the axioms
of Linearity, Symmetry, E�ciency, and Nullity (LSEN). We will discover that our notion of
a null player generates an infinite variety of solutions, and that Myerson’s value represents
a specific case within this set. We will characterize this set of solutions that satisfy LSEN,
which will allow us to obtain a deep understanding of its structure and properties.

Finally, we will summarize the key findings and discuss the implications of our work in
the context of non-cooperative game theory.





2 Terminology and Notation

"Los hombres libres actúan a través del mercado, los
represores a través del Estado." [The free men act
through the market, the oppressors through the State.]

J��� R���� R����

Game theory relies on fundamental mathematical concepts. We follow established
literature and conventions but need to establish a solid foundation in mathematical

language and notation (Kóczy [1]). In the following sections, we introduce key mathematical
building blocks and their notation.

2.1 Sets

Sets collect distinct objects: numbers, players, etc. They are denoted by capital letters
R,S,T, . . . and the elements of sets by lower case i, j, . . .. N = {1,...,n} denotes a finite set
of positive natural numbers (or players starting from the next chapter). We write i 2 S to
denote that i is an element of S. Let S ✓ T denote that S is a subset of T and S ⇢ T if S ✓ T
but S 6= T . Also, let = 2N = {T | T ✓ N,T 6= /0} denote the power set, the set of subsets of
N.

The di�erence of sets S and T is S\T = {i | i 2 S, i /2 T}. Let S�i = S\{i} and S+i =
S[{i}. The complement of a set is denoted by a bar, S = N \S, where N is the universe of
objects. The cardinality or size of a set S, denoted by |S|, is the number of elements in S. A
set consisting of a single element is called a singleton; the set containing no elements is the
empty set, denoted by /0.

2.1.1 Partitions

A partition of S, is a set {S1,S2, . . . ,Sm} of subsets of S such that

m[

i=1
Si = S, S j 6= /0 8 j, S j \Sk = /0 8 j 6= k

Figure 2.1a shows such a partition: the box represents the coalition S, and Si represents
group members of S.

5



6 2. Terminology and Notation

(a) The partition of S into disjoint S1,...,Sk.
Partitions cover the entire S, but since S
has finite elements, they are not everywhere.

(b) The coalition embedded in P containing
player i is denoted by P(i).

Figure 2.1 A partition P .

The set of partitions of N is denoted by P̃(N). The number of partitions of a set with
n 2 N elements is given by the Bell-number Bn (Bell [2]). Clearly, B0 = 1 and B1 = 1; for
larger values, the number can be calculated recursively using the following formula:

Bn+1 =
n

Â
k=0

✓
n
k

◆
Bk. (2.1)

Bell-numbers were originally called exponential numbers.

Table 2.1 The first Bell-numbers expressing the number of partitions.

n 0 1 2 3 4 5 6 7 8 9
Bn 1 1 2 5 15 52 203 877 4140 21147

The size of a partition P , denoted by |P|, is the number of elements of P . The
partitioning of the set S into singletons is denoted by [S] = {{ j}| j 2 S}.

We say that a coalition C is embedded in partition P if C 2 P; by embedded coalition
we mean a pair (S,P), the coalition together with the embedding partition. The set of
embedded coalitions is

E = {(C,P) |C 2 P,P 2 P̃(N)}

The coalitions embedded in P are the elements, or blocks or atoms, of the partition P .

For a set S, an element i 2 S, and a partition P = {S1,S2, . . . ,Sk} of S, let P(i) 2 P
such that i 2 P(i) (see Figure 2.1b).
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(a) Partition P containing T 63 i. (b) Partition P i(T ) after i joins T.

Figure 2.2 P i(T ) emerges when i leaves P(i) to join coalition T.

Also, let P i(T ) =P \{P(i),T}[{P(i)�i,T+i} denote the partition that results when
player i leaves its current coalition and joins coalition T (see Figure 2.2). Let Pi(P) =
{P i(T )|T 2 P [{ /0},T 6= P(i)} denote the set of partitions that may result when player
i leaves his current coalition and either joins another coalition or stays single.

Let P and Q be two partitions of the same set. The partition R is a common refinement
of P and Q if R is a refinement of both P and Q. The coarsest common refinement is
denoted by P ^Q. The operation ^ as follows (Myerson [3]):

P ^Q = {S\T | S 2 P,T 2 Q,S\T 6= /0} (2.2)

P ^Q is an intermediate partition that captures the intersection of the two original parti-
tions P and Q.

Figure 2.3 Partitions P and Q are mutually incomparable: neither is a refinement of other.
Operation P ^Q (2.2).
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2.1.2 Permutations

A permutation is a bijection of a set onto itself. For a set N, the set of permutations is
Sn = {p : N ! N |p is bijective}, where a generic element is denoted by p . The permuted
image of a particular i 2 S element of S is pi. It is natural to consider permutations of
sets, partitions, or even functions: given a permutation p 2 Sn, the permutation of the set
S ✓ N is pS = {pi | i 2 S}. The permutation of a partition P 2 P(S) follows naturally:
pP = {pSi |Si 2P}. The permutation of an embedded coalition is p(Si,P) = (pSi,pP).
For p 2 Sn and x = (x1,...,xn) 2 Rn, px = (xp(1),...,xp(n)). The action of Sn on Rn with
x = (x1,...,xn) 2 Rn is given by px = (xp(1),...,xp(n)). Given some set X with a generic
element X 2 X, the permutation of a function f : X ! R satisfies

(p f )(X) = f (pX) (2.3)

2.2 Integer Partitions

A partition nonnegative integer is way of expressing it as the unordered sum of the other
positive integers, and it is often writen in tuple notation. Formally, l = [l1,l2,...,ll] is a
partition of n i� l1,l2,...,ll are positive integers and l1 +l2 + ...+ll = n. Two partitions
which only di�er in the order of their elements are considered to be the same partition.
The set of all partitions of n will be denoted by L(n), and, l 2 L(n). |l | is the number of
elements of l .

For example, the partitions of n = 4 are [1,1,1,1], [2,1,1], [2,2], [3,1] and [4]. Sometimes
we will abreviate this notation by dropping the commas, so [2,1,1] becomes [211].

If P 2 P(N), there is a unique partition lP 2 L(n), associated with P , where the
elements of lP are exacly the cardinalities of the elements of P . In other words, if P =
{S1,S2,...,Sm} 2 P(N), then lP = [|S1|,|S2|,...,|Sm|].

For a given l 2 L(n), we represented by l � the set of the numbers determined by the l 0
i s

and for d 2 l �, we denoted by ml
d the multiplicity of d in partition l with the condition of

ml
0 = 1. So, if l = [4,2,2,1,1,1], then l � = {1,2,4} and ml

1 = 3, ml
2 = 2, ml

4 = 1.
Let l ,g 2 L(n) be partitions such that g� ✓ l �, we define the di�erence l � g as a

new partition obtained from l by removing the elements of g . For example, [4,3,2,1,1,1] -
[3,1,1] = [4,2,1].



3 Cooperative Games

"La «justicia social» sólo tiene sentido en un fan-
tasmagórico mundo estático en el que los bienes y
servicios se encuentren dados y el único problema
que pueda plantearse sea el de cómo distribuirlos."
[«Social justice» only makes sense in a ghostly static
world where goods and services are already given,
and the only problem that can arise is how to distri-
bute them.]

I����� M. K������

In this chapter, we will delve into two categories of cooperative games: those following
a characteristic function approach and those based on partition function.

3.1 Characteristic Function Form Games

Here, we will present the fundamental elements for defining the classical model of transfe-
rable utility games, hereinafter referred to as TU games.

Definition 3.1 (TU Game) A game in characteristic function form is a pair (N, u), consisiting
of a set N of players and a characteristic function

u : 2N ! R

that assigns to each non-empty subset S of N a real number u(S) representing the joint
gains of the players. The function satisfies the condition u( /0) = 0, which means that the
empty set does not generate any gains.

The function u : 2N ! R is referred to as a traditional game in this context, as the set of
players remains constant throughout this work. We define the space of traditional games as

G = {u : 2N ! R |u( /0) = 0}

It is essential to note that this set of traditional games, with the player set N, forms a
vector space over the field of real numbers. Given u1, u2 2 G and a 2 R, we can define the

9
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sum u1+u2 and the product au1, in G, in the usual form, i.e,

(u1 +u2)(S) = u1(S)+u2(S) and (au1)(S) = au1(S)

These operations are fundamental to understanding and modeling cooperative situations
among players, allowing the creation of new games from existing ones.

The vector sum of cooperative games combines two existing games into a new one. In
this process, for each coalition of players, the joint payo� in the new game is the sum of
the joint payo�s of the original games in that coalition.

On the other hand, the scalar product of a cooperative game u by a real number l results
in a new cooperative game in which the payo�s for each coalition S are scaled by the value
of l . In other words, if you have a cooperative game u and a real number l , the resulting
game lu assigns to each coalition S the payo� it would receive in u multiplied by l .

When a coalition S ✓ N is formed, where players collaborate together, the question of
how to fairly divide the payment u(S) obtained among its members arises. To address
this dilemma, we introduce the concept of payment distribution, which assigns to each
pair (N,u) a vector xN in Rn. Each component of this vector, xi, represents the payment
allocated to player i within the set N.

This perspective leads us to define an operator j , which operates on G, assigning values
to each of them,

j : G ! Rn

(i,u) 7! ji(u), is therefore a function that, for any player set N, associates each player in
N with a real number. However, determining how to measure each player’s contribution to
the attainment of the value u(S) presents a fundamental challenge. The goal is to find a
function j that satisfies rational axioms and properties for allocating fair payments to the
players.

Ultimately, it is demonstrated that there exists a unique operator that satisfies these
axioms. In summary, the central problem addressed in these types of games revolves around
finding a solution that rationally distributes payments among the players.

3.1.1 Players Who do not Contribute to the Game

Before introducing the axioms that form the basis of a unique solution concept, we need
additional definitions. The treatment of players who do not contribute to the game often
raises interesting questions, so we begin by identifying them. In the early works of game
theory, authors referred to a universe of players, denoted as N, within which exists a finite
coalition of relevant players (Narahari, 2012 [4]).

Definition 3.2 (Carrier) A coalition T is considered a carrier of a coalitional game u 2 G
if,

u(S\T ) = u(S) 8S ✓ N

If T is a carrier coalition and i /2 T , then:

u({i}) = u({i}\T ) = u( /0) = 0

If T is a carrier of u 2 G, all players j 2 T are referred to as null players in u , as their
inclusion in any coalition does not a�ect the coalition’s value. Additionally, for any S ✓ N
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and i /2 T :
u(S+i) = u(S+i \T ) = u(S\T ) = u(S)

In summary, T includes all influential players (although it may also include non-influential
players, it does not exclude influential ones). If T is a carrier coalition and i 2 N, then for
any S ✓ N:

u(S) = u(S\T ) = u(S\T+i)

This means that T+i is also a carrier coalition for any i 2 N. In fact, the set N is always a
carrier coalition, implying:

u(T ) = u(N)

However, it is possible that no proper subset of N is a carrier.
A player i 2 N is considered null in u 2 G if and only if the set N�i is a carrier of u .

Then, 8S ✓ N

1. If i 2 S,
u(S) = u(N�i \S) = u(S�i)

2. If i 62 S,
u(S) = u(N�i \S) = u(S)

It is important to note that if i /2 S, then S = S�i. This leads us to the following definition

Definition 3.3 (Null Player) A player i 2 N is deemed null in u 2 G if for all S ✓ N

u(S) = u(S�i)

or equivalently, for all S 63 i,
u(S+i) = u(S)

Now, if T is a carrier of u 2 G and i 62 T , then i is a null player in u .

Proof. Suppose that T ✓ N is a carrier in u 2 G, then

u(S) = u(S\T ) 8S ✓ N

Let i 2 N such that i 62 T and i 2 S:

u(S�i) = u(S�i \T ) = u(S\T ) = u(S)

so, i is null in u . ⌅

In the literature, the concept of a dummy player is frequently encountered and is often
confused with the concept of a null player. Essentially, we will highlight the di�erences
between a null player and a dummy player.

Definition 3.4 (Dummy Player) A player i 2 N is considered dummy in u 2 G if for all S ✓ N

u(S+i) = u(S�i)+u({i})

A null player never contributes anything, and a dummy player has its own value but does
not add anything beyond that. Null players are totally worthless, while dummy players may
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be valuable but have very poor cooperation skills. All null players are also dummy players
but not vice versa. Dummy players belong to each carrier, while for null players there are
carriers that do not contain them. The two terms are often confused.

The next property, symmetry deals with players who can be freely exchanged. For the
definition we need some additional notation. Let p i j 2 Sn denote the permutation that
exchanges players i and j: p(i) = j, p( j) = i and p(k) = k for all k /2 {i, j}.

Definition 3.5 (Symmetric Players) Players i and j are symmetric in u 2G if u(S)=u(p i jS)

Certain characteristic function form games deserve special attention. A game u 2 G
is simple if u(C) 2 {0,1} for all C ✓ N. Unanimity games are a special group of simple
games that are symmetric with respect to non-null players (Kóczy [1]).

Definition 3.6 (Unanimity game) For any subset T ✓ N where T 6= /0, the unanimity game
uT is given by

uT (S) =

(
1, if T ✓ S
0, otherwise

Example 3.1 Let N = {1,2,3}. Let u{1},u{2},u{3},u{1,2},u{1,3},u{2,3},u{1,2,3} be the cha-
racteristic functions of the T -games corresponding to the coalitions {1}, {2}, {3}, {1,2},
{1,3}, {2,3}, {1,2,3}, respectively.

For instance, u{1,2} would be:

u{1,2}({1}) = 0
u{1,2}({2}) = 0
u{1,2}({3}) = 0

u{1,2}({1,2}) = 1
u{1,2}({1,3}) = 0
u{1,2}({2,3}) = 0

u{1,2}({1,2,3}) = 1

We can represent the seven di�erent u values as follows. Note that each one is a 7-tuple.

u{1} = (1,0,0,1,1,0,1)
u{2} = (0,1,0,1,0,1,1)
u{3} = (0,0,1,0,1,1,1)

u{1,2} = (0,0,0,1,0,0,1)
u{1,3} = (0,0,0,0,1,0,1)
u{2,3} = (0,0,0,0,0,1,1)

u{1,2,3} = (0,0,0,0,0,0,1)
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Lemma 3.1 Any characteristic function form game can be written as a linear combination
of unanimity games:

u = Â
/0 6=T✓N

lT uT

where
lT = Â

S✓T
(�1)|T |�1u(T ).

Since unanimity games are linearly independent, they form a basis for characteristic function
form games in G (Kóczy [1]).

3.1.2 The Shapley-Value

The Shapley-Value is a solution concept motivated by the need to provide a unique solution
for the allocation of expected payments in coalitional games. It was proposed by Shapley in
1953 as part of his doctoral thesis at Princeton University, based on an axiomatic approach.
This concept seeks to capture how competitive forces among coalitions a�ect the potential
outcomes of a game. It provides a reasonable or fair method for distributing cooperation
gains, considering the strategic realities reflected in the characteristic function of the game.
Instead of an explicit formula, The Shapley-value is introduced via three simple axioms
(Shapley [5]):

Axiom 3.1 (Symmetry) For any permutation p 2 Sn and player i 2 N,

j(pu) = pj(u)

where the game pu is defined as (pu)(S) = u(p�1(S)) 8S ✓ N.

This axiom intuitively states that if we rearrange the order of players and their contributions
in a cooperative game, The Shapley-value assignments must remain proportionally sym-
metric to those permutations. In other words, players who are equivalent in terms of their
contribution should receive the same payment, regardless of their position in the game.

Axiom 3.2 (Linearity) Given two coalitional games u1 and u2 in G and any real number a ,
the following holds:

j(u1 +u2) = j(u1)+j(u2) and j(au1) = aj(u1)

The linearity axiom shows that in a combined game, the expected payment for each player
is a linear combination of their expected payments in the individual games u1 and u2. In
summary, it tells us how The Shapley-value behaves when we linearly combine games,
allowing us to calculate The Shapley-value in the combined game as a weighted mixture of
The Shapley-values in the original games.

Axiom 3.3 (Carrier ) For any u 2 G and any carrier coalition T ✓ N (see Definition 3.2),

Â
i2T

ji(u) = u(N)

This axiom states that players in a carrier set must divide the total value they generate
together (which is equal to the value of the grand coalition) among themselves. This means
that null players receive no allocation since they do not contribute to the overall value.



14 3. Cooperative Games

With the three essential axioms in place, we present the fundamental result by Shapley
(3.1).

Theorem 3.1 (Shapley, 1993 [5]) There exists exactly one assignment, known as the Shapley
Value denoted as Sh : G ! Rn, that satisfies the axioms of linearity, symmetry, and carrier.
The formula defining The Shapley-value for player i is as follows:

Shi(u) = Â
S✓N�i

|S|!(n� |S|�1)!
n!

{u(S+i)�u(S)} 8i 2 N,8u 2 G (3.1)

In this formula:

• The expression |S|!(n�|S|�1)!
n! is interpreted as the probability that, in any permutation,

the members of S come before player i.

• The di�erence u(S+i)�u(S) represents the marginal contribution of player i to the
value of coalition S.

In summary, The Shapley-value is an assignment that captures the expected contribution
of each player to the value of any coalition, satisfying the axioms of linearity, symmetry,
and carrier.

Let’s consider a collection of n resources, where each resource is uniquely essential to
achieving a specific service. Suppose u(N) represents the total value that this collection of
resources would generate if they were all deployed to accomplish the service. Let’s focus on
a particular resource, let’s say resource i. This resource will make a marginal contribution
to each subset S of N�i when included in that set. The choice of the set S can be made in
(|S|!(n� |S|�1)!) ways, and when divided by n!, we obtain the probability of selecting
a specific subset S. In this way, The Shapley-value of resource i represents the average
marginal contribution that resource i makes to any arbitrary coalition that is a subset of
N�i.

There is an alternative characterization of the Shapley Value (3.1) if we consider that,
the carrier axiom combines two more elementary axioms: E�ciency and the Null player
property.

Axiom 3.4 (Null player property) If i 2 N is a null player in u 2 G, then

ji(u) = 0 8i /2 T

Axiom 3.5 (Efficiency) For the grand coalition N,

Â
i2N

ji(u) = u(N) 8u 2 G

These axioms emphasize a crucial fact: The Shapley-value always divides the gain of the
grand coalition among the players of the game. This reflects the implicit assumption that
players are willing to join the grand coalition, even if some of them are null players who do
not receive allocations. Furthermore, these two axioms (along with those of linearity and
symmetry) uniquely characterize The Shapley-value, similar to the concept of carrier.
This is relevant as our work is focused in this direction, and understanding the distinctive
nature of The Shapley-value was essential to our approach in partition function games.
These four axioms lead to the following theorem,
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Theorem 3.2 (Alternative characterization of The Shapley-Value) There exists a unique so-
lution that satisfies the axioms of linearity, symmetry, e�ciency, and nullity. Moreover, it
this The Shapley-Value.

Proof. Here we show that there exists exactly one mapping j that satisfies the four axioms.
First, we prove that the mapping j is a linear transformation by making the following
observations,

• Let z 2 G be the coalitional game that assigns worth zero to every coalition, that is,
z(S) = 0 for all S ✓ N. Then e�ciency axiom implies that

ji(z) = 0 8i 2 N (A1)

• From linearity axiom, we have

ji(au +(1�a)w) = aji(u)+(1�a)ji(w), a 2 R, 8u ,w 2 G

Choosing w = z in the above, we get

ji(au) = aji(u) 8i 2 N, 8u 2 G (A2)

Equations (A1) and (A2) together with the linearity axiom imply that j is a linear transfor-
mation.

Let T ✓ N be any coalition. Now, note that unanimity game (3.6) implies that a coalition
S has worth 1 in uT if it contains all the players in T and has worth zero otherwise. To get
a feel for this game, we discuss a simple example before resuming the proof.

Then, by the lemma (3.1), for any u 2 G, there exists a unique solution lT 2R such that:

u = Â
/0 6=T✓N

lT ·uT

Continuing with the proof, we assume that j : G ! Rn is a solution that satisfies all four
axioms.

• By linearity:
j(u) = j( Â

/06=T✓N
lT ·uT ) = Â

/0 6=T✓N
lT ·j(uT )

Hence, j will be unique for any u 2 G if it is also unique for each uT with T ✓ N
and T 6= /0.

• By nullity: If i 62 T :

uT (S+i) =

(
1 if T ✓ S+i

0 otherwise
=

(
1 if T ✓ S
0 otherwise

= uT (S)

So, if i has a null value in uT , then ji(uT ) will be equal to zero if i is not in T .



16 3. Cooperative Games

• By symmetry: Notice that in the formula for ji(u), the only relevant aspects of a
coalition are whether it includes player i and the total number of players it contains.
In other words, the specific identity of the players within the coalition does not a�ect
the outcome. This observation clearly illustrates the satisfaction of symmetry (Axiom
3.1).

• By e�ciency: Since T ✓ N, uT (N) = 1. Then, because of the e�ciency of j , there
exists only one unique solution for uT ,

ji(uT ) =

8
<

:

1
|T | if i 2 T

0 otherwise ⌅

3.2 Games in Partition Function Form

In games with coalition structures, coalitions are part of the usual practice, and multiple
coalitions may (and usually do) coexist. For such games, we must define the coalitional
values together.

For a partition P , payo�s to coalitions C /2 P , including the empty set, are conven-
tionally assumed to be undefined, making the definition elegant but somewhat awkward.
More contemporary definitions use embedded coalitions:

Definition 3.7 (Partition Function Form Game, Thrall and Lucas, 1963 [6]) A game in parti-
tion function form is a pair (N,w) consisting of a finite set of players N and a partition
function

w : E ! R
that assigns a real value to each embedded coalition (S,P), and such that w( /0,P) = 0
8P .

Note that, E representing the set of embedded coalitions, is the set of coalitions together
with specifications as to how the other players are aligned.

Definition 3.8 The set of games in partition function form with player set N is denoted by
G̃, i.e.,

G̃ = {w|w : E ! R|w( /0,P) = 0 8P 2 P̃(N)}

The value w(S,P) represents the payo� of coalition S, given the coalitional structure P .
We can see that in games in partition function form (and that in this work, we will only call
them games), the worth of some coalition S depends not only on what the players of such
coalition can obtain together, but also on the way the other players are organized in N \S.
We assume that, in any game situation, the universal coalition N (embedded in {N}) will
actually form, so that the players will have w(N,{N}) to divide among themselves.

Now, given w1, w2 2 G̃ and a 2 R, we can define the sum w1+w2 and the product aw1
in G̃, in the usual form, i.e,

(w1 +w2)(S,P) = w1(S,P)+w2(S,P) and (aw1)(S,P) = aw1(S,P)

respectively. It is easy to verify that G̃ is a vector space with these operations.
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As defined in G, a solution is a function j : G̃ ! Rn. If j is a solution and w 2 G̃, then
we can interpret ji(w) as the utility payo� which i shlould expect from de game w.

3.2.1 Axioms

We present a list of axioms used in the characterization of extended Shapley values for
games in partition function form (Kóczy [1]). The multiplicity of such extensions is, in part,
the result of the multiplicity of extensions of axioms for characteristic function form games.
Partition function form games are, of course, much more complex, but such a multiplicity
of axioms can be confusing, and the di�erent variations may make it more di�cult to
establish the evidence for these properties. Therefore, we will first focus on the most basic
and widely accepted and used axioms and finally examine some alternatives to the null
player property.

Axiom 3.6 (Linearity) The solution j is linear if

j(w1 +aw2) = j(w1)+aj(w2) 8w1,w2 2 G̃ and a 2 R

Axiom 3.7 (Symmetry) The solution j is said to be symetric if and only if j(pw) = pj(w)
8p 2 Sn, where the game pw is defined as

(pw)(S,P) = w[p�1(S,P)], 8(S,P) 2 E

The interpretation of these axioms is analogous to the axioms used in solutions for traditional
games.

Myerson’s article in 1977 represented a significant achievement by proposing a method
for allocating fair contributions in cooperative games (Myerson [3]). This method is based
on three fundamental axioms, analogous to Shapley but applied to games expressed in the
form of a partition function: linearity, symmetry, and the carrier axiom, which encompasses
e�ciency and nullity in this context.

Definition 3.9 (Carrier in Partition Function Form Games, Myerson [3]) Given w 2 G̃, the set
T is a carrier of w if for any embedded coalition (S,P),

w(S,P) = w(S\T,P ^{T,T}) (3.2)

In other words, T is considered a carrier of w if the outcomes obtained by players in S
when cooperating in coalition P are the same as what they would achieve when restricted
to T . It’s worth noting that N always acts as a carrier since if a player i is not in T , then
w({i},P) =w({i}\T,P) =w( /0,P) = 0, i.e., if a player has no influence on the outcome,
they should neither receive nor pay anything.

The following axiom suggests that the total amount obtained by the grand coalition
should be distributed among the members of a carrier:

Axiom 3.8 (Carrier) For any w 2 G̃, if T is a carrier of w, then the following holds

Â
i2T

ji(w) = w(N,{N})

Myerson proceeds axiomatically similarly to Shapley and proposes a value that extends the
Shapley-value. His proposal satisfies the axioms of linearity, symmetry, and carrier. The
Myerson value for a player is given by:
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Theorem 3.3 (Myerson [3]) The solution My : G̃ ! Rn defined as follows:

Myi(w) = Â
(S,P)2E

(�1)|P|�1(|P|�1)!


1
n
� Â

T2P\{S}
i62T

1
(|P|�1)(n� |T |)

�
·w(S,P)

(3.3)

where i 2 N and w 2 G̃, represents the unique solution that satisfies the axioms of Linearity,
Symmetry, and Carrier.

Example 3.2 Now, if N = {1,2,3}, according to the Myerson value, the payo� for player 1
is

My1(w) =
1
3
·w({1,2,3},{{1,2,3}})

�1
6
· (2w({1},{{1},{2},{3}})�w({2},{{1},{2},{3}})�w({3},{{1},{2},{3}}))

+
1
3
· (2w({1},{{1},{2,3}})�w({2},{{2},{1,3}})�w({3},{{3},{1,2}}))

+
1
6
· (w({1,2},{{3},{1,2}})+w({1,3},{{2},{1,3}})�2w({2,3},{{1},{2,3}}))

In a corollary, Myerson demonstrates that his value is a consistent extension of the Shapley-
value:

Corollary 3.3.1 (Myerson [3]) Suppose w 2 G̃ and u 2 G satisfy w(S,P) = u(S),8(S,P)2
E . Then,

Sh(u) = My(w)

This corollary establishes a relationship between two functions that assign values to coali-
tions in the context of cooperative games and is related to the concept of the Shapley
value:

⌅ First, we consider a function w 2 G̃ that assigns values to coalitions in a cooperative
game. This means that w(S,P) represents the value that the game assigns to coalition
S within the partition P .

⌅ Next, we have another function u 2 G that also assigns values to coalitions, albeit in
a di�erent manner compared to w. In this case, u(S) indicates the value assigned by
u to coalition S.

The corollary states that if these two functions, w and u , satisfy the equality w(S,P) = u(S)
for all coalitions in the set E , then the Myerson-value of w is equal to the Shapley-value of
u .

In a corollary, Myerson posits that a stronger version of the carrier axiom (3.8). Given
P 2 P and w 2 G̃, it is asserted that w is P-decomposable i� 8(T,Q),

w(T,Q) = Â
S2P

w(T \S,Q^P) (3.4)

(Recall w( /0,P)=0).
This equality as a whole signifies that the total value assigned by the function w to the coali-
tion T in the context of the partition Q is equal to the sum of the individual contributions
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of the subsets S that belong to the partition P . Each individual contribution is calculated
by considering the intersection of the players present in both T and S, in the context of the
new partition Q^P . This implies that the total value that T receives in the context of Q
is the sum of what each subset S contributes to the intermediate partition Q^P .

In summary, this equality demonstrates how the value of a coalition T is distributed
based on how subsets S contribute through the intermediate partition Q^P , taking the
intersection of players into account in the process.

Corollary 3.3.2 (Myerson [3]) If w 2 G̃ is P �decomposable, then

Â
i2S

Myi(w) = w(S,P), for any S 2 P

The carrier axiom establishes that the sum of the individual values of players in any
coalition S acting as a carrier is equal to the total value of the grand coalition, i.e.,
w(N,{N}) = w(S,{S,S}), regardless of the involved function w. Let’s consider a parti-
tion P containing only the grand coalition N, i.e., P = {N}. By applying Corollary 3.3.2
and the Carrier Axiom 3.8, we arrive at the following conclusion:

Â
i2N

ji(w) = w(N,P) = w(N,{N})

Given that both Corollary 3.3.2 and the carrier axiom apply to any game function w in
the set G, we can conclude that the e�ciency axiom holds for any game function w 2 G̃.
This demonstrates that the sum of the individual values of the players in the grand coalition,
acting as a carrier, is equal to the total value of the grand coalition. This leads us to establish
the following axiom:

Axiom 3.9 (Efficiency) For any partition function form game (N,w),

Â
i2N

ji(w) = w(N,{N}) 8w 2 G̃. (3.5)

3.2.2 LSE solutions and the Transfers Procedure

Here we present a family of solutions that satisfy the axioms of linearity, symmetry, and
e�ciency establishing the fundamental groundwork for our work.

Definition 3.10 (LSE solution) A solution that satisfies linearity, symmetry and e�ciency
axioms is referred to as an LSE solution.

Definition 3.11 Let Bn be a set of triples, associated with all partitions |S| 2 l � and its
elements, i.e.,

Bn = {(l ,|S|,|T |)|l 2 L(n)\{[n]}, |S| 2 l �, |T | 2 (l � [|S|])�}

Example 3.3 If n = 4, then

B4 ={([1111],1,1),([211],1,1),([211],1,2),([211],2,1)
([22],2,2),([31],1,3),([31],3,1)}
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Theorem 3.4 (Hernández-Lamoneda, et al. [7]) The solution y : G̃ ! Rn satisfies linearty,
symmetry and e�ciency axioms if only if it is of the form

yi(w) =
w(N,{N})

n
+ Â

(l ,|S|,|T |)2Bn

b(l ,|S|,|T |)

⇥
h

Â
(S,P)2E

lP=l ,S3i

Â
T2P\{S}

|T |w(S,P)� Â
(S,P)2E

lP=l ,S 63i
|P(i)|=|T |

|S|w(S,P)
i

(3.6)

for some real numbers {b(l ,|S|,|T |)|(l ,|S|,|T |) 2 Bn}.

Even though the parameters b in equation (3.6) can take any real number values, when
b(l ,|S|,|T |) 2 [0,1], we can interpret them as weights or fractions of the wealth w(S,P).

Now, we describe the final payo� for player i 2 N as a result of the following elementary
procedure:

1. He receives the egalitarian amount
w(N,{N})

n
.

2. For each embedded coalition (S,P) such that S 6= N, there are transfers between
players in S and players in S.

• If player i belongs to S, then he receives (from each player in each T 2P \{S})
a fraction b(lP ,|S|,|T |) of the worth w(S,P). In total from coalition T :

|T | ·b(lP ,|S|,|T |) ·w(S,P)

• If player i does not belong to S, then he pays (to each player in S) a fraction
b(lP ,|S|,|P(i)|) of the worth w(S,P). In total to coalition S:

|S| ·b(lP ,|S|,|P(i)|) ·w(S,P)

Notice that the weights are symmetric in the following sense:

• If i 2 S, then the weights associated to the embedded coalition (S,P) depend on
three parameters: the structure of P , the cardinality of S and the cardinality of other
coalition T di�erent from S.

• In i 62 S, the weights depend on: the structure of P , the cardinality od S and the
cardinality of the coalition that contains player i.

Example 3.4 If N = {1,2,3}, then every LSE solution is of the form (for player 1):

y1(w) =
1
3
·w({1,2,3},{{1,2,3}})+b([111],1,1) ·

⇥
2w({1},{{1},{2},{3}})

�w({2},{{1},{2},{3}})�w({3},{{1},{2},{3}})
⇤

+b([21],1,2) ·
⇥
2w({1},{{1},{2,3}})�w({2},{{2},{1,3}})�w({3},{{3},{1,2}})

⇤

+b([21],2,1) ·
⇥
w({1,2},{{3},{1,2}})+w({1,3},{{2},{1,3}})

�2w({2,3},{{1},{2,3}})
⇤

where b([111]1,1), b([21]1,2) and b([21]2,1) are arbitrary real numbers.
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3.2.3 Examples of LSE solutions

In this section we briefly present some solutions that can be imple-mented from the transfers
procedure; i.e., they all are of the form (3.6).

As a first example, we take the expected stand-alone value, yESA,which tells us how
much a player may obtain in a game with externalities when we focus on the stand-alone
side of the game:

yESA
i (w) =

w(N,{N})
n

+ Â
/0 6=S⇢N

i62S

|S|!(n� |S|�1)!
n!

w({i},{S}[ [N \ (S[{i})][{{i}})

� Â
j2N�i

Â
S⇢N\{i, j}

|S|!(n� |S|�2)!
n!

w({ j},[N \ (S[{i})][{S[{i}})

which we obtain when we take in (3.6):

b(l ,|S|,|T |) =

(
(|S|�1)!(n�|S|�2)!

n! if l 2 {[m,1, ...,1]}m=1
n�1 , |S|= 1 and |T |= m

0 otherwise

Shapley Value

(Pham Do and Norde [8]) define an extension of the Shapley (Shapley [5]) value to the
class of games in partition function form as

yi(w) = Shi(v)

for each i 2 N and each w 2 G̃, where Sh : G ! Rn is the Shapley value operator for TU
games and u 2 G is defined as follows:

u(S) = w(S,{S, [N \S]})

for each S ✓ N.

This solution is of the form (3.6) with parameters

b(l ,|S|,|T |) =

(
(|S|�1)!(n�|S|�1)!

n! if l 2 {[m,1, ...,1]}m=1
n�1 , |S|= m and |T |= 1

0 otherwise.

Consensus value

(Ju [9]) defines the consensus value, fJ , as the middle point between the stand-alone
value and the Shapley value of (Pham Do and Norde [8]). The corresponding parameters
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for the consensus value are:

b(l ,|S|,|T |) =

8
>>>><

>>>>:

1
2n(n�2) if l = [1,1, ...,1] and |S|= |T |= 1

1
2n(n�1)(n�2) if l 2 {[m,1, ...,1]}m=1

n�1 , |S|= 1 and |T |= m
(|S|�1)!(n�|S|�1)!

2n! if l 2 {[m,1, ...,1]}m=1
n�1 , |S|= m and |T |= 1

0 otherwise.

The value of Albizuri et al.
(Albizu et al. [10]) obtain a unique value characterized by the properties of linearity,

symmetry, e�ciency, oligarchy, and an additional symmetry requirement with respect to
the embedded coalitions. They define the value for a player as:

yAAR
i (w) = Â

(S,P)2E
i2S

(|S|�1)!(n� |S|)!
n!P(S,N)

w(S,P)

� Â
(S,P)2E

i2S

|S|!(n� |S|�1)!
n!P(S,N)

w(S,P)

where
P(S,N) = |{(T,P) 2 E | T = S}|

In fact, they notice that P(S,N) = p(n� |S|), where p(k) represents the number of partitions
of any set K with cardinality k. This solution is also of the form (3.6). The corresponding
parameters are:

b(l ,|S|,|T |) =
(n� |S|�1)!(|S|�1)!

n! · p(n� |S|)

The value of Macho-Stadler et al.
As a final example, (Macho-Stadler et al. [11]) characterize the value:

yMPW
i (w) = Â

(S,P)2E
i2S

(|S|�1)! ’
T2P\{S}

(|T |�1)!

n!
w(S,P)

� Â
(S,P)2E

i/2S

|S|! ’
T2P\{S}

(|T |�1)!

(n� |S|)n!
w(S,P)

which we get when we choose:

b(l ,|S|,|T |) =

(|S|�1)! ’
d2(l�[|S|])�

[(d �1)!]m
l�[|S|]
d

(n� |S|)n!

Example 3.5 We look at the system of weights for the di�erent solutions described above in
the case n= 3. For this particular case,there are 3 di�erent weights associated with the
transfers procedure:
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Table 3.1 System of weights for LSE solutions for n = 3.

Weights yESA yPN yJ yM yAAR yMPW

b([111],1,1)
1/6

1/6
1/6 �1/6

1/12
1/12

b([21],1,2)
1/6 0 1/12

1/3
1/12

1/12
b([21],2,1) 0 1/6

1/12
1/6

1/6
1/6

Now, for the case n = 4 there are 7 di�erent weights associated with the transfers
procedure (table 3.2):

Table 3.2 System of weights for LSE solutions for n = 4.

Weights yESA yPN yJ yM yAAR yMPW

b([1111],1,1)
1/24

1/12
1/16

1/6
1/60

1/72
b([211],2,1) 0 1/24

1/48 �1/12
1/48

1/48
b([211],1,2)

1/24 0 1/48 �1/6
1/60

1/72
b([211],1,1) 0 0 0 0 1/60

1/72
b([31],3,1) 0 1/12

1/24
1/12

1/12
1/12

b([31],1,3)
1/24 0 1/48

1/4
1/60

1/36
b([22],2,2) 0 0 0 1/8

1/48
1/48

As we can observe, in both cases, the Myerson value is the only solution that considers
negative weights.
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"There is no other economic principle that is so fatal
as that of trying to make people happier."

F�������� H����

In the upcoming chapter, we will introduce an innovative version of the null player
concept and explore its application in LSE solutions. Throughout this exploration, we

will encounter an intriguing observation: the resulting solutions are infinite, contingent on
various arbitrary parameters. By excluding externalities in these partition function solutions,
we derive the well-known Shapley value.

Subsequently, we will proceed to characterize the diverse solution families stemming
from this null player proposal. Finally, a detailed comparison will be conducted with other
existing definitions and proposals of the null player. This comprehensive approach aims to
provide a deeper understanding of the complexities and implications associated with this
novel perspective in the realm of cooperative games.

4.1 Null Players in Partition Function Form Games: A Novel Proposal

The purpose of this section is to ascertain whether it is possible to uniquely characterize
the Myerson value based on a null player axiom and an e�ciency axiom, similar to the
approach used for the Shapley value. The conditions/restrictions derived from the null
player axiom will be applied to the expression (3.6) of the linear, symmetric, and e�cient
solutions. We will follow the same line of reasoning as before: A player i 2 N is deemed
null in w 2 G̃ if only if N�i is a carrier of w.

According to the definition above, if we have a partition P = {S1,S2, ...,P(i), ...,Sm}
of N, we can observe the following:

1. If i 2 S, then:

w(S,P) = w(S\N�i,P ^{N�i,N \N�i})
= w(S�i,P ^{N�i,{i}})
= w(S�i,{S1,S2, ...,(S�i,{i}, ...,Sm})
= w(S�i,{S�i,{i}}[P \{S})

25
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2. If i 62 S, then:

w(S,P) = w(S\N�i,P ^{N�i,N \N�i})
= w(S,P ^{N�i,{i}})
= w(S,{S1,S2, ...,(P(i))�i,{i}, ...,Sm})
= w(S,{(P(i))�i,{i}}[P \{P(i)})

If i 62 S, then S = S�i. This leads us to the following definition

Definition 4.1 (Null Player in Partition Function Form) Given a partition function form game
(N,w), a player i 2 N is a null player in w 2 G̃ if 8(S,P) 2 E ,

w(S,P) = w(S�i,{(P(i))�i,{i}}[P \{P(i)}) (4.1)

This proposal evaluates how the wealth generated by the coalition S varies depending
on whether player i is part of that coalition or not. To do this, it adjusts the partition P
based on whether i is present or not in the involved coalitions. Removing player i from all
coalitions reflects the question of how wealth would be distributed if i were not present. For
instance, if n=4, P = {{1,2},{3,4}}, and player 1 is null, then w({1,2},{{1,2},{3,4}})
= w({2},{{1},{2},{3,4}}) y w({3,4},{{1,2},{3,4}}) = w({3,4},{{1},{2},{3,4}}).

Now we are ready to state the following axiom:

Axiom 4.1 (Nullity) If i 2 N is a null player in w 2 G̃, then yi(w) = 0, 8w 2 G̃.

Next, we present the application of the equation (3.6) to a game with three agents. In
this context, we apply axiom 4.1 to identify a null player and Definition 4.1 (Null Player in
Partition Function Form) to assess how wealth is distributed when the null player is present
or absent in the coalitions. This leads to the following expression for the payo� of player 1
(Example 4.1).

Example 4.1 From (3.6), the LSE solution satisifes the nullity axiom if and only if b([21],2,1) =
1/6 and b([111],1,1) +b([21],1,2) =

1/6.
Let b([111],1,1) = b ; thus:

y1(w) =
1
3
·w({1,2,3},{{1,2,3}})+b ·

⇥
2w({1},{{1},{2},{3}})

�w({2},{{1},{2},{3}})�w({3},{{1},{2},{3}})�2w({1},{{1},{2,3}})
+w({2},{{2},{1,3}})+w({3},{{3},{1,2}})

⇤

+
1
6
·
⇥
2w({1},{{1},{2,3}})�2w({2,3},{{1},{2,3}})+w({1,2},{{3},{1,2}})

�w({3},{{3},{1,2}})+w({1,3},{{2},{1,3}})�w({2},{{2},{1,3}})
⇤

It can be observed that, since b 2 R is arbitrary, there is an entire class of solutions that
fulfill the four axioms, with the Myerson value being a particular case for b =�1/6.
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Example 4.2 If we assume that there are no externalities, i.e.,

w({1},{{1},{2},{3}}) = w({1}{{1},{2,3}}) = w({1})
w({2},{{1},{2},{3}}) = w({2},{{2},{1,3}}) = w({2})
w({3},{{1},{2},{3}}) = w({3},{{3},{1,2}}) = w({3})

we have

y1(w) =
w({1,2,3})

3
+

1
6
· [2(w({1})�w({2,3}))+w({1,2})�w({3})

+w({1,3})�w({2})]
(4.2)

that is the Shapley-value for player 1. Similarly, the process is carried out for the payments
of players 2 and 3.

If we consider the following

P Coalitions Worth
1 {1}, {2}, {3} (1,4,2)
2 {1,2}, {3} (6,2)
3 {1,3}, {2} (4,4)
4 {2,3}, {1} (8,1)
5 {1,2,3} (8)

equations (3.1) and (4.2) give us the same value:

Sh(u) = y(w) =
⇣

1,
9
2
,
5
2

⌘

Example 4.3 If we proceed in a similar way to the previous example, but for 4 agents, we
have:

y1(w) =
w({1,2,3,4})

4
+

1
12

· [3(w({1})�w({1,3,4}))+w({1,2,3})�w({4})

+w({1,2,4})�w({3})+w({1,3,4})�w({2})
+w({1,2})�w({3,4})+w({1,3})�w({2,4})
+w({1,4})�w({2,3})]

(4.3)

with,
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P Coalitions Worth P Coalitions Worth
1 {1}, {2}, {3}, {4} (10,10,20,30) 9 {1,3}, {2,4} (30,40)
2 {1,2}, {3}, {4} (18,20,30) 10 {1,4}, {2,3} (40,26)
3 {1,3}, {2}, {4} (30,10,30) 11 {1,2,3}, {4} (32,30)
4 {1,4}, {2}, {3} (40,10,20) 12 {1,2,4}, {3} (48,20)
5 {2,3}, {1}, {4} (26,10,30) 13 {1,3,4}, {2} (52,10)
6 {2,4}, {1}, {3} (40,10,20) 14 {2,3,4}, {1} (52,10)
7 {3,4}, {1}, {2} (44,10,10) 15 {1,2,3,4} (60)
8 {1,2}, {3,4} (18,44)

then,
y(w) = Sh(u) =

⇣26
3
,8,

46
3
,28

⌘

that is the Shapley-value.

4.2 Characterization of Families of Satisfactory Solutions under the
LSEN Approach

In this section, we delve into the detailed characterization of the LSEN (Linear, Symmetric,
E�cient, and Null) family of solutions previously introduced. Before delving into the
exploration and analysis of these solutions, we will begin by establishing and defining
fundamental concepts that will be essential for their understanding.

Let Fn be a set of pairs:

Fn = {(l ,|S|)|l 2 L(n), |S| 2 l � \{1,n}}

and, for l 2 L(n), d 6= 1 and d ,e 2 l , we define,

l d
e = l � [d ,e]+ [e +1,d �1].

Example 4.4 If n = 5, then

F5 = {(2111,2),(221,2),(311,3),(32,2),(32,3),(41,4)}

so, for the pair (2111,2), we have ml
2 = 1. Additionally, for e 6= d with e 2 l � [{0}, we

obtain l 2
0 = [11111] and l 2

1 = [2111].

Now, we propose the following expression for the resulting equations when applying the
nullity axiom to the LSEN solution:

Theorem 4.1 The solution y : G̃ ! Rn satisfies linearty, symmetry, e�ciency and nullity
axioms if only if it is of the form

yi(w) =
w(N,{N})

n
+ Â

(l ,|S|,|T |)2Bn

b(l ,|S|,|T |)

⇥
h

Â
(S,P)2E

lP=l ,S3i

Â
T2P\{S}

|T |w(S,P)� Â
(S,P)2E

lP=l ,S 63i
|P(i)|=|T |

|S|w(S,P)
i

(4.4)
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for some real numbers {b(l ,|S|,|T |)|(l ,|S|,|T |) 2 Bn} such that

i)
b([n�1,1],n�1,1) =

1
n(n�1)

(4.5)

and

ii) For every (l ,d ) 2 Fn:

�
ml

d �1
�h

db(l ,d ,d )� (d �1)b(l d
d ,d�1,d+1)

i
+

Â
e2l �[{0}

e 6=d

h
eml

e b(l ,d ,e)� (d �1)ml
e b(l d

e ,d�1,e+1)

i
= 0 (4.6)

Moreover, such representation is unique.

Proof. ()) From Hernández-Lamoneda et al. ([7], Theorem 4),

yi(w) =
w(N,{N})

n
+ Â

(l ,|S|,|T |)2Bn

b(l ,|S|,|T |)

⇥
h

Â
(S,P)2E

lP=l ,S3i

Â
T2P\{S}

|T |w(S,P)� Â
(S,P)2E

lP=l ,S 63i
|P(i)|=|T |

|S|w(S,P)
i

(4.7)

is a linear, symmetric and e�cient solution for arbitrary constants {b(l ,|S|,|T |)|(l ,|S|,|T |) 2
Bn}. Now, consider the collection of games {u(S,P) | (S,P) 2 E ,S 6= /0} defined by

u(S,P)(T,Q) =

⇢
1 if (T,Q) = (S,P)
0 otherwise

which constitutes a basis for eG (notice that the dimension of eG equals the number of nontrivial
embedded coalitons). Suppose i 2 N is a null player in u(S,P) for every (S,P) 2 E ; that is,
u(S,P)(R,Q) = u(S,P)

�
R�i,

�
(Q(i))�i,{i}

 
[Q \Q(i)

�
for each (R,Q) 2 E .

Nullity implies:

1.
0 = yi(u(N,{N})) =

1
n
� (n�1)b([n�1,1],n�1,1)

Hence,
b([n�1,1],n�1,1) =

1
n(n�1)

2.

0=yi(u(S,P))= Â
T2P\S

h
|T |b(lP ,|S|,|T |)� (|S|�1)b({P i(T ),T+i}[P\{S,T},|S|�1,|T |+1)

i

(4.8)
for every pair (S,P) such that |S| /2 {1,n} and i 2 S. Notice that the above relation
yields many repeated equations. In particular, relation (4.8) provides the same equation
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for (S,P) and (S0,P 0), if |S| = |S|0 and lP = lP 0 . Thus, the number of distinct
equations derived from (4.8) coincides with the number of elements in Fn.
On the other hand, for a fixed (S,P) such that |S| /2 {1,n}, it holds:

Â
T2P\S

|T |b(lP ,|S|,|T |) =

8
>><

>>:

⇣
mlP
|S| �1

⌘
|S|b(lP ,|S|,|S|) if |T |= |S|

Â
e2l �

P[{0}
e 6=|S|

emlP
e b(lP ,|S|,e) if |T | 6= |S| (4.9)

and

Â
T2P\S

b({P i(T ),T+i}[P\{S,T},|S|�1,|T |+1) =

8
>>>>>>><

>>>>>>>:

⇣
mlP
|S| �1

⌘
b⇣

(lP )
|S|
|S|,|S|�1,|S|+1

⌘

if |T |= |S|
Â

e2l �
P[{0}

e 6=|S|

mlP
e b⇣

(lP )
|S|
e ,|S|�1,e+1

⌘

if |T | 6= |S|
(4.10)

The system (4.6) follows from the substitution of equalities (4.9) and (4.10) in relation
(4.8).

(() The converse is a straightforward computation in view of the equalities in part ()).
Finally, to check uniqueness it is enough to prove that if

0 =
w(N,{N})

n
+ Â

(l ,|S|,|T |)2Bn

b(l ,|S|,|T |)

⇥
h

Â
(S,P)2E

lP=l ,S3i

Â
T2P\{S}

|T |w(S,P)� Â
(S,P)2E

lP=l ,S 63i
|P(i)|=|T |

|S|w(S,P)
i

b(l ,|S|,|T |)’s satisfying conditions (4.5) and (4.6) for (l ,d ) 2 Fn) for every game w and for
every player i, then every b(l ,|S|,|T |) vanish.

Thus, for given (l ,|S|,|T |)2 Bn let S = {1,...,s} and P be any partition such that S 2P
and lP = l . Also let T 2 P . Let w = u(S,P) and pick any i 2 T . Then the above sum
reduces to

0 = b(l ,|S|,|T |) ⌅

Example 4.5 For n = 4, every LSEN solution takes the form given in (3.6), where the b ’s
satisfy:

�b([1111],1,1) +2b([211],2,1)�2b([211],1,2) = 0

2b([22],2,2)�b([31],1,3)�b([211],1,1) = 0

�2b([211],2,1) +b([31],3,1)�2b([22],2,2) = 0

which are the equations derived from the nullity restrictions in the expression of player
1’s payo�. The table 3.2 associated with these values shows the weights corresponding to
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payment allocation solutions for di�erent procedures, such as Shapley, Myerson, among
others. Each column in the table represents a particular set of parameters b ’s associated
with a specific solution.

The key observation is that the equations are satisfied only for the solutions yPN and
yMPW , in addition to the Myerson value. This indicates that these particular payment
allocation procedures meet the constraints established by the system of equations.

Remark 1 In (Hernández-Lamoneada et al. [7]), it is proved that all linear, symme-
tric and e�cient solutions can be uniquely expressed by (4.4) for arbitrary real num-
bers {b(l ,|S|,|T |) | (l ,|S|,|T |) 2 Bn}. Denoting by LSE

⇣
eG(n)

⌘
the vector space of all li-

near, symmetric and e�cient solutions on eG in n players, it is also pointed out that
dimLSE

⇣
eG(n)

⌘
= |Bn|.

Corollary 4.1.1 The space of all linear, symmetric, e�cient and null solutions in n players
has dimension |Bn|� |Fn|�1.

We will denote by LSEN
⇣
eG(n)

⌘
the vector space of linear, symmetric, e�cient and null

solutions on eG in n players.

Remark 2 The relation

dimLSE
⇣
eG(n)

⌘
= dimLSEN

⇣
eG(n+1)

⌘

holds for every n. It is not clear what is the meaning of the fact that there are as many
linear, symmetric and e�cient solutions in n players and linear symmetric, e�cient and
null solutions in n+1 players.

We compute some cases for the dimension of families of solutions:

n dimeG(n) dimLSE
⇣
eG(n)

⌘
dimLSEN

⇣
eG(n)

⌘

2 3 1 0
3 10 3 1
4 37 7 3
5 151 14 7
6 674 26 14

Remark Now, we can define the marginal contribution of a player i in the context of
the partition function w 2 G̃ as follows: Given a partition function w 2 G̃ and a coalition
S ✓ N, the marginal contribution of player i in the coalition S is defined as:

MCi(S,P) = w(S,P)�w(S�i,{(P(i))�i,{i}}[P \{P(i)}) (4.11)

The marginal contribution of a player i 2 N to (S,P) 2 E can be understood in 2
aspects:

1. Direct (i 2 S, i.e., S = P(i)):

MCi(S,P) = w(S,P)�w((P(i))�i,{(P(i))�i,{i}}[P \{P(i)})
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2. Indirect (i /2 S):

MCi(S,P) = w(S,P)�w(S,{(P(i))�i,{i}}[P \{P(i)})

The direct marginal contribution evaluates how the presence of player i in the coalition
S a�ects the distribution of wealth in that specific coalition. It compares the original
distribution of wealth in S with the adjusted distribution that would result if i decided to
leave the coalition and work alone. If the di�erence is positive, the presence of i improves
the distribution of wealth in S; if negative, it could be negatively a�ecting that distribution.
In summary, MCi quantifies the direct impact of player i participating in the wealth of
coalition S.

In the case of indirect marginal contribution, if i is not in S, we want to evaluate how the
situation would be a�ected if i decided to join. To do this, we consider how the total benefit
of the team in S changes when i leaves another team, T 2 P (which is not S), and decides
to work alone. This indirect marginal contribution helps us understand the potential impact
of i’s participation in S by considering their exit from another team.

In essence, we are exploring how the presence or absence of i can influence the group’s
benefits, either directly when they are already part of the team or indirectly when evaluating
how their decision to join would a�ect other teams. The structure of the partition is adjusted
to isolate i and evaluate this impact more clearly.

So, the marginal contribution represents the total wealth generated by the coalition S
that is distributed among the players according to the partition function w. The marginal
contribution of i in S is calculated by taking the di�erence between the original distribution
and the adjusted distribution when i joins or leaves the coalition.

This quantity reflects the specific influence of player i on the wealth distribution in
coalition S. If i has no influence (because he is a null player), the marginal contribution
will always be zero, indicating that their presence or absence does not a�ect the wealth
distribution in that coalition.

In this context, it is important to highlight that it is possible to express LSEN (Linear,
Symmetric, E�cient, and Null) solutions in partition function games as a linear combination
of marginal contributions. By focusing on the payment of player one (y1(w)), we have
shown that this representation provides a clearer and more accessible insight into how the
individual actions of each player can marginally a�ect the final outcome of the game.
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Example 4.6

y1(w) = 2b [w({1},{{1},{2},{3}})�w( /0,P)]+ Direct

(
2
6
�b )[w({1},{{1},{2,3}})�w( /0,P)]+ Direct

1
6
[w({1,2},{{1,2},{3}})�w({2},{{1},{2},{3}}]+ Direct

1
6
[w({1,3},{{1,3},{2}})�w({3},{{1},{2},{3}}]+ Direct

(b � 1
6
)[w({2},{{1,3},{2}})�w({2},{{1},{2},{3}}]+ Indirect

(b � 1
6
)[w({3},{{1,2},{3}})�w({3},{{1},{2},{3}}]+ Indirect

1
3
[w({1,2,3},{{1,2,3}})�w({2,3},{{1},{2,3}}] Direct

The expression y1(w) represents the specific payment assigned to player 1, calculated from
a partition function w. Each term in the formula reflects the contribution of player 1 in
di�erent scenarios, considering the coalitions in which they participate. The classification as
Direct or Indirect indicates whether the contribution is direct when present in the coalition
or indirect if not.

4.2.1 Null Players Definitions

Now we turn to di�erent versions of players who do not contribute to the game, commonly
referred to as null players. There are various iterations of null players, and each version
gives rise to a di�erent extension of the Shapley value.

In the Shapley context, given a coalition T , if i /2 T , then i is considered null. However,
this is not necessarily the case with the Myerson carrier in G̃, as players may have an
individual value but do not generate surplus when joining coalitions.
Example 4.7 In the context of the Shapley carrier T , if a player i does not belong to T , then
it is considered null. However, this condition does not necessarily hold in the Myerson
carrier, as we will see below.
i) Shapley: From Definition (3.2), T = {1} is the carrier of u 2 G if 8S ✓ N

u({2}) = 0 u({3}) = 0 u({2,3}) = 0
u({1,2}) = u({1}) u({1,3}) = u({1}) u({1,2,3}) = u({1})

and w({1}) arbitrary.
According to Definition (3.3), players 2 and 3 are classified as null in u 2 G if for
any subset S ✓ N.

u({2}) = 0 u({3}) = 0 u({2,3}) = 0
u({1,2}) = u({1}) u({1,3}) = u({1}) u({1,2,3}) = u({1})

Both definitions give us the same conditions; therefore, it is natural to obtain the
same Shapley value, i.e., if a player does not belong to the carrier set, then he is a
null player.
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For instance, let’s consider the following game, where {1} is a carrier:

u({1}) = 5 u({1,2}) = 5
u({2}) = 0 u({1,3}) = 5 u({1,2,3}) = 5
u({3}) = 0 u({2,3}) = 0

The Shapley value for this game is:

Sh(u) = (5,0,0)

ii) Myerson: According to definition (3.9), T = {1} is a carrier set of w2 G̃ if 8(S,P)2 E .

w({2},{{1},{2},{3}}) = w({3},{{1},{2},{3}}) = 0
w({2},{{1,3},{2}}) = w({3},{{1,2},{3}}) = w({2,3},{{1},{2,3}}) = 0
w({1,2},{{1,2},{3}}) = w({1,3},{{1,3},{2}}) = w({1},{{1},{2},{3}})
w({1,2,3},{{1,2,3}}) = w({1},{{1},{2,3}})

with w({1},{{1},{2},{3}}) and w({1},{{1},{2,3}}) arbitrary.

According to our definition (4.1) of a null player, players 2 and 3 are null in w 2 G̃ if
8(S,P) 2 E .

w({2},{{1},{2},{3}}) = w({3},{{1},{2},{3}}) = 0
w({2},{{1,3},{2}}) = w({3},{{1,2},{3}}) = w({2,3},{{1},{2,3}}) = 0
w({1,2},{{1,2},{3}}) = w({1,3},{{1,3},{2}}) = w({1},{{1},{2},{3}})
w({1,2,3},{{1,2,3}}) = w({1},{{1},{2},{3}})

with w({1},{{1},{2},{3}}) arbitrary.

Note that our definition of a null player and Myerson’s carrier definition reveal that
if a player is not in T , it does not necessarily mean he is null. This will be better
visualized in the following example.

Let’s consider the following game,

P Coalitions Worth
1 {1}, {2}, {3} (5,0,0)
2 {1,2}, {3} (5,0)
3 {1,3}, {2} (5,0)
4 {2,3}, {1} (0,7)
5 {1,2,3} (7)

The payo� for players, from the solution y(w) that satisfies the axioms of linearity,
symmetry, e�ciency and nullity, is

y(w) = (
19
3
�4b , 1

3
+2b ,1

3
+2b ) (E1)
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The following graph shows this family of solutions:

3

3

5

(�1
6 ,0)

(0, 1
3)

(19
12 ,0)

(�1
6 ,7)

(1, 7
3)

b

y(w) y2(w) = y3(w) = 1
3 +2b

y1(w) = 19
3 �4b

Figure 4.1 Family of linear, symmetric, e�cient, and null solutions for 3 players. Value
(E1).

In this context, the payments along the lines represent the payment assignments for the
players as a function of the parameter b . Each line in the graph corresponds to the payments
of a specific player, and its slope determines how those payments change as we adjust the
value of b .

1. Blue Lines (Players 2 and 3): Both blue lines are parallel, indicating that players
2 and 3 receive the same payment amount. The slope of these lines is positive (2),
indicating that the payments of players 2 and 3 increase as b increases. When b = 0,
both players receive a payment of 1

3 , and this payment increases linearly with b .

2. Red Line (Player 1): The red line has a negative slope (�4), meaning that the payment
of player 1 decreases as b increases. When b = 0, player 1 receives a payment of 19

3 ,
and this payment decreases linearly with b .

The intersection points with the axes indicate the payments when b takes specific values.
For example, the point (0, 19

3 ) on the red line indicates the payment of player 1 when b = 0,
and the point (�1

6 ,0) on the blue lines shows the common payment of players 2 and 3 when
b =�1

6 .
In general, moving along these lines in the graph reflects how the payment assignments

for each player evolve consistently in response to changes in the parameter b according to
the solution given by equation (E1), causing the multiplicity of LSEN solutions.

According to the above, we are dealing with null players in various forms, so we refer to
the corresponding axioms as null player axioms [1].

Definition 4.2 (Null Player in Partition Function Form Games, Pham Do and Norde [8]) Given
a partition function form game (N,w), a player i is a null player if for all P 3 {i},

• w({i},P)=0 and
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• w(T+i,P i(T )) = w(T,P) 8T 2 P

The first part of the definition states that null players have no value by themselves and
cannot create value by joining a coalition, that is, their marginal contribution is also zero.
This property does not say anything about the way such players a�ect other coalitions.

Our Definition:

• It focuses on the redistribution of wealth in the game when the null player is present
or absent in a coalition.

• It evaluates how the partition P changes when the null player is involved in a coalition
and when they are not.

• It does not establish specific conditions on the value of the null player or their impact
on other coalitions.

Definition from (Pham Do and Norde, 2007):

• It is based on two distinct conditions:
1. The null player has no value by himself and does not contribute to any coalition

they participate in.

2. The wealth generated in a coalition before and after the null player leaves their
coalition and joins another is equal.

• Does not consider the impact of the null player on the redistribution of wealth between
coalitions but rather focuses on their nullity in terms of contribution and maintaining
constant wealth in the coalitions, without considering their impact on redistribution.

In summary, the main di�erence lies in the focus of each definition: our proposal focuses
on how the null player a�ects the distribution of wealth, while the definition from the
literature focuses on the nullity of the player in terms of contribution and on maintaining
constant wealth in the coalitions, without considering their impact on redistribution.

Definition 4.3 (Dummy player, Macho-Stadler [11]) Given a partition function form game
(N,w), a player i is a null player if for all P 3 {i},

w(T+i,P i(T )) = w(T,P) 8T 2 P

Note that Pham Do and Norde require the wealth associated with the coalition {i} 2 P
to be zero for a player to be considered null, while Macho-Stadler does not include this
additional condition. Both definitions share the consistency condition of wealth in coalitions
that involve the null player.

Definition 4.4 (Efficient-Cover Null Player, Hafalir [12]) Given a partition function form ga-
me (N,w), a player i is an e�cient-cover null player if for all S ✓ N, the e�cient-cover
function w satisfies

w(S,{S}[ [S]) = w(S�i,{S�i}[ [S]+i)

Our Definition:

• It directly applies to a partition function in a game (N,P).
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• The comparison focuses on how wealth is distributed across di�erent coalitions with
or without the presence of player i.

• It does not make explicit assumptions about the structure of the remaining players in
the coalitions.

Hafalir’s Definition (E�cient-Cover Null Player):

• It applies to the e�cient partition of a game and its partition function w̄.

• The comparison is made in terms of how the e�cient partition behaves rather than
the original partition.

• It explicitly assumes that the remaining players in the coalition are singletons (indivi-
dual players without coalitions).

In summary, the main di�erence lies in the focus and the context of application. Our
proposal centers on the original partition function and applies more generally to di�erent
coalition structures, without making assumptions about the remaining players. In contrast,
Hafalir’s definition focuses on the e�cient partition and assumes a specific structure of the
remaining players (all are singletons) in the coalitions.

Definition 4.5 (Null Player in the Strong Sense, Bolger [13]) Given a partition function form
game (N,w), a player i is a null player in the strong sense if for all (S,P) 2 E and
T 2 P [{/ /0} where T 6= S,

w(S,P) = w(S�i,P i(T ))

Therefore, the value of a coalition is not changed if a null player in the strong sense is
transferred to another coalition in the partition. As a special case, looking at S = {i} shows
that the value of a singleton that is a null player in the strong sense is zero in any coalition
structure and, therefore, the term null is more appropriate. Notice also that i 2 S is not
required. In essence, this property captures the irrelevance of null players (Macho-Stadler
et al. [15]) in two aspects:

1. A null player in the strong sense does not contribute to a coalition since if i 2 S, then
the departure of i does not change the payo� of S. (Using the relation on T+i also
shows that i does not increase the payo� of T by joining.)

2. A null player in the strong sense does not generate externalities since moving i between
coalitions does not change the payo� of third parties, that is, coalitions S 6= {i}.

The concept of a null player in the strong sense is intimately related to extended carriers.
If C ✓ N and C�i, where i 2 C, are both extended carriers, then i is a null player in the
strong sense (McQuillin [14]).

Now,

• Nullity Condition: In our proposal, a player i is considered a null player if, for every
pair (S,P) in the e�cient coalition structure, the wealth generated by the coalition S
remains the same, regardless of whether i is present or absent in that coalition. In
Bolger’s definition, a player i is a null player in the strong sense if, for every pair
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(S,P) and for every set T in P (including the possibility of transferring i to other
coalitions), the wealth of S is invariant. This implies that a strong null player not
only doesn’t a�ect the coalition to which they belong but also does not a�ect other
coalitions to which they might be transferred.

• Contribution to Coalitions: In our proposal, it is emphasized that a null player does
not contribute to a coalition since their presence or absence does not a�ect the wealth
distribution. In Bolger’s definition, this is reflected in the property that the exit of a
strong null player (if i 2 S) does not change the outcome of coalition S, indicating
that this player does not contribute to the coalition in terms of wealth.

• Generation of Externalities: Our proposal does not specifically mention externali-
ties, but Bolger’s definition addresses this aspect by stating that a strong null player
does not generate externalities since moving i between coalitions does not a�ect the
rewards of third parties (coalitions S 6= {i}).

• Presence of Player i: In our proposal, it is not required for i to be present in coalition
S to be considered a null player. Bolger’s definition does not mention the need for i
to be present in S but focuses on how their transfer a�ects rewards.

Definition 4.6 (Null Player with Steady Marginality, Skibski [16]) A player i is a null player
with steady marginality if for all partitions P 2 P̃(N),

Â
T2P
T 63i

w(P(i),P)�w(P(i)�i,P i(T )) = 0 and (4.12)

w(N,{N})�w(N�i,{N�i,{i}}) = 0 (4.13)

The definition of Null Player with Steady Marginality by Skibski establishes a special
condition for a player i in a cooperative game. Skibski (2011, [16]) claims that a player that
is a null player in the strong sense is also a player with steady marginality, so, a player is
said to be a null player with steady marginality if, for all ways of partitioning the players
into coalitions, a specific condition holds.

This condition involves two parts:

1. The first part of the condition (4.12) states that, for each partition P that does not
include player i in any coalition T , the sum of di�erences between two wealth values
must be equal to zero. These wealth values are associated with player i participating
or not participating in coalition P(i).

2. The second part of the condition states that the wealth di�erence between the total
game N and the game excluding player i must also be equal to zero. This implies that
player i’s contribution to the total game and their contribution when excluding i along
with a coalition containing only i must be equivalent.

In summary, this definition characterizes a null player with steady marginality as one whose
contribution to wealth is consistent and balanced across all possible partitions of the player
set.

1. Di�erence in Formulation: In our proposal, the condition for a player to be null
is based on an equality that compares the wealth of a coalition with the wealth of
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the same coalition after removing player i. In contrast, Skibski’s definition is based
on two separate conditions: one related to the sum of wealth di�erences between
coalitions in a partition and another related to the wealth of the entire set of players.

2. Steady Marginality: Skibski’s definition incorporates the concept of steady mar-
ginality, which implies that player i cannot join an empty coalition and form a new
coalition. This restriction is not present in our proposal.

3. Relationship between Definitions: Skibski points out that a null player in the strong
sense (satisfying the conditions of our definition) is also a player with constant margi-
nality. However, the two definitions are not mutually related, indicating a di�erence
in approach and requirements to be a null player.





Final Comments

In summary, this work has focused on the quest for alternative characterization of Myer-
son’s value in partition function form games. Unlike Shapley, whose uniqueness is

established in characteristic function games, we have demonstrated that in partition fun-
ction form games, it is not possible to find a characterization that is simultaneously linear,
symmetric, e�cient, and null. This finding highlights the fundamental structural di�erences
between these two types of cooperative games.

The introduction of a null player in the characterization reveals a family of parameterized
solutions, indicating the diversity of possible outcomes and the lack of uniqueness in
this context. However, to achieve a unique solution in partition function form games, it is
suggested to explore additional axioms or consider more specific axioms that can constrain
the parameterization.

One possible avenue to attain uniqueness could be the introduction of additional cons-
traints on the alternative parameters, such as specific conditions on their values or rela-
tionships between them. These constraints could be derived from desirable additional
properties in the specific problem context or from empirical analyses of concrete situations.

In conclusion, this work not only provides a clear insight into the limitations of a
unique characterization in partition function form games but also suggests that the pursuit
of uniqueness could benefit from the inclusion of additional constraints based on more
detailed theoretical considerations or practical application of the model. These suggestions
o�er a valuable direction for future research, opening new opportunities to better understand
the nature of solutions in cooperative games.
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