THESIS SUBMITTED FOR THE DEGREE OF Doctor of Philosophy IN PHYSICS

CONSTRUCTION OF SU(N) PROJECTION
OPERATORS: APPLICATIONS TO
PARTICLE AND NUCLEAR PHYSICS

By

M. Sc. JoHANN EDIR HERNANDEZ YBARRA
SUPERVISOR: DR. RUBEN FLORES MENDIETA

August 2024

Universidad Auténoma de San Luis Potosi, San Luis Potosi, México



Abstract

Construction of SU(N) Projection Operators:
Applications to Particle and Nuclear Physics

M. Sc. Johann Edir Hernandez Ybarra

PhD Thesis
Instituto de Fisica

Universidad Auténoma de San Luis Potosi

Abstract: Projection operators for irreducible representation of SU(N') have been con-
structed, and a method to decompose any tensor operator which transforms under this
group is described. Two applications for the method have been developed, the first one
in the context of the 1/N, expansion of QCD, and a second one for the interacting boson
model (IBM).

Key words: projection operators, SU(N) group, particle physics , nuclear physics,
effective field theory.

Construction of SU(N) Projection Operators: Applications to Particle and Nuclear

Physics (©) 2024 by Johann Edir Hernandez Ybarra is licensed under Creative Commons

Attribution-NonCommercial-NoDerivatives 4.0 International

1



Contents

Contents iv
1__Introduction| 1
|2 Projection Operators for Irreducible Representations of SU(/V)| 3
2.1 Liegroups| . . . . . . . . 3
2.1.1 SU(N) group| . . . . . . oo oo i i 6

2.2 Projector Technique for SU(N)| . . . . . . . .. ... . ... 7
[2.2.1 Projection Operators for Tensor Space adj ® ady| . . . . . . . . . . .. 8

[2.2.1.1  Projection Operators considering N =2 . . . . . ... ... 13

3 1/N. Expansion for QCD)| 15
[3.1  Quantum Chromodynamics| . . . . . . . . .. ... ... ... ... ..... 15
[3.2  Spin-flavor Algebra in Large N. QCD| . . . . ... .. ... ... ... .... 16
[3.2.1  Expansion for QCD operators| . . . . . . . ... ... ... ... ... 18

3.3 1/N. Expansion for Chiral Perturbation theoryl. . . . . . ... ... ... .. 19
3.4 Projection Operators for SU(2) ® SU(3) Spin-Flavor Algebral . . . . . . .. 22

[4 Baryon-Meson Scattering] 27
4.1  Baryon-meson scattering amplitude at tree levell . . . . . . ... ... ... 28
f.1.1 Scattering amplitude from Fig. 4.1/ (a) and (b)[. . . . . . . . ... .. 29

[4.1.2  Explicit form of the scattering amplitude at tree level . . . . . . . .. 31

4.2 Example: Nm — N scattering amplitude| . . . . . . . ... ... ... ... 32
1.2.1 Tree-level scattering amplitude for Fig. 4.1 (a,b)|. . . . . . . .. . .. 34

1.2.2  Tree-level scattering amplitude for Fig. 4. 1] (c) . . . . . . . .. .. .. 38

111



4.3 First-order flavor symmetry breaking in the scattering amplitude]. . . . . . . 39

4.3.1 SB effects of the scattering amplitude for Fig. 4.1/ (a,b)| . . . . . . .. 40

.3.2  SB effects of the scattering amplitude for Fig. [4.1{(c)| . . . . . . . .. 44

.4 S-wave scattering lengths . . . . . .. ..o 45

[> Interacting Boson Model| 47
6.1 IBM-1in the rotational imitl. . . . . . . ... ... .. L. 48
(5.2 Projectors Technique for Higher-Order SU(3)-Invariant Operators in IBM |

[ Hamiltonianl . . . . . . . . . . . e 51
[5.2.1 4 body terms| . . . . . ... 51

[5.2.2  6-body terms| . . . . ... 53

[5.2.3  3-body terms| . . . . . ... 54
6__Conclusions| 58
|A Identities for SU(N) Structure Constants| 60
(B Operators Basis at Tree Levell 61
[C Operators Basis for First Order SB| 91
[C.1 Operator basis contributing to SB effects| . . . . . . ... ... ... ... .. 91
(Bibliography| 112

v



Chapter 1
Introduction

The concept of symmetry is relevant in all areas of physics. Specifically, gauge symmetry
is important for the description of elementary particles and the interactions into the Stan-
dard Model (SM) of particle physics. These symmetries have a well-defined mathematical
structure in the scheme of Group Theory.

One of the earliest application of symmetry groups was the study of the spin of particles
using representation theory and the SU(2) group, that is the special unitary group of di-
mension three. In a similar way, the advances in nuclear physics, lead to describe the bond
between protons and neutrons inside the nucleus via a strong force interaction, which has
an SU(2) invariance called isospin symmetry.

Then, in the decade of the 1960s, some different strong interacting particles were dis-
covered, so Gell-Mann proposed an organizational method for hadrons using irreducible
representations (irreps) of SU(3). Since the method uses the eight-dimensional adjoint
representation of SU(3), it received the name of eightfold way [1].

Consequently, the description for hadrons given by Gell-Mann, led us to the discovery
of three light quarks u, d and s, which fit the three dimensional representation of SU(3).
This symmetry has the name of SU(3) flavor symmetry, and hadrons have a description as
representation multiplets of this group. Moreover, the sector of SM related to the strong
interaction is addressed by quantum chromodynamics (QCD), which is a gauge theory of
quarks and gluons, where each quark comes in three identical states called colors. So the
symmetry for QCD is SU(3) color symmetry [2].

In general, the Standard Model describes three fundamental interactions through the



local SU(3) ® SU(2) ® U(1) gauge symmetry, where SU(3) is related to the strong force
and the product SU(2) ® U(1) describes the electromagnetic and week interactions.

The examples above are theories described by the special unitary group, but there are
many other examples. For instance, in order to understand the strongly coupled particles at
low energies in QCD, where computing properties is complicated due to the absence of an
small parameter, it is possible to consider a large number of colors. So, 't Hooft proposed
that gauge theories based on the SU(N,) group simplify in the limit N, — oo, where N, is
the number of colors [3], and Witten developed the first study of large-N. for baryons [4].
Later, Dashen, Jenkins and Manohar showed that in the large-/N, limit, the baryon sector
posses a contracted SU(2) ® SU(Ny) spin-flavor symmetry, where Ny is the number of light
quark flavors. Using the spin-flavor symmetry, it is possible to construct a 1/N, expansion
for any physical operator of QCD [5].

Additionally, the SU(N) group is useful in the analysis of some models of atomic and
nuclear physics. For example, the interacting boson model (IBM) possess a formulation
based on dynamical symmetries considering different chains of groups. Different subsets
of nuclei are described by different chains. In particular, the rotational subset of nuclei is
described by U(6) D SU(3) D SO(3), where SU(3) group appears once again [6-8].

Since the special unitary group describes symmetries in some different theories in nuclear
and particle physics. The aim of this work is to present a method to construct projection
operators for SU(N) in terms of the corresponding Casimir operators. The projection oper-
ators act on tensor operators that belong to tensor products of adjoint representation spaces,
decomposing them into different operators which transform under a particular irreducible

representation of the group [9].



Chapter 2

Projection Operators for Irreducible
Representations of SU(N)

The SU(N) group has many different applications in particle and nuclear physics, from its
algebra to the representation theory of the group, it describes some relevant physical sym-
metries. However, since the theories that involve this symmetry contain physical quantities
represented by operators that transform under particular representations of the group, it
could be helpful to construct a method to identify the different contributions from all the

representations included in those operators.

2.1 Lie groups

In order to define the SU(N) group and describe its structure, it is necessary to define a
group and some other mathematical objects. A group is a set of elements G = {a, b, ¢, ...},

which satisfy a multiplication rule (o) with the following properties:

e The product aob is an element of the group. It means that the group is closed under

this operation.

e The set GG contains a unit element e, which satisfies a o e = e 0 a = a for an arbitrary

element a € G.

1 1

e For any element a € G, there exists an inverse element a=, such that a o a™ =

aloa=e.



2.1. LIE GROUPS

e The multiplication is associative, i.e. (aob)oc=ao (boc).

Another important concept is the representation of a group. A representation of G is a

mapping, D of the elements of the group onto a set of linear operators with the properties:
e D(e) =1, where 1 is the identity operator in the space on which linear operators act.

e D(a)D(b) = D(ab), where a,b € GG, and it implies that the group multiplication rule

is mapped onto the multiplication in the linear space on which linear operators act.

Also, a representation is reducible if it has an invariant subspace S, which implies that the
action of the map D on any vector s € S is still in the subspace. Otherwise, if the represen-
tation does not have an invariant subspace, it is defined as an irreducible representation
(irrep) [10].

Then, there are some properties that define certain types of groups. First, if group
multiplication is commutative, the group is called abelian. If the elements of the group are
functions of one or more continuous parameters, this is a continuous group, and if continuous
variations of the parameters lead from any arbitrary element of the group to another, the
group is called continuously connected. Finally, if for each sequence within the group, there
exists an infinite partial sequence {a,} of group elements, and it converges to an element of
the group, i.e. lim a, = a, then the group is defined as a compact group [11].

In this way,n;oiie group contains elements labeled by a set of continuous parameters
with a multiplication rule that depends on the parameters themselves [10]. Additionally, a
Lie group is compact if the parametrization consists of a finite number of bounded parameter
domains.

The elements of a Lie group have the next structure

exp [iZB“X“] : (2.1)

where 5%a = 1,...,N are real numbers and X* are linearly independent Hermitian
operatord] The X® are referred to as the generators of the Lie group and satisfy the

commutation relations
(X, X" =ifeeXe. (2.2)

In this work, sum over repeated indices will follow the Einstein convention, i.e. M*N® =" M*N®.

4



2.1. LIE GROUPS

The f¢ are called the structure constants of the group. The vector space 3°X?, together
with the commutation relations (2.2)), defines the Lie algebra associated with the Lie group

and is completely determined by the structure constants.

The generators of the group satisfy the Jacobi identity,
(X X0 X)) + [X° (X, X)) + [X¢, [X*, X*]] =0, (2.3)
and it could be also written in terms of the structure constants as
fhee pacg | pabe poeg | peae pbeg _ () (2.4)

Also, there is an operator which commutes with the generators of the group, the quadratic

Casimir operator, which is defined as
C=X°X°. (2.5)

so it follows that [C, X“] = 0.

Now, considering the structure constants, they can generate a representation of the
algebra called the adjoint (or regular) representation. This is by defining a set of matrices
T4 such that

15" = —if, (2.6)

this constitutes a matrix representation, and its dimension is just the number of independent
generators, which is the number of parameters required to describe a group element. Since
the generators in the adjoint representation constitute a linear space, it is convenient to
define a scalar product, to turn it into a vector space. A suitable product is the trace in the

adjoint representation given by
Tr(T§TY) = ff**" = N6“ = Cu6, (2.7)

which is a real symmetric matrix and Cy stands for the Casimir operator of the adjoint

representation.



2.1. LIE GROUPS

2.1.1 SU(N) group

The special unitary group SU(N) is generated by the Hermitian traceless N x N matrices.
For this group, there are N? — 1 independent generators, so the dimension of the SU(N)
algebra is N? — 1. In the fundamental representation of the group, the normalization for

the generators is given by the scalar product

Tr(T°T) = %5“, (2.8)

and the Casimir operator C'r for this representation is given as

N? -1
ZTZB BC = 5N dac = Criac, (2.9)

where T'95 is the matrix representation of the generators.

Considering the adjoint representation, SU(N) arbitrary adjoint operators @ can be
defined, such that

[T°,Q"] = if*™ Q" (2.10)

The operators ()* can make up a basis for the vector space associated with the representa-
tion, also known as the carrier space, where the generators of the algebra of SU(N) in the
adjoint representation act. So, considering the adjoint representation of the generators 7',

the commutation relation above could be rewritten as

T9Q" =i f*eqQ. (2.11)

Moreover, the carrier space generated by the operators @ is known as the adjoint space,

and it is denoted by adj = {Q®}. Then, it is possible to construct another tensor space,

n
=1

it can be decomposed into subspaces labeled by their eigenvalues of the quadratic Casimir

by taking products of adj with itself n times. This new space is denoted by [] and

operator. A simple way to perform the decomposition is by adapting the projector technique

for reducible representations introduced in Ref. [9].

6



2.2. PROJECTOR TECHNIQUE FOR SU(N)

2.2 Projector Technique for SU(N)

Since tensor operators of SU(N), which are sets of operators that transform under com-
mutation with generators of a Lie algebra as irreps of the algebra, appear in some different
physical theories, it is helpful to construct a method to categorize the contribution from

each irrep to the operators.

From the work developed by Banda and Kirchbach [9], the decomposition of the space
given by the product of adjoint representations, where the tensor operators act, can be
achieved by adapting the projector technique for decomposing reducible representations. In

this formalism, there are projection operators (projectors) are defined as

(m) F O — Cp,
7) :H | > Cm#cniv (212>

Cm — Cp,
=1 m n

where k labels the number of different possible eigenvalues for the quadratic Casimir operator

and ¢, are its eigenvalues, which can be obtained from [12]:

1 n? ) )
- [nN_ S *Zci] (2.13)

where n is the total number of boxes of the Young tableau for a specific representation, r;

is the number of boxes in the 7th row, and ¢; is the number of boxes in the ith column.

Considering a SU(N) tensor operator in the form Hffl Q}, where each Q7" satisfies the
commutation relation (2.10), the projectors act over the tensor operator as

P(m) H ng — Qal--~an7 (214)
i=1

where the tensor Q% is an eigenstate for the quadratic Casimir C' with eigenvalue ¢,,,
such that
CQM " = ¢, Q™ (2.15)

Thus, it is possible to obtain a particular component for any SU (V) tensor operators, which

transforms under a particular irreducible representation.

7



2.2. PROJECTOR TECHNIQUE FOR SU(N)

2.2.1 Projection Operators for Tensor Space adj ® adj

Any irreducible representation of SU(N) that can be described by a multiplet has a repre-
sentation using Young tableau [I0]. For example, the fundamental representation is given

by just one box as

In this way, the adjoint representation can be written as

adj =

Following the product rules for Young tableau, the tensor product adj ® adj has the decom-

position
‘ , 112 11213 11213
adj @ adj =16 2 S5) S
2 2 213 1|4
3| 4
N-1 N-2
N—-1| N
11213 |4 1|2
2 S
2|3 213
314 3
N-1| N N-2




2.2. PROJECTOR TECHNIQUE FOR SU(N)

Using the notation from [5], the representations from the expansion are

B 1213 ~ 1213
as = sa =
2 2134
3|4
N-2
N—-1| N
~ 1|2|3]4 B 1|2
Ss = aq = )
2| 3 2|3
3|4 3
N-1| N N-2

and the complete decomposition of the product is
adj @ adj =1 ® 2adj ® as @ sa D ss D aa, (2.16)
and the quadratic Casimir eigenvalues c¢,, for each representation are

1: ¢y =0, adj : ¢; = N, as ®sa: co =2N,
Ss:c3=2(N+1), aa: cy =2(N —1).

These eigenvalues can be obtained from the Young tableau related to each representation

using the formula (2.13]).

Taking the definition from ([2.12]), assuming that there are five representations with their

respective eigenvalues, the projectors are given by

g — 0[10 + (1202 — 04303 + 04
4 )
Hi:l (Cm — cn,)




2.2. PROJECTOR TECHNIQUE FOR SU(N)

where the coefficients are given by combinations of products of the eigenvalues as

Oy = C’nl Cng Cn3 CTL47
O] = CpyCnyCnyg F CnyCnyCny + CnyCngCny F CnyCngCny,
Qg = CpyCpy + Cpy Cyg + CniCny + CnyCny + CnyCny + CnsCny,

and  ag = Cpy + Cpy + Cpg + Cpy-

As an important remark, notice that representations as and Sa are complex conjugated of
each other, so they share the same eigenvalue. For this reason, it is necessary to construct

a projection operator that includes both representations.

To compute the projectors, it is necessary to construct the quadratic Casimir for this
space and it requires the generators 74,. Since those generators act in the tensor space

adj ® adj, it is possible to write them in terms of 7' as

=131+ 1xTy, (2.18)
so quadratic Casimir follows
C=T5,134
=(T514+1T))(Ti1+1xTYH) (2.19)

=TT 1+ 11Ty +2T5 @T5.
By Schur’s lemma, the quadratic Casimir operator for adj satisfies 757 = N1, then
C=2(N11+T;1T%), (2.20)
and its action over a tensor operator Qlfl QSQ follows, from ([2.11}),
CQU QY =2 (Nghorghane — phone phaose) Qi g2 (2.21)

10



2.2. PROJECTOR TECHNIQUE FOR SU(N)

Hence, in components, C' reads

[C]alagblbz —9 (N 61)10,161)2(12 _ FblaleU«Q)

4 [N2 (2.22)
— ﬁ 7§b1al §b2a2 o 5b1b25a1a2 4 5b1a25b2a1 -9 (DbleCLlCLQ o Db1a2b2a1)

)

the second line follows the identities from Appendix[A] and the tensors F' and D are defined
as
Fa1a161b2 — falazc]cblblc Da1a2b1b2 — d&1&20db1b26 (223>

and d®° represents the fully symmetric coefficients, given by
1
abc a b c
d :ZTr({T ,T }T), (2.24)

and consequently, it also appears in the anti-commutation relation of the generators T of
SU(N)
a b 1 ab aberpc
{T,T}zﬁé 1+ d*°Te. (2.25)

Since projector operators include powers of quadratic Casimir, these powers are com-

puted by contracting the indices in the following way. For the second power
[02} aiazbibo _ [C}alagclcz [C]clcgblbz (226)

for the third power
[03} aiaz2by1ba _ [02] ai1azcicy [O]Cchble 7 (227>

and so on. Thus, from equation (2.17)), the projectors are

ajashy 1
[pO]ne m‘sa”%b”’% (2.28)
ata N 1
[P(l)} 1a2b1b2 _ e aiazb1ba + NFalalelu? (229)
P aijazbiba 1 1
|: (2)i| b1b _ 5 (5(111)15@21)2 _ 5(121)16(111)2) _ NFala2b1b27 (230)

11



2.2. PROJECTOR TECHNIQUE FOR SU(N)

N+2 N +2

(3) aiazbibz — 5015150252 5(1251511152 _ 5a1a25b1b2
[P*] w * Y 231
N + 4 ajazbibs 1 ai1biasbo asbiaibs '
S g D g (D D),
(4)] @razbibe :N —2 garbi gazbz | sa2bi §a1b N-2 Jaraz gbib
[P*] w * )t N D) 232
i N —4 Da1a2b1b2 . 1 (Dalblll2b2 + Da2bla1b2) .
4(N —2) 4 '
The above operators satisfy two important properties :
e The projection operators are orthogonal by definition, so
[P(m)]alagclcz [P(n)} c1cob1ba _ 07 - m 7é n (233>
[P(m)}IQM, m = n.

e The set of projection operators is complete, in the sense that the sum of all projectors

in the set is equal to the identity

4
Z [P(m)]a1a2b1b2 _ 5a1b15a2b2. (234>

m=0

Now, given two arbitrary adjoint operators Q?l and QSQ, the action of projection opera-

tors P(™ on the tensor operator Q}' Q% follows

b1bo 1

QU™ = [POQuQ™ = 0" @i, (2.35)

QW)™ = [PWQ,Q.) "

N | (2.36)
= NE 4Db1b2a1a2Q¢111 (212 + NFb1b2a1a2Qtll1 12127
blb blb
Q" = [PQ.Q)"™"
2.37
_ 1 ( b1 b2 b1 bg) o lFblbz(hazQal as ( )
2 1 2 1 2 N 1 2

12



2.2. PROJECTOR TECHNIQUE FOR SU(N)

QW] = [POQ1Q.)""

= % (QUQF +QPQY) ~ g1 N]fN_ = 0" Q108 (2.38)
n 4(];7\[—:42)13131172@1@2@?1@;2 + 411 (DblaleaQ + Dblagbgal) QU Q®,
QW)™ = [PWQ,Q,)"™"
= % (QrQy +Qras) + o N]<VN_ _2 1)6b1b2QTQ§ (2.39)
+ %Dblbﬂu@@? (212 o }l (Db1a1b2a2 + Db1a2b2a1) Q(lll 32.

The operators above on the left-hand side are labeled by the space representation they belong
to, since operators P projectors out those particular components of each representation,

respectively.

2.2.1.1 Projection Operators considering N = 2

The simplest case to apply the projector technique is considering the non-Abelian Lie group
SU(2). This group appears in the description of spin and isotopic spin (isospin) symmetries.
In those cases, the generators of the group are J* and I%, which correspond to spin and
isospin, respectively. Also, the structure constants for the commutation relations are €”*
(4,7, k = 1,2,3) and €*“(a,b,c = 1,2, 3), which are totally antisymmetric.

For this case, there are some important considerations. First, SU(2) doesn’t admit
representations for the eigenvalues ¢; = 2N and ¢4 = 2(N — 1) of the quadratic Casimir
operator in the adj ® adj. Then, the projector P is not well-defined in this case, so it
takes a different form for N = 2. Thus, it is possible to construct the projectors associated

with the eigenvalues ¢y, ¢; and c3 only.
While P is easily obtained from (2.28) as

[P(O)] ai1azbibo _ %5a1a26b1b27 (240)

PW considers the definition given by (2.12), so

02 - (CO + 63) C + copcs

(c1 — o) (e1 = ¢2)

PO (2.41)

13



2.2. PROJECTOR TECHNIQUE FOR SU(N)

Considering the eigenvalues for N = 2, it follows that

PY = (6C - C?), (2.42)

ol =

and using the expressions for C' and C? from egs. (2.22)) and (2.26)

[7)(1):|G1G2b1b2 _ % (5(111)16(12[)2 o 6a2b16a1b2) ) (243)
Analogously,
[P(3)}a1a2b1b2 _ % (6a1b15a2b2 + 5a2b16a1b2) _ %5a1a25b1b2‘ (244)

The action of the above protectors over an arbitrary tensor operator 1{1 22 defined in spin
space, project out the J = 0,J = 1, and J = 2 spin components of that tensor product,
respectively. A similar result can be obtained for isospin space.

As remark. according to the projectors structure described above, a spin-0 operator can
be obtained by contracting the spin indices of both operators (); and @)5. A spin-1 operator
can be obtained from the antisymmetrization of the operators. Lastly, a spin-2 is given as

the symmetrization of (); and ()5 subtracting the spin-0 component.

14



Chapter 3

1/N. Expansion for QCD

In particle physics, the Standard Model (SM) describes the four fundamental interactions
of nature considering twelve fundamental particles (six quarks and six leptons) and three
gauge bosons (gluon, W, Z). Quarks and gluons interact via the strong interaction, which
confines quarks in hadron particles.

Quantum Chromodynamics (QCD) is the theory that describes the strong inter-
actions in the Standard Model, and its development started since the proposition of the
FEightfold Way by Gell-Mann [13]. Fundamentally, QCD is a theory of quarks and gluons,
but at low energies, those particles are confined to baryons and mesons. Thus, there are
some different approaches to aboard the low energy sector, where effective field theories

stand out.

3.1 Quantum Chromodynamics

Quantum Chromodynamics is a non-Abelian gauge theory with gauge group SU.(3), where
¢ stands for color, coupled to the fermions of the theory (quarks) in the fundamental rep-
resentation. The most general SU(N)-invariant Lagrangian for a set of N fermions and N

scalar interacting with non-Abelian gauge fields is

L= (F) - 5(8 &) (acBy + gf ™ AL) &

( zﬂa“‘gA 0ij )V (3:-1)
+ [ (dr:0, ZQAZTm) M [(0s0u = igALTE;) &3] — MP67 6,

1
4
+ 9

15



3.2. SPIN-FLAVOR ALGEBRA IN LARGE N. QCD

where 1);, ¢; and A}, are fermion, scalar and gauge fields respectively, ¢* and ¢* are Feddeev-

Popov ghost and anti-ghosts, and
Fi, = 0,4, —0,A, + gf“bcAZA,ﬁ. (3.2)

This Lagrangian contains scalar fields even though there are no observed scalar states in
nature that are colored. Nevertheless, some theories include them, for example, supersym-
metric QCD [I4].

From the Lagrangian, it is possible to obtain the Feynman rules and use them to obtain
tree-level and 1-loop results. Those computations give us a result that QCD gauge coupling
gets larger at larger distances, which is the opposite behavior from Quantum Electrodynam-
ics (QED). This makes the phenomenology of QCD completely different from QED and it
gives us two characteristic behaviors: Asymptotic freedom and confinement.

Confinement implies that quarks are strongly coupled at low energies in hadrons, and
additionally, there is no expansion parameter to compute low energy properties of hadrons
in QCD. However, t'"Hoof noticed that QCD contains the parameter N, (number of colors),
and the theory simplifies in the limit N, — oo, which is known as the Large N. limit [3].

Even though this limit was proposed as a pure quantitative computational method, it
has given qualitative predictions. For example, the properties of baryons have been studied
in a systematic expansion in 1/N,, and also combined with some effective field theories
[T5HIS].

3.2 Spin-flavor Algebra in Large N. QCD

Considering the large N, limit, the baryon sector of QC'D possesses an exact contracted
symmetry SU(2Ny) = SU(2) ® SU(Ny), also known as the spin-flavor symmetry, where
Ny is the number of light quark flavors. For this symmetry, the quark representation is
based on the non-relativistic quark picture model.

In quark representation, there is a set of quark creation and annihilation operators ¢/, and
q“, where the label o = 1, ..., Ny represents the spin-up quarks and o = Ny, ..., 2Ny, the spin-
down quarks. Then, from the antisymmetry of the SU(N,) color group and Fermi statistics,
the ground state baryons contain N, quarks in the completely symmetric representation of

the spin-flavor group. This implies that it is possible to omit the color quantum numbers

16



3.2. SPIN-FLAVOR ALGEBRA IN LARGE N. QCD

of quark operators and consider them as bosonic objects in the spin-flavor analysis [5].

Therefore, the quark operators satisfy the bosonic commutation relation

[qa, q;} = 05. (3.3)

Quark operators can be classified according to 0-body, 1-body, 2-body,..., or n-body,
operators, it depends on the number of ¢ and ¢' pairs that the operator contains. So, there
is a unique zero-body operator, the identity operator 1, because it contains no g or ¢'. 1-
body operators are the quark number operator ¢'q and the spin-flavor adjoint ¢*A%q, where
A=1,..,(2Ns)?*—1, and A4 is a spin-flavor generator. 2-body operators involve two pairs
q and ¢, and so on. In general, a n- body operator is given as a combination of 1-body
operators as polynomials of order n.

The 1-body operators ¢t A%q can be written into a representation of the decomposition

of the spin-flavor group SU(2Ny) = SU(2) x SU(Ny) as:

Ji=q¢ (J'®1)q (1,0),
T =q¢'(1®7T"q (0, adj),
G=¢ (J'&T)q  (1,adj),

where J? are the spin generators, T are the flavor generators, G are the spin-flavor gener-

ators, and those generators satisfy the SU(2Ny) commutation relations given by the spin-
flavor algebra on Table [3.1]

SU(2Ny) commutation relations

[J3,T%] =0
[JE, JI] = iciik gk, [Ta7Tb] — j fabee
[Ji, GI4] = iciikGha, [Ta7 Gib] — j fabeGic
[Gz‘a,Gjb] _ i5zjfabcTc+ ﬁ(sabeijkjk+ %6ijkdachkc

Table 3.1: Commutation relations for spin-flavor 1 -body operators.

All operators above transform under the representations of the SU(2) x SU(Ny) group
given on the right of each one, and “adj” is the adjoint representation of SU(Ny). The set of
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3.2. SPIN-FLAVOR ALGEBRA IN LARGE N. QCD

indices (A, B, ...) indicates that the object transforms according to the adjoint representation
of the SU(2Ny) spin-flavor group, lowercase letters (a, b, ...) denote indices that transform
under the adjoint representation of the SU(Ny) flavor group, and the set (7, j...) is related

to objects that transform as the vector representation of spin.

3.2.1 Expansion for QCD operators

In QCD, the baryons are color singlet states of N. quarks [3], and considering the large
N, limit, any QCD operator has an expansion in 1/N, in terms of operators in the quark

representation. This expansion, at leading order, is

n 1 n
OQCD = C](i, )Nn_lo](g ), (34)
n,k ¢

where the sum is over all the linearly independent n-body operators O,in), withn =0, ..., N,
because there are N, quarks in the baryons, and all (’),(gn) , consider the same spin and flavor
quantum numbers as Ogep, which implies that they transform under the same irreducible
representation of the spin-flavor group. QCD dynamics is parametrized by the coefficients
c,(gn), which are of order unity, but it is possible to compute subleading 1/N, corrections to
the leading order expansion by adding 1/N. corrections to coefficients.

From the spin-flavor algebra, the commutator of an m-body with an n-body operator is

an (m +n — 1)-body operator:
[0, O] = lmn-1), (3.5)

this relation is relevant for the classification and reductions of operators in computations of
baryon properties and interactions. In contrast, the anticommutator does not reduce the
counting on the operators, so {O™, O™} is a (m + n)-body operator [5].

As an important remark, it is possible to construct a linearly independent and complete
operator basis of n-body operators, with particular transformation properties, using the
spin-flavor algebra, identities between n-body operators, identities for quarks operators,
and the evaluation of matrix elements for the operators. Also, the operator basis for any
SU(2) x SU(Ny) group representation contains a finite number of operators. However, the

process of construction of a complete linearly independent basis of n-body operators for any
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3.3. 1/N. EXPANSION FOR CHIRAL PERTURBATION THEORY

n is not well defined, so there is no systematic way to create it.

3.3 1/N. Expansion for Chiral Perturbation theory

The 1/N, expansion provides us with a systematic description of QCD operators in terms
of the spin-flavor algebra generators. However, it is not possible to describe the dynamics
of the theory because there is no way to construct a Lagrangian at this level. In order to
obtain a Lagrangian for baryons, some effective field theories are useful. Particularly, Chiral
Perturbation Theory (ChPT) describes the strong interactions at low energies, considering
a theory of pions and baryons instead of quarks and gluons.

The development of ChPT was started by Weinberg with his proposition of phenomeno-
logical Lagrangians to describe the low energy regime of QCD, for example, the computa-
tion soft pions matrix elements [19]. Chiral perturbation theory considers the light sector
of quarks u, d and s, in the limit where their masses vanish, that transform under the chiral
symmetry group SU(3) x SU(3)g x U(1)y for the QCD Lagrangian. This symmetry is
spontaneously broken to the group SU(3) x U(1)y by QCD vacuum, and as a consequence,
there is an octet of pseudoscalar Goldstone bosons, the pions [20]. The perturbative ex-
pansion of the theory uses pion momenta, quark masses m, and scale parameter of chiral
symmetry breaking A, ~ 1GeV as expansion parameters.

For baryons, there are some issues in the computation considering chiral symmetry,
but these problems can be avoided considering baryons as heavy static fermions. The
justification for this assumption is that the momentum transferred by pion exchange between
baryons is small compared to the baryon mass [21].

An interesting approach is to combine the formalisms for the 1/N. expansion and chiral
perturbation theory for heavy baryons in just one method. This combined method constrains
the low-energy interactions of hadrons with pion nonet 7, K, n, and 1’ in a more effective
theory. The expansion in mixed formalism considers a combined expansion in powers of
mg/ A, and 1/N, simultaneously about the double limit m, — 0 and N. — oo [22].

The 1/N, expansion with chiral perturbation theory provides us with a 1/N, chiral

Lagrangian, which describes the interactions of baryons and low-momentum pions as

L= Epion + ‘Cbaryom (36)
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3.3. 1/N. EXPANSION FOR CHIRAL PERTURBATION THEORY

where the pion contribution describes the self-interactions of the pseudo-Goldstone bosons,
and the baryon contribution treats baryons as heavy static fields with fixed velocity v*.
Since baryons have masses of order N, and, in the large N, limit, they become very heavy
relative to mesons with masses of order 1, some pion contributions can be neglected at
leading order in the Lagrangian.

The 1/N, baryon chiral Lagrangian for arbitrary N, can be written in the most general

form as

, T | 2I
Liaryon = 1D’ — Muyperfine + Tr (A"X9) AF + FCTr <Ak%) AR (3.7)

where

D’ =8°1 + Tr (VOX°) T*. (3.8)

Here, it is important to mention that each term in the Lagrangian can be expressed as a
polynomial of the 1 body operators, i.e., each operator has well defined 1/N, expansion. The
flavor indices in the Lagrangian run from 1 to 9 because the nonet of pion is considered.
Miygperfine T€presents the spin splittings of the tower of baryon with spin 1/2,..., N./2 in
the flavor representations. Moreover, baryon vector and axial vector currents are given by
W = !

(€0 + &%), AY =5 (eVFE - ¢TVEE) . (3.9)

N —
N |

In those expressions, £ = exp [iII(x)/f], where II(z) denotes the nonet of Goldstone bosons
fields as

AT ) mt KY
M(z) = " —m + g+ ) K (3.10)
K~ K° — 520 +17),

and f ~ 93MeV is the meson decay constant.
The baryon mass operator M has its 1/N,. expansion as [15] 23]
n=24 1

Nc.—1

where m,, are unknown coefficients. Since the first term is removed by heavy baryon chiral
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3.3. 1/N. EXPANSION FOR CHIRAL PERTURBATION THEORY

perturbation theory [21] and considering the physical value N, = 3, the mass operator is

defined as the hyperfine mass given by

ms
Mhyperﬁne = EJ2 (312)

Finally, there is one more operator on the Lagrangian in (3.7), A* is the baryon axial
vector current. It is a spin-1 object, an octet under SU(3), odd under time reversal, and its

1/N. expansion is [5]

N,
1 1
AR = a,G* + ) b, N — Dk 4 Z vl -0k, (3.13)
n=2,3 n=3,5

where O¢ are completely off-diagonal operators with nonzero matrix elements only between
states with a different spin, and DF¢ are diagonal operators with nonzero matrix elements

only between states with the same spin. The first terms in the expansion follow

Dy = JRT,
Olgc — Eijk:{Ji’ jS}’
Ds¢ = {J" {J",G"}},
1
Olgc — {JQ’ ch} _ §{Jk’ {Jr’ Grc}}‘
For higher order terms, there are two recursive formulas D = {J? D5} and OF =
{J? OFe,} with n > 4. From the definitions for the operator O,, it is forbidden in the

expansion for axial vector current since that are even under time reversal. Additionally, the

coefficients aq, b, and ¢, have expansion in powers of 1/N, and are order unity.

Considering the physical value N, = 3 the series for A* can be truncated as

A = aleC + sz ch + ng ch + C3 Ogc (314)

and this expansion extends up to 3-body operators. For octet baryons, the axial vector
couplings are given by g4 =~ 1.27 and gy = 1, as defined in S-decay experiments for neutron

decay. Analogously, the baryon axial current A* is a spin-1 object and a singlet under
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SU(3), so it doesn’t contain flavor indices, and its 1/N, expansion is [20]:

N

k 1.1 k

AF =3 B Dk, (3.15)
n=1,3 ¢

where DF = J* and follow the recursive formula DY = {J? D5 |} for m > 1. In these
expressions, the superscript on the coefficients for A* indicates that they are related to the
baryon singlet current. Again, considering the physical limit N, = 3, the expansion can be
truncated to get

11 1

AR = bt R 4 by W{JQ’ JkY. (3.16)

The complete analysis of the renormalization process for the baryon axial vector current

has been performed in [24].

3.4 Projection Operators for SU(2)®SU(3) Spin-Flavor
Algebra

Through the 1/N, expansion, it is possible to expand any QCD operator as a combination
of 1-body operator. Supposing that the most general 1-body operators are written as X,
whose indices transform as a spin-1 object and under the adjoint representation of the
SU(Ny). Then, the most general 2-body operator must contain two spin and two flavor
indices, the same applies for a 3 body operator, and so on.

In different cases, there are tensor operators that include three spin and flavor free indices
given by the processes involved in their respective Feynman diagrams. For example, the
renormalization of axial baryon current or the baryon-meson scattering process.

Since it is not always possible to compute the matrix elements for a certain combination
of operators, the usual way to deal with them is by expanding those operators in terms
of a basis composed of operators with the same or less number of bodies. However, this
decomposition is not trivial, because there could be a large number of operators in the basis.
So, a systematic method to classify the operators according to certain criteria is needed.

Fortunately, the projector technique developed in Chapter [2 is helpful for these cases.
Projection operators can decompose any n-body spin-flavor operator in components related

to a particular irreducible representation. Being that some hadron properties or processes
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are described by particular representations, the projector technique simplifies the compu-
tations and selection for operators that appear in the different decompositions for each

case.

For a general tensor operator with two spin and two flavor indices X{*®' X22* it is
possible to decompose them using the projectors from egs. ([2.28]) to . As the spin
components are independent of the flavor components, there are two different sets of pro-
jection operators. The first one, assumes N = 2 for spin, so the projectors take the form
given in egs. , and . The second case considers N = Ny and it works for
any value of Ny > 2. However, for tensor operators with three spin or three flavor indices,
the computations are more complicated. Since the flavor indices in those operators trans-
form under the representation adj ® adj ® adj, and this product has more representations in
its decomposition, the projector will contain higher powers of Casimir and the computation
for each one is not convenient for the application purpose. An example of the projectors

given by a component of this product appears in [25].

To implement the projection technique to tensor operators with three or more flavor
indices in a suitable way, i.e. avoiding the inconvenience of large computations due to

higher powers of Casimir, it is necessary to take particular values for Ny.

In the mixed formalism of chiral perturbation theory and the 1/N, expansion, the theory
is restricted to the light quark sector, so Ny = 3. Therefore, the spin flavor group is
SU(2) x SU(3), and the adjoint representation for SU(3) flavor group is 8.

Now, considering Ny = 3, an object with two flavor indices transforms under a combi-

nation of the representations given by the tensor product
88=162(8)® (104 10) & 27. (3.17)

In this way, the projectors are the same as eqs. (2.28)) to (2.32)), considering N = 3. With
the same value for Ny, an object with three flavor indices requires the decomposition for

the tensor product:
8®8®8=2(1)d8(8)®4(10 + 10)6(27) ® 2(35 + 35) @ 64. (3.18)
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For this case, the eigenvalues for the Casimir are:

1 _ 8 _ 27 —
Cflzwor - 07 Cflcwor - 3’ Cflavor — 87
64 _ 10+10 __ 35+35 __

Cflavor - 157 flavor — 67 flavor — 127

then, the construction of the projectors reads the same formalism as in the case of four

indices, as follows:

~ n: C102€3b1b2b3
P(m) c1coc3b1babs Cflavo?“ - szavor]l
flavor - H cn -
i=1 flavor Cflavor

1
—— — — |:Bl 5c1b1 5021)2 603b3 6C4b4 6C5b5 + 52[Cflavor]016263b1b2b3
Hi:l(cflavor - Cflavor)
2 ci1cac3bibabs 3 ci1cac3bibabs 4 ci1cac3bibobs
+ B3 [Oflcwor} + 54 [Cflavm'] + 65 [Cflll”m“}

} ci1coc3bibabs :|

(3.19)

Y

+ [C]?lavor

here, the coefficients are

_ _.m n2 n3 n4 ns
51 — CflavorcflavorCflavorcflavor flavor>

_ N1 12 n3 N4 n1 72 n3 ns
62 - cflavorcflavorCflavorcflavor + Cfla'uorcflavorCflavorcflcwor

ni no n4 ns ni n3 n4 ns
+ Cflavorcflavm'cflavorCflavor + cflavorcflavorCflavorcfl(wor

n2 n3 4 5
+ cflavorcflavorcflavor cflavor )

— U3 12 3 1 T2 Yz Uss 2 n5
B3 - (Cflavorcflavorcflavor + Cflavorcflavorcflavor + Cflavorcfl(worcflavor

ny
flavor

1

1 n3 74 n3 ns T4 5
+c Cflavorcflavor +c Cflavorcflavor + cflavorcflavorcflavor

flavor

na ns n4 na ns ns na ng ns
+ Cflavorcflavorcflavor + Cflavorcflavorcflavor + Cflavorcflavorcflavor

ns ng ns
+ Cfl(wor cflavorcflavor) ’

LN T2 Uss n3 71 T4 1 5 72 3
54 - Cflavorcflavor + Cflavorcflavor + Cflavarcflavor + Cflavorcflavor + Cflavorcflavor

ns ns n4

no n4 ) ns 4 ns5 74
tc Cflavor +c Cflavor + Cflavorcflavor + Cflavorcflavar + Cflavorcflavor7

flavor flavor

— _ (M 2 n3 Yz ns
55 - (Cfla'uor + Cflavor + Cflavor + Cfl(wor + Cfla'uor)7
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and the Casimir is defined by

[Cflavor]01C2C3blb2b3 _ [TZ]C10263d1d2d3 [Tg]d1d2dsblbzb3 7 (320>

where the six indices generators are

[TZ]ClCQCgblbgbg _ [TX]C162b1b2 (5C3b3 + 5c1b16cgb2 [TZ]Csbs
= (faclb1502b2 4 5clb1 facﬂ;g) 503b3 + 5clb1502b2 (_,ifa03b3) (321)
— (501121 502b2fa03b3 + 502172603(23 fllclbl + 5clb1 603b3fa02b2) )

Thus, explicit Casimir reads

[Cﬂavor]clczt:gblebg — (501d1 502d2fa03d3 + 502d2503d3 fflcldl + (5cld1 503d3fa02d2)
.22
% (6d1b1 5d2b2 fad3b3 + 5d2b25d3b3 fad1b1 + 5d1b1 5d3b3 f(lebQ) (3 )
and after some reductions, it takes the form:
C . ci1coc3brbabs — 6501171 602b2503b3 o 25clb1 facgbgfacgbg,
(Cstover | (3.23)

_ 2562b2 fa61b1 fa63b3 _ 25C3b3 fa61b1 faCQbQ]'

Even with the fixed value for Ny = 3, it is still difficult to use symbolic algebra to
compute operations between projectors with three indices. To cope with these difficulties,
it is better to implement a numerical procedure in this case. So, for this case, a matrix

numerical method has been created.

Each projector or Casimir operator with 6 flavor indices contains 8° elements because
each index can take 8 different values. To construct the projectors, Casimir operators have
all or half of their indices contracted, and the projectors are applied over spin flavor operators
with three flavor indices. Therefore, half of projector indices will be always contracted as

3b1b2b
P(m) creacstnhats Oblb2b3 or CclczcsblbzbsOblbzbsalaws
flavor 3—body flavor flavor :

To simplify the computations, it is possible to collect the first three indices (¢, co, c3)
and the last three indices (b1, by, b3) of Casimir and projectors in only two indices C' and

B respectively, and these new indices run over 8 = 512 possible values. This modification
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transforms the tensor projection operators into a matrix representation, and projectors are
now described as 512 x 512 matrices. Similarly, 3-body operators with three flavor indices
can be represented as vectors with 512 entries. Thus, instead of performing the index
contractions, it is only needed to compute matrix multiplications.

It is important to mention that this modification does not represent a loss of information

but simplifies the computation of numerical application of projectors over operators.
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Chapter 4
Baryon-Meson Scattering

In particle physics, the baryon-meson scattering process is an interesting topic that has
been treated using different formalisms. Since the first efforts from Deloff and Lipkin [26],
27], who worked on this scattering process in a quark model before the development of
more sophisticated methods for baryons and mesons, the problem has obtained important

advancements in the recent decades in the phenomenological and experimental bent [28§].

In the context of the effective field theories, baryon chiral perturbation theory (BChPT)
has obtained different phenomenological results as presented in Ref. [29], as well as HBChPT
which performed recent computations to orders O(p?®) and O(p*) [30, B1]. Besides pertur-
bative methods, different challenges must be treated by first-principles QCD calculations,
so the best approach for them is lattice QCD, which also has reported advances in the
computation of scattering amplitudes for baryon-meson systems [32].

One of the most outstanding approaches to tackling the baryon-meson scattering problem
is large N, QCD. The first work using this formalism to describe the process was made by
t’'Hooft and Witten [3, 4], where the baryon-meson couplings were set out for the first
time. From the analysis of the large N, counting rules for baryon-meson scattering, Witten
deduced that the amplitude for this process is of order one at fixed energy.

Subsequently, Dashen, Jenkins, and Manohar obtained important results on baryon
static properties considering the large N, power counting rules for multimeson-baryonObaryon
scattering amplitudes [16]. Later on, Flores-Mendieta, Hofmann, and Jenkins studied tree-
level amplitudes for baryon-meson scattering and deduced generalized large N, consistency

conditions, that are valid to all orders in the baryon mass splitting [33]. This mass splitting
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4.1. BARYON-MESON SCATTERING AMPLITUDE AT TREE LEVEL

is given by A = My — Mp, where My and Mg are the baryon decuplet and baryon octet
masses, respectively.

In this chapter, the 1/Nc expansion of the baryon operator whose matrix elements be-
tween baryon states yield the scattering amplitude is constructed. Also, the most complete
form of this amplitude is obtained by accounting for the decuplet-octet baryon mass differ-

ence explicitly.

4.1 Baryon-meson scattering amplitude at tree level

The analytical computation of tree-level amplitude of baryon-meson scattering describes the

process

B(p) + (k) — B'(p)) + 7°(K). (4.1)

The Feynman diagrams that represent the scattering appear in Fig. [4.1]

T b
B B’
(a)

T b
B = - B’
(b)
7Ta 7Tb
B - B’

(c)
Figure 4.1: Feynman diagrams for the tree-level scattering process (4.1)

In (4.1), B and B’ denote the incoming and outgoing baryons, respectively, with mo-
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menta p and p’. 7 represents the nine pseudo scalar mesons m, K, n and ' (nonet of mesons)
of momenta k = (k% k', k? k3) and k' = (K%, k"', k"2, k%), respectively, and indices a and b
indicates the flavor for the incoming and outgoing mesons. Additionally, soft mesons with
energies of order unity are included in the computations.

Since the analysis considers the decuplet and octet of baryons, the goal of this work is
to evaluate the scattering amplitude at tree level, considering the effects of the baryon mass

splitting A.

4.1.1 Scattering amplitude from Fig. (a) and (b)

The baryon operator that describes the tree level amplitude for the baryon-meson scattering
process, represented in the diagram (a) and (b) from Fig. [4.1] in the rest frame of the initial
baryon B, is given by [33]

ab Q7.7 i ]b ia
A% — kk Z (AT MM, ... M, A L,ﬂ] : (4.2)

tree ]{Z

_0 vV
n insertions

where f is the pion decay constant, A% is the baryon axial vector current and M is the

baryon mass operator. All of them are defined in Chapter 3, and assuming the physical value

N, = 3, so their 1/N. expansions are truncated. Then, as M is now Myyperfine from (3.11]),

mso can be set as mo = A. The numerical average value for this constant is A = 0.231GeV.
The first terms expanded in the series given by . ) look like

a 1 7 iaQ 1 j iaQ
Atfee = _Fk k/] kO [Ajb A ] kOQ [Ajba [M7 A H ( )
4.3

+— [Aﬂ’ M, M, A™]]] +

03

The amplitude A%

quently there are the next consistency conditions [15] [33]

@ o 1s constrained to be at most O(1) in the large N, limit, and conse-

(A%, A < O(N,), (4.4a)
[A7° [ M, A™]] < O(N,), (4.4b)
(A7 M, [M, A]]] < O(N.), (4.4c)
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where £°, f, and A are orders O(1), O(y/N.), and O(N_ ') in that limit, respectively.

Regarding symmetry aspects of A% it is a spin-zero object and contains two adjoint

tree’
(octet) indices related to flavor. The tensor product of two adjoint representations can
be split into a symmetric (8 ® 8)g and an antisymmetric (8 ® 8)g product, which can be

decomposed into irreps as

(8®8)s=1®8d 27, (4.5a)
(8®8)4 =8d 10 10. (4.5b)

In order to take advantage of the symmetry transformation properties of A% under
the spin flavor symmetry group SU(2) x SU(3), the projection operators from chapter [2| are
introduced in this problem.

For a general flavor value, the projectors from eqgs. (2.28) to (2.32)) can be adapted to
the irreps from , to obtain

1

[p<1>]“b0d — gabged, (4.6)
NI-1
aoc N
[P(S)] bed _ —fdabedCde7 (47)
NJ% —4
(27) abed _ 1 5a05bd 5bc(5ad . 1 5ab cd Nf dabedcde 4
[P 2 * ) N} —1 N?—4 ’ (48)
abed 1 abe rcde
[PE]™ = Ff be pede (4.9)
f
and bed 1 1
|:7)(10+10)i| — 5(6&65bd _ 5b05ad) _ Ffabefcde’ (410)
f
that satisfy the completeness relation
(PO PO 4 P 1 pioa) 4 o] T ocgit (4.11)

ab

& - It transforms un-

Defining [P(m)Atree]ab as the component projected out from A
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der the particular flavor representation of dimension m from the representations listed on
. Nevertheless, for computational purposes, it is more helpful to collect the opera-
tors [P(m) Atree} o using the transformation properties under the interchange of @ and b. In
this way, there is a symmetric projector [77(1) + P 4 77(27)] “> and antisymmetric projector
[P(BA) + 73(10“70)}&{) that pull out the symmetric and antisymmetric parts of A%

tree*

4.1.2 Explicit form of the scattering amplitude at tree level

The analysis for the baryon-meson scattering amplitude in the 1/N, expansion can be con-
structed in a similar way to other baryon properties or couplings, by expanding in terms of

spin-flavor generators. In this case, a detailed calculation can be performed by considering
the first summands of (4.3)).

By simple inspection, the first term is proportional to [Aﬂ’, Am}, and considering the
expansion for N. = 3, this term retains up to 5-body operators. Since the next summands
contain a mass term M and an extra commutator for each additional term considered. The

next two terms add up 6 and 7-body operators, respectively. In conclusion, A%  contains at

tree
most 7-body operators, if the three first summands are considered, and a complete 7-body
operator basis is needed to construct the 1/N, expansion of the baryon-meson scattering

amplitude.

The matrix elements of the operator A%  in the transition from the SU(6) baryon states

tree
for the incoming pair B and 7 to the outgoing pair B’ and 7’ describe the scattering
amplitude at tree level as

Apree(B + 7 — B' + 7°) = (B'n"| AL .| BT). (4.12)

tree

The flavors related to mesons are given by {1&%2,3, 13;%2, 4\_/%5, 6&%7, 43;%5, 6\%7,8} for

{W*,WO,W*,KJF,KO,K*,EO,?]}, respectively. As an example, Ayee(p + 7~ — n + 7°)
is given by (n7°| A3 +iA2 |pr~)/v/2. For simplicity, the i’ is not considered in these

expressions, but the analysis is straightforwards by using the baryon axial current A* = A®,

which can be written in terms of the operators G* = \/LEJ" and T° = %]l [20].
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Thus, the scatting amplitude process for the diagrams Fig.(a,b) has an expansion as

139
Apree(B + 7@ — B' + %) f2 0 Z ®) 1 @ik (B'7| S| By, (4.13)
where S{7)@) (m = 1,...,139) constitute a basis of spin-2 baryon operators, which are

linearly independent, with two adjoint indices and ¢ and ¢ are well-defined coefficients
which come along with the symmetric and antisymmetric components of A%’. The operators
S )(ab), and coefficients &) and ¢ are listed in Appendix .

The equation for the baryon-meson amplitude, as mentioned above, just describes
the first two diagrams of Fig.. Diagram (c), illustrates the 2-meson-baryon-baryon con-
tact interactions, which contributes to the amplitude with the term

A% = 3P (21<:° + M — M) fere, (4.14)
where M is the mass of the initial baryon and M’ the mass of the final baryon [33]. Since
this contribution is antisymmetric under the interchange of @ and b, and after applying the
projection operators, [P(SA)Avertex] o is the only component that does not vanish, which
implies that this term just contributes to the octet component of the total scattering am-
plitude. Also, A%

vertex

is order O(1), so this operator together with A%

tree

yield the leading
order O(1) scattering amplitude for baryons with spin .J in the limit of exact SU(3) flavor

symmetry.

4.2 Example: Nm — Nm scattering amplitude

The presented formalism can be applied to processes of the form B+7® — B’'+7® according
to the Gell-Mann-Nishijima scheme, which implies that the total strangeness must be equal
on both sides of the process, and the baryons in the process can be either octet or decuplet.
As an example, the nucleon-pion scattering process will be analyzed.

The particles involved in the process have different values for weak isospin 7', for pions
T =1, and for baryons T" = % Then, following the usual rules for the addition of angular
momenta, both particles can be combined in single states with 7 = 1 or 7' = 2. The

2 2
possible states are listed in Table
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3

15 = +% \/I|n7r+ )+ \/Elpwo \/g|n7r+> — \/g|p7r0>
Ty = —% \/7|n7r )+ \/7|p7r \/%|n7r0> — \/g]pﬂ_>

Ty =-3 |nm—)

Table 4.1: Allowed states for pion-nucleon system

Applying the usual Clebsh-Gordan technique the scattering amplitude for can be

decomposed into two different amplitudes A™), for T = 2, 2 To compute the amphtudes

the s-channel isospin eigenstates for the states hsted on Table 4.1] are

pr") = P +§> (4.15)
S S N S
!m°>=\/;‘§,+2> %’%+%> (4.17)
" e

SR
|mr>—\2, 2. (4.20

then, the amplitudes are [34]

Atree(p + ™ — D+ 7T+) = Atree(n +7 —=n+ 7T_) = A(3/2)7
1 2
Apee @+ 7 = p+77) = Agee(n + 77 = n+71) = —A(3/2> + —A<1/2),

l\D

Atree(p+7TO—>p—|—7T) Atree(n+77 —>n—|—7r) A(3/2 + A1/27

3
2 2
V2Aueo(p + 77 9 nt 1) = V2Aueo(n+ 77 = p 1) = S AW — S AN4.91)
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Moreover, there is a different set of invariant amplitudes, which can be defined in terms of
A®/2 and A1/2) for the N7 system as [35]

2 1 1 1
AH) = §‘/4(3/2) + §A(1/2)’ A = _§A(3/2) + §A(1/2)' (4.22)

All the non-trivial matrix elements &'k ( B'n?| S5 | Bz for nucleon-pion processes
appear on Tables tables and [B.2] As an interesting result, the symmetric component of
the amplitude is proportional to k-k’, similarly the antisymmetry component is proportional
to the third component i(k x k'), denoted as i(k x k')3.

4.2.1 Tree-level scattering amplitude for Fig. (a,b)

Combining the obtained results for matrix elements and the coefficients related to each one,

the scattering amplitudes for N7 processes at tree-level can be written as

25 , 5 25 1, 5 2%
B D = B b — i D - 22y, 1.23
[ 72T 36M T 108M T 2 T 10820 648 2 (4.23)
2. 2A  A? 1
+§|:1—k +W1 [a%+a163+zc§:|1k-kl
2% , 5 25 1 5 2%
2 by + —ayb B2+ —boby + ——b
+l72a1+36”+108a13+72 2 ¥ 70872% T Gag™
2 1A A2 1 A
9 |:1—§@—|— k :| |:CL%+CL103+ZLC§:|:| Z(ka,) +0 |:k03:|
= P Apee(n + 77 = n+77), (4.24)
kaOAtree(p—i_ﬂ-i _>p+ﬂ-7)
255, 5 25 s O 25 15
2 aib b B2+ —byb b 4.25
{72 “ 36a12+108a13+72 10827 T Gag™ (4.25)
2. 2A A2 1
_§ {1+F+W} {a1+a103+4c3} ]k Kk’
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25, 5 25 1 ) 25

202 by 4+ ——aqbs + —b2 + ——bobg + ——b2
* {720”+36“1 2 oM TR T g™ T Gag™
2 1A A? 1 , A3
_5 [1 + 5@ + W:| la% + aic3 + ZC§:|:| Z(k X k/)3 + O [W}
= PR Apee(n + 77 = n+ 7)), (4.26)
PR Agee(p + 7° — p+7°)
4 A 1 (25 5
=5 [a? + arcs + ch} k-k'+ _Eaf + ggabe (4.27)
25 1 5 25
2 by + —b2 + ——boby + —— 12
T l08™M T 2 g T g™
) A2 1,17, A3
_ 5 |:]_ + W:| |:CI,% + a1Cs + ZC§:| ’L(k X k,)S + O [W]
= 2" Apree(n + 7 — n + 1), (4.28)
V22K Apee(p + 7 — i+ 1)
25 5 25 1 5
_ [_ s — by — by — ool — Sbaby (4.29)
25 4 A? 1
— @bg—f—g |:1+W:| [a%+a103+10§:| :|kk,
2A 1.]. A3
+ 5@ |:G€ + aicCs + ZC§:| Z(k X k,)g + O |:W:|
= V2% Appee(n + 77 — p+ 7°). (4.30)

The past results can be written in terms of the SU(3) chiral invariant couplings D, F', C and
H from HBChPT [2I]. The relations between the 1/N, coefficients that appear on ([3.14))
as [20]

1 1

D= 5&1 + 6[)3, (431&)
1 1 1

F=_ —~by + = 4.31b
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1
C= —ayp — 503, (431C>
3 3 )
H= —§CL1 - 5()2 — §b3 (431(1)

Simplifying the expressions for amplitudes in terms of the chiral coefficients follows

1 1 kY K0
27.0 + Y — (DL 2| k- K
katree(p+7r —>p—|—71') |: 2( + )+9|: kO_A+3kO+A:|C:|
1 1 K° K°
(DL F)?_ — 214k x K')3
+[2< +F) 18{k0—A+3k0+A]01Z( < k)
= kaOAtree(n+7T__>n+7r_)7 (432>
PR Apee(p+7~ = p+77) = 1(D+F)2—1 3 oK C?lk-K
2 9| K°—A K+ A
1 , 1 kO k" 2| "3
+{§(D+F) _1_8l3k0—A+k0+A]C i(k x k')
= O Apee(n + 1t = n ), (4.33)
2 k° K°
27.0 0 o0y . _Z — Qk-k/
katree(p+7r —)p—|—7T) 9|:k.0_A k0+A:|C
1 1 k0 k°
(DL F?_ 2 21k x K3
J{z( +F) 9{k0—A+k0+A]C}Z( <1
= [ Agee(n +7° = n 4+ 7°), (4.34)
2 k° k°
9 21.0 - 0 — —(D F2 = 2 kk/
\/_katree(p+7T —>n—|—7r) |: ( + ) +9|:kO_A+kO+A:|C:|
1 k° k° 9
+ . (kK k/3
+9[k;0—A k0+A}Cz( <)
- \/EkaOAtree(n+7r+_>p+7r0)a (435)

that are valid to order O(A?®/k%). These expressions are consistent with HBChPT because
F and D come along BB vertices, where g4 = D+ F' is the axial coupling for neutron beta

decay, while C appear for BB7 vertices. Additionally, taking the limit A — 0, coefficients
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of the C terms do not vanish.

As for the Atie/j and (fef ) amplitudes, they are found to be

PROAGD
25 , 5 25 5 D 25 19
B2 by Dbyt b2+ boby 2
[36“1 TR T Ml T g T g0 T s
AT A A 1
9|:1+@+W‘| |:a%+a103+le§:Hk'k/
2% , 5 25 1 5 25
2 aibs + by + b2+~ boby + b2
+{72a1+3612+108a13+72 2T 1082 T oas™
2 A A2 1 A®
9 {1-{—@-}-@} |:a%+a103+ZC§:HZ.(ka,) +O|:k ] ) (4'36>
and
PPROAGY
25 2 5 25 2 5 25 2
{ 72T 36M7 T 1087 T 72 10827 7 6488
2. 2A  A? 1
+§ |:1— 0 +W} {CL%—Fang—l-Zc%:H k- K
2% , 5 25 1 5 25
2 b b B2+ —byby + — b2
+{72 1T ggM T g M T R T g T g™

2 1A A? 1 , A3
|:1 — 51{:0 + W:| |fl% +aic3 + ZC§:|:| l(k X k/)3 + O |:W:| ) (437>

or equivalently,

4 kO . 2 kY _ )
FR0ALD [(D + F)? — 970 Acﬂ k-k'+ {5(0 + F)? - 970 ACQ} i(kxk')?, (4.38)

and

f2k0A(3/2) _ —1(D+F)2—|—1 - K +3 K C*l k-K
tree 2 9 kO — A KO+ A
1 1 k° k° : ,
n {§(D+F)Q -3 [k:o — +3k0 +A] CQ} i(k x k)3, (4.39)
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which are valid to order O(A3/k0%).

Isospin relations

The resulting amplitudes for the nucleon-pion scattering at tree-level satisfy some interesting

isospin relations between different processes listed below

1
Atree(p + T — p + 77) - Atree(p + 7TO — p + 770) + _2Atree(p + ™ —n + 770) = 07

N

Atree(p + 7T+ — P + 7T+) - Atree(p + 7T7 — p + ﬂ-i) - \/§Atree(p + ﬂ-i —n + WO) = 07

Atree(p + 7T+ — p + 7T+) + Atree(p + T — p + 7T—) - 2Atree(p + 71'0 — p + WO) = Oa

1

V2

Airee(Dn + 77 =5 n+ 77 ) — Apee(n + 7 = n+ 7r0) — Apec(n + 7t = p+ 7T0) =0,

Aee(n +71 = n+77) — Agee(n + 7~ = n+77) + \/ﬁAtree(n +7at s p+ 7r0) =0,

Aee(n + 77 =0+ 7)) 4+ Apee(n + 7 = n+7) = 2Auee(n +7° = n+7°) = 0.

4.2.2 Tree-level scattering amplitude for Fig. (c)

The computation of the amplitudes for the contribution of the diagram (c) follows the same
process by using (4.12)) with the operator A% from (4.14)). So the amplitudes are

i kO

4 f?
= Ayetex(n+7 = n+7), (4.40)

Avertex(p + 7T+ — D + 7T+) -

i k°
4 f?
= Avertex(n +77 = n+ 7T+), (441)

Avertex(p + ™ — p + 7T—) =
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Avertex(p + 7‘-0 — p + 7.‘-0) = O

= Avertex(n + 770 —n+ 7TO>, (442)
i KO
Averex +7T_—>TL+7TO - -
§ (p ) 2\/5 72

= Avertex(n + at — p+ 770)- (443)

Isospin relations

Similarly, there are some isospin relations as in the previous case, which relate the amplitudes
as

1
-Avertex(p + T — p + 7T_) - Avertex(p + 7TO — p + 7T0) + _-Avertex(p + T —n + 7T0) = 0;

V2

Avertex(p + 7T+ — p + 7T+) - Avertex(p + T = p + ﬂ-_) - \/§Avertex(p + T —n + 7TO) = 07
Avertex(P+ 75 = p+7) + Avertex (0 + 77 = p+77) = 2Avenex(p + 70 = n 4 7°) =0,

1
Avertex<n + T —n + 7T—) - Avertex(n + 7TO —n+ 770) - _Avertex(n + 7T+ — p + WO) - 07

V2

Avertex(n + 7T+ —n+ 7T+) - Avertex(n + T —n + 77'7) + \/§Avertex(n + 7T+ — p + 7T0) = 07

Avertex( + 77 = 04+ 7)) + Avertex(M + 77 = 0+ 77) = 2Avertex(n + 7° — n +7°) = 0.

4.3 First-order flavor symmetry breaking in the scat-

tering amplitude

The total scattering amplitude obtained from the diagrams in the past section is given

in the exact SU(3) symmetry limit. However, this is still a rough approximation to the

39



4.3. FIRST-ORDER FLAVOR SYMMETRY BREAKING IN THE SCATTERING
AMPLITUDE

actual results, which should contain contributions from the effects of perturbative symmetry
breaking (SB) of flavor SU(3) symmetry. SB emerges on QCD from the light quark masses
and transforms as a flavor adjoint.

In this section, SB contributions are discussed for two different cases: Fig. [1.1] (a,b) and

Fig. 4.1] (c). Because each case involves different operator structures.

4.3.1 SB effects of the scattering amplitude for Fig. (a,b)

First-order symmetry breaking (SB) effects for scattering amplitude are computed from
the tensor product of the operator itself, which transforms under the spin flavor symmetry
SU(2) x SU(3) as (2,8 ® 8), and the perturbation, that transforms as (0,8). The tensor
product of three adjoint representations follows

So, effects of SB can be evaluated by constructing the 1/N, expansion for the compo-
nents of the scattering amplitude, which transform under SU(2) x SU(3) representations
(2,1), (2,8), (2,10 ® 10), (2,27), (2,35 ® 35) and (2,64). As in the past examples, 1/N,
expansions have to be expressed in terms of a complete basis of linearly independent opera-
tors { R(7)(119203)} \where the general operator R(7)(419203) 3 gpin-2 object with three adjoint
indices. First-order SB can be considered by setting one of the flavor indices to 8, in this
case, a3 = 8. The operator basis contains 170 operators listed in Appendix [C]

Since the operators for SB contain three free indices, it is necessary to apply the projector
technique from Section [3.4) where the projectors are given as in the equation . Also,
due to the complication of computations at this level, the numerical method to consider
projectors as matrices is applied as in the next examples.

The operator {T% {T° T¢}} contributes to the scattering amplitude of the process n +
7T — n+ 7t through the components with flavor indices a = (1 —i2)/v/2, b = (1 —1i2)/v/2,

and ¢ = 8. Using the matrix method, the (118) component of the flavor 8 piece becomes,

[P(S)]IIBCde{TC, {Td, Te}}
1 1 1 1 1
S %0 A (NG AR oy SC T A% Al AT G Al e R— A ol o

15 303 303 303 303
4 1 1 1 1

+ =TT + 7?7?78 — — 7?7 4 —— TS o TS Te
15 15 30v/3 30v/3 30v/3

1 4 1 1 1
— —=TT'T + —T°T*T* + —T°T°T° + —=T°T'T* + —=T°T°T"
30v/3 15 15 30v/3 30v/3
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1 1 4 1 1
S A Ay G o ALy UG bl Al o N Ay Al A A

30v/3 30v/3 15 15v/3 15v/3
— mT4T3T4 + Ti/gT“T“TS + 1—10T4T4T8 + Ti/gT“TGTl — ﬁT‘WT?
+ %T4T8T4 — %\BT5T1T7 — %\/gT5T2T6 — Fl\/gT5T3T5 + ﬁTF’T&"T?’
+ 1_10T5T5T8 4 Tl\/gTE)TGTQ 4 Tl\/gTSCZﬁTl 4 %TBTSTE) - ﬁjﬁjﬂjﬂ
— Fl\/gTﬁTQT5 + Tl\/gi’ﬁi’?’T6 + Kl\/gTﬁTﬂ‘Tl + f\@TGTST2 — ﬁﬂﬁﬁ
+ 1—10T6T6T8 + %TGTSTG o ﬁ]ﬂTlT‘% + ﬁjﬂzﬂjﬂ + ﬁq—qT?’T?
— Wl\/gWT‘*T? + Ti/ﬁWTSTl — ﬁT7T7T3 + %T7T7T8 + %T7T8T7
+%WTW+%WWW+%WWW+%%WW+%W@W+%WWﬁ
+ 1—10T8T7T7 + ETSTSTS. (4.44)

After obtaining the components for the remaining representations, the completeness

relation for the projection operators is fulfilled as
[73(1)+P(8)+P(1O+ﬁ)—‘1-73(27)+P(35+%)+7D(64)}1188d€{TC’ {Td,Te}} _ {Tl,{Tl,Tg}}, (4.45>
and computing the matrix elements of the operator (4.44]) is straightforward; therefore,

(e [P 54(T, (T T ) = 23, (4.46)

and
(nt| [P Te LT T Y na ™) = 0, (4.47)

for r # 8.
Repeating the procedure for all the flavor indices in {T“, {Tb,TC}}, it is possible to

obtain all the contributions of this operator to the chosen scattering process. For the

previously considered flavor indices, the resulting expression is

1

1 L , A 1
ﬁﬁkzkmaz] <nﬂ.+|[73(8)](1—12)(1—12)86de{Tc’ {Td, Te}}|n7r+> _ 5\/gk . k,, (448)
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and

1 1 . ;.. A A
Eﬁkjk/ﬂém [<n7T+|[P(m)](l_ﬂ)(l_ﬂ)SCde} {TC, {Td,Te}}|n7r+) _ O7 (449)

for r # 8.

Applying the process presented above for any baryons and mesons, and using all the
operators in the basis, the first-order SB contribution to the scattering amplitude, now

denoted as 0.4, can be organized as

fPE°%SA(B+ 1% — B' +1°) =
> [Neg™ Kk (B2 [P R | Bt 4 Nogl™ KR (B'n [P0 RED 9| B

16 71
+ (m)k:zk:/] B/’ﬂ'b P(m)Ry]) (ab8) Br%) 4+ — £m)k1kl] B,ﬂ'b P(m)R,E,U) (ab8) Br®
(B[P R B 3 g (P R
1 170 4
DI klk”(B’wb|[’P(m)Rﬁ”)](“bSHBw“)} , (4.50)
¢ r=T72

where gﬁm), r =1,...,170, are undetermined coefficients of order one, and the sum over m

covers the six irreps listed above.

Despite the large quantity of unknown coefficients, further simplifications can be achieved.
For any process, as the one exemplified here, there are some rearrangements for coefficients,

which make the obtained expressions simpler.

As an example, the component related to the flavor irrep 1 of A for the process n+7+ —

n + 7", using the matrix elements of the listed in Appendix [C], reads

W32 AV (n 4+ 7t = n+at)

= [6951) + %g%) + %géé) + %9%) + %géé) + %géi) + %895(;? + %895%) + %ggi
b ago) ool + gl + o+ ol + solh + sl + soldh + ol
+ 5o 5ol ot + o+ Solh+ ol + ol + Solh+ ol

Loy, 1o 1 o 1 a 1 @

(1)

1oy 1T o 1 g 1aqa 1 1 1 1
+ EQL&] + 6954)1 + 69%4)2 + 69%4% + 69144 + 69145 - Eguxﬁ - 1_89147 - Egms
I ny 1o 1o 1o 1o 1 g 1 g 1a
- 1—89§4)9} k-k'+ [gi )+ ggég) + ggéﬁ + ggésf + ggée) + 69((”) + ggés) + 6953)
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1 1 1 4 1 4 1 1 1 1 g4 1
+ 695(30) + 692(31) + 692&2) + 12952)2 + 139123 + o912 + 895225 + 8952)6 + 89%2)7
1 1 1 1« 1« 1« 1« 1« 1 «a
- ﬂggs - ﬂggg - ﬂg&% - E9§52J - Eg§5)1 - Eggz - Egg’) - Eg§5zl - E9§5)5
1« 1 1 1 1« 1 1 1 «a
- 1_69§5)6 - EQ&% - Eg&,)s - Eg% - Eg&s)o - Eg§6)1 - Eggaé - Eg&%’

@, 1 (1)

1 1 1 4 1 1 1
169§621 + 1_69§ ) + 1_69§6)6 + E9167 + 169168 + 169169 + 169170 (k X kl) (4-51)

(1) (1)

The applicability of this kind of expression has some disadvantages. The main one is

the impossibility of determining all of the free parameters. For the N +7 — N + 7 process,

simpler expressions can be derived by grouping linear combinations of coefficients g,(,m) into

new coefficients as
PRSAD (n 4+ 7t 5 n+a) =dVk-K + eVi(k x K')?. (4.52)
where the structure of d1); and e(1); can be easily found from (4.51)).

Therefore, the final expressions considering all the components for first-order SB effects

to the scattering amplitude for nucleon-pion process are given by

PRSAp+7t s ptrat) = @Y +d® 4+ a0 4 Pk K
—I— (egl) + 658) + 65104“10) + 27)) (k X k/)
= fRSAn+7 s n4m), (4.53)

PASAp+7 s p+a) = (@Y +d® — a0t _ g@) 4 g® 4 @k K
+ (egl) + 658) i 6510—&—10) + 6(28))i(k « k/)3
fPEO%SA(n+ 7t = n+7th), (4.54)

FPESAp+7° = p+a®) = %(mgl) +2dY +dY + df kK

1
+ 5264+ 2607 4 e )ik x K

= fPkP%0A(n+ 7" — n+7°), (4.55)
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V22K A(p + 7 = n+ ) = (2d"0 42477 — d® — dP)k - K
+ (2610710 4 @7 _ Bk x k)3
= V2f% A (n + 7t — p+n0), (4.56)

those expressions contain 11 unknown parameters. It should be remarked that irreps 35435

and 64 do not participates in the final expressions.

4.3.2 SB effects of the scattering amplitude for Fig. (c)

In a completely analogous way, the contribution of diagram (c) can be obtained. Here, the

operator A%

& tex 1S @ spin-0 object and contains two adjoint indices. Now, using the same

basis of 170 operators and contracting spin indices with 6%, just 59 remain. Then, after
analyzing the matrix elements, there is only one unknown parameter that is required to

parametrize SB effects from diagram (c). The amplitudes including SB correction for this

case read
10
(A+ A vertex(p+ 77 = p+7t) = —%F(l — hy)
= (A+0A)\atex(n+7 = n+7), (4.57)
. ko
(A+ 0A)yorex(p + 7~ = p+77) = %F(l i)
= (A+0A)vertex(n + 77 = n+77),  (4.58)
0 0 i kY
(A4 0A)vertex(p+ 7 = p+7) = Zﬁhl

= (A + 6A)vertex(n + 7 — n + %), (4.59)

i
22 f?
= (A + 5A)vertex(n + 7T+ —p+ 7TO), (460)

("4 + 6A)Vertex(p +1mT —=>n+ 7T0) =
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where h; is the new unknown parameter, and it is a combination of 1, 8, and 27 operator

coeflicients.

4.4 S-wave scattering lengths

The results presented so far can be applied to the computation of s-wave scattering lengths.
The N7 forward scattering amplitude for a nucleon at rest can be readily obtained from
Egs. and at threshold. Following the lines of Ref.[36], the s-wave scattering
lengths including the baryon mass splitting and first-order SB can be given by

1 m m, ] 4 A A2
ap — 2 Mniy, Mx D+F?— |14+ =4+ = |
‘ 4wf2{+MN} (D+F) 9[+mn+m2r
_i_dgl) +d(18) +d§10+ﬁ) —l—d??)
= at+2a", (4.61)
and
1 m m. ] '] 1 2 2A A2
G — My el ) S py Ry -2 2 e
‘ 4wf2[+MN] {2< i ”9{ m, | m2
10 3 3
+ dgl) 4 d§8) . 2d§10+10) i 2d§27) + §d§8) 4 §dg27):|
= a"—a, (4.62)
which of course are valid to order O(A3/m3).
Notice that in the limit A — 0 and removing SB effects,
aV? 4240/ = 0, (4.63)

which is a well-known result obtained in the context of current algebra [35]. It is important
to remark that relation is fulfilled even in the presence of the C? term, which accounts
for the contribution of decuplet baryons.

The usefulness of Egs. and relies entirely on the precise determination

of the SU(3) invariants D, F, and C and of course, the six parameters d,(fm) involved in
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those equations. A detailed analysis requires additional theoretical expressions for which
data are available and would involve processes including strangeness. This task implies a

non-negligible effort and will be attempted elsewhere.
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Chapter 5
Interacting Boson Model

In past chapters, the applicability of the projector technique has been shown and developed
in the context of the 1/N. expansion, where the projectors were applied over spin-flavor
tensor operators. However, this construction was possible due to the presence of the spin-
flavor SU(2Ny) symmetry. In general, it is possible to construct and apply projection
operators similarly if there is a SU(N) symmetry in the theory or model and the operators
of the theory transform under irreps of the symmetry group. As a last example, the projector
technique is applied in the context of dynamical symmetries for a nuclear geometrical

model.

The atomic nucleus is a system composed of non-trivial many-body quantum objects,
which have collective properties that produce a variety of deformed shapes. When a strongly
deformed nucleus rotates, it exhibits characteristic rotational band structures, but they keep
a certain regularity.

In order to study these many-body quantum systems, some different methods have
arisen. One of the most widely used in the understanding of the collective behavior of
nuclei is the Interacting Boson Model (IBM), introduced by Arima and Iachelo [6H].
The fundamentals for the formulation of the model lie in the dynamical symmetries, that
arise when the Hamiltonian of a system can be written in terms of the Casimir operators
of a chain of groups or algebras. One of the most relevant applications of the group chains
is the construction of bases in which the related Hamiltonian can be diagonalized, or the

bases transform as representations of appropriate groups [6].

In its early stage, the model was applied to even-even nuclei, to describe collective
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properties considering pairs of valence nucleons. The pairs conform to two types of bosons:
s and d, with positive parity and angular momenta L = 0 and L = 2, respectively. The first
version of the model, IBM-1, treats nucleons as a single kind of boson, while IBM-2, treats
protons and neutrons separately.

Considering the IBM-1, the spectrum generating algebra is U(6) and it contains, in one
of its chains, the SU(3) as a subalgebra which generates the rotational spectrum [6, [§].
For this group chain, rotational bands appear within the irreps of SU(3) group. In this
way, the IBM-1 Hamiltonian is written as a linear combination of linear and quadratic
Casimir operators of all the algebras involved in a given chain. Analogously to the 1/N,
expansion, linear and quadratic Casimir operators are usually referred to as 1 and 2-body
terms, respectively.

The main purpose of this chapter is to construct n-body contributions of the IBM-1
Hamiltonian, for n = 3,4 and 6, in the exact dynamical symmetry limit, by applying the
projector technique. (Also, for symmetry breaking, the same technique is implemented in

the PDS approach to construct n = 4 terms. )

5.1 IBM-1 in the rotational limit

Before work on the IBM-1, it is necessary to introduce the concept of dynamical symmetries,
which appear when a Hamiltonian H of a system can be written in terms of invariant

operators as

H= Zagc(;, (51)
G

where C¢ are the Casimir operators of a chain of algebras

Giyn D G1 D G2 D ... D Ggym. (5.2)

In this case, the spectrum can be obtained in an analytic way using eigenstates | Aqyn, A1, A2, . . .

and eigenvalues E(Agyn, A1, A2, - - ., Asym ), Where the labels Agyn, A1, A2, . . ., Agym are the quan-
tum numbers that characterize irreps of the algebras in the chain. In , G gyn stands for
the spectrum generating algebra of the systems, and operators related to physical observ-
ables can be written in terms of its generators and Gy, is the symmetry algebra. Moreover,

G gyn is broken and the remaining symmetry is Ggym, which is the true symmetry of the prob-
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lem [37].

Since IBM-1 is based on a unitary spectrum unitary algebra Ggy, = U(6) and it contains
the orthogonal subalgebra SO(3) related to angular momentum. Thus, the Hamiltonian is
expanded in elements of U(6) and consists of Hermitian rotational-scalar interactions, which
conserve the total number of bosons, N = N + g = sTs + Yo dindm. The model admits

three different chain algebras,

U(5) > SO(5)
U(6) > SUL(3) 5 SO(3), (5.3)
SOL(6) > SO(5)

where the first chain is related to the vibrational U(5) [7] and the third one describes ~-
unstable SO(6) limits [38]. However, the present work analyzes the rotational bands, so it

is focused on the second chain given by
U(6) D SUL(3) D SO(3), (5.4)

where the algebras SU, (3) and SU_(3) correspond to prolate and oblate shapes of the

nuclei, respectively.

In the context of dynamical symmetry, the Hamiltonian for the chain is
SUB) _ 1) (2) (2) (2)
H ( ) =C + CQCU(G) + C3CU(6) + 04050(3) — C5CSU:E(3)’ (55)

where C’(Gm) is the Casimir operator of degree m related to the symmetry group G. In
general, any n-body operator is constructed from the product of n creation and n annihi-
lation operators. For example, a quadratic Casimir operator contains two creation and two

annihilation operators, so this is a 2-body operator.

The eigenstates of the Hamiltonian are characterized by the respective quantum numbers

for each relevant irrep of each symmetry group as
|N7 ()\:I:au:t)vK:taL>a (56)

where N, (Ay, p14), (A, u—) and L are related to U(6), SU4(3), SU-(3), and SO(3), re-
spectively, and K, and K_ are multiplicity labels [39]. The quantum numbers of SU_(3)
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5.1. IBM-1 IN THE ROTATIONAL LIMIT

and SU4(3) can be obtained from each other under the interchange A <+ p, so just one
SU(3) is necessary from now on and its quantum number is denoted by (A, ). For these
new numbers, irreps with A > pu correspond to prolate shapes, and A < p correspond to

oblate shapes.

Thus, for a given N, there are several SU(3) irreps with (A, i) defined as [40]

no= 0,2,4,... (5.7a)
A = 2N—6l—2u, 1=0,1,...,N, (5.7b)

and for a given SU(3) irrep there are eigenstates with different L expressed in terms of

Elliott’s quantum number K [41]

K = 0,2,4,...,min(\, p), (5.8a)
0,2,4,...,max(\, u), for K =0,

I — (5.8b)
KK+1,K+2,...,K+max(\, p), for K > 0.

Now, the Casimir related to the SO(3) is the well-known quadratic angular momentum
operator

@
Csom = L2, (5.9)

which describes a particular rotational band according to the eigenvalue L(L + 1), for a
fixed (A, ). Then, considering the 2 body Hamiltonian from [5.5] the energy difference
between the rotational bands is given by the SU(3) quadratic Casimir Cé?(s)' Moreover,
the difference between rotational bands can be described by higher-order n-body SU(3)
invariant operators in the IBM Hamiltonian. So, it is necessary to create a general n-body
SU(3) Hamiltonian.

From the building blocks of the IBM model, creation and annihilation operators of the
s and d boson, it is possible to derive a quadratic Casimir for SU(3) as [8] [42]

2 a a
Ciyy =TT, (5.10)

where T are SU(3) generators and contain a suitable combination of creation and anni-

hilation operators which transforms under SU(3) and whose eigenvalue for a certain irrep
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5.2. PROJECTORS TECHNIQUE FOR HIGHER-ORDER SU(3)-INVARIANT
OPERATORS IN IBM HAMILTONIAN

(A ) is [43]
1
3

This eigenvalue describes the energy difference between rotational bands in the 2-body

(N2 1+ A+ 30N+ )] - (5.11)

Hamiltonian with the dynamical symmetry of the chain given in [5.4]

5.2 Projectors Technique for Higher-Order SU (3)-Invariant
Operators in IBM Hamiltonian

In order to obtain more control in the description of the energy difference between rotation
bands, n-body terms have to be added to the Hamiltonian, for 3 < n < 6. For even
interactions (n = 4, 6), some generators of SU(3) are contracted and the projector technique
is needed. For n = 3, a slightly different method will be applied. The case of n = 5 requires

a different analysis, so those operators will not be treated in this work.

5.2.1 4 body terms

Since T are 1-body operators and the generators of SU(3), these operators transform
under the 8-dimensional adjoint representation. Then, the most general 2-body operator
transforms under the tensor product of two adjoint representations 8 ® 8, which can be
decomposed as in Eq. . So, the decomposition of Q® in terms of the contributions for

each representation is

Qab — O[lQ((l{)) + C(g@?g) + 0510+T0Q?fo+ﬁ) + C(Q’?Q?g?), (512)

where each term Q?.b

1T

using the projection operators from eqgs. (4.6]) to (4.10), the components read

rep) 18 obtained applying the projector technique from Chapter , and

1
Q((lf) = §5abTeTe, (5.13a)
1
Q) = %DadeTCTd + G FTeT (5.13b)
1 1
ab arpb bra abcdrperpd
(10+10) — é(T °=1T°) - gF °T", (5.13c)
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5.2. PROJECTORS TECHNIQUE FOR HIGHER-ORDER SU(3)-INVARIANT
OPERATORS IN IBM HAMILTONIAN

a 5 a a 5 a e e 7 aoc C 1 ac aabc C
Qs = T3 (TT* +T°T) = 0™ T — oo DUITT? o 2D 4 D*)T°T. (5.13d)

Before continue with the computations, a simplification for the 10 + 10 contribution can be

achived
1 1
ab a b abedrperpd
(10+m) — E[T ’T]_EF TT
1 .
— §[Ta’ Tb] o %fabeTe
= 0, (5.14)
so Q reduces to
Q" = Q) + asQE) + 27 Q3. (5.15)

Now, the 4-body contribution to the Hamiltonian H® can easily be constructed by

contracting Q with itself as

H(4) _ Qaanb, (516)

and the Hamiltonian with up to 4-body is given by
c1 + 20y T 3C5e) T Calgoi) — Blgrs) ; (5.17)

here, the sign of the last two terms has been conveniently chosen to describe the experimental
spectra data for the nucleus, in terms of the SU(3) invariants. In the past expression, the

structure of H® is

HY = 20 + o2H{ + o3, Hy,, (5.18)
with
HY = é (T°T*)?, (5.19a)
Hé4) _ g pabedrparpbrperpd % abedpaqbperd (5.19b)
HY = g (T°T°)* +if**T*T"T* + ZT@T@ - gDadeT“TbTCTd, (5.19¢)

These expressions can be simplified and rewritten in terms of the quadratic Casimir ng(?)) =
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5.2. PROJECTORS TECHNIQUE FOR HIGHER-ORDER SU(3)-INVARIANT
OPERATORS IN IBM HAMILTONIAN

TeT*. For example using the commutator [T, T%] = i f*¢T° and the identity
dabcdadefbdf fcef (520>
it is possible to reduce D*TeTPTT? = L(T°T¢)* + {T°T*. Analogously, each term in

every component of the Hamiltonian can be reduced in terms of the quadratic Casimir as
[42]

4 1 9 2
ﬂ)=§kg&7 (5.21a)
@ _ lriae 17 3 @
Hs™ =3 [OSU(3)] 5 CSU(3)7 (5.21b)
27 2
4 _ (2) )
o = 40 [OSU(S)} B 1_0 Csus): (5.21c)

Thus, the final structure of the Hamiltonian considering 4 body contributions is

2 2
_ 1) (2 TR PR
H = ¢ + CQC )+ chU(6) + 04050 csCop o [C 03 )}

ag (@ @) ag; (27 )
- 38 ([CSU@)} - 3CSU(3)> 1%7 ( 4 [CSU(B)} - QCSU(3)) : (5-22)

5.2.2 6-body terms

From the construction of H®, the contribution to the IBM Hamiltonian of 6-body terms
can be straightforwardly constructed. In this case, the tensor product of three adjoint repre-
sentations is considered, and its decomposition follows [3.18, Thus projection operators have
the structure given in , which act over a general operator Q¢. So, the decomposition

for the operator follows

Q™ = Q((lf)C + OéBQabC + 0410+10Q 10410) T 0‘27Qabc) + a35+35Q(35+35 + &64Qabc (5.23)

where

Q) = PMTUT T, (5.24)
Then, the contribution to the Hamiltonian is
H(G) _ QabCQabc
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OPERATORS IN IBM HAMILTONIAN

6 6 6 6 6
= O‘%Hf : + SH( ) + 10+10H1(o)+10 O‘§7H§7) + O‘§5+ﬁH§5L35 + 64Hé4)’ (5 25)

where
a’t’'c'abc

H7(T(Li) _ [P(m)} Ta,Tb/TC/TaTbTC. (526)

Since the projection operators P has a complex analytical structure as has been described
in Chapter [2] the explicit expressions for the projectors are not available. However, following
the reduction method from [42], the structure of the components of H® can be obtained

in terms of the Casimir operators as

HO = g [ca] + 5 [ ]27 (527
o = ?Cgi}(g)——[ 2 r = el ]3, (5.27b)
A = L [e@s] +g[c<>(g)r_;[ Dol (5.27¢)
Y = 2~ 10 (O] + 5 [Coa) + 35 (O] + G270
He w = 0, (5.27e)
Y = 20015 000] + 5 [0 -~ 0] G20

Notice that H9 terms depend on powers of quadratic and cubic SU(3) Casimir opera-

tors.

5.2.3 3-body terms

SU (3)-invariant 3-body terms in the IBM Hamiltonian can be constructed using a modified
version of the method outlined in previous sections. For the decomposition of 8 8® 8, there
are two SU (3)-invariant components in the product T%T°T*. To isolate these components,

the following operators are utilized [42]:

[7)1(41)} a1a2b1bz _ %Fa1a2b1b27 (528)
alasbib 3
[,Pél)} 20102 _ gDawzble‘ (529)
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OPERATORS IN IBM HAMILTONIAN

These operators decompose the antisymmetric and symmetric 8 contributions of the
product T°T", denoted as (T°T")s4 and (T*T")sg, respectively.

If T4 denotes the SU(3) generators for the space spanned by the operators T, then the

generators T2, for the space spanned by the tensor product (7%7°)g4 /5T are given by

a 1 a 1 a
Ty =PsTs, @1+ P @ Ts, (5.30)
where
T3, =T{1+1Ty, (5.31)
with components
[T4]" = —if*. (5.32)

Thus, from Eq. (5.30)), the quadratic Casimir operator C' = T%,T%, can be expressed as
C =PI, T5, @1+ 2P T8, @ Th + Pl ® T4TY, (5.33)

where, by Schur’s lemma,
1474 = 31, (5.34)

and
T2ATy, =61 @1 + 275 @ T45. (5.35)

Using the identities from Ref. [42], we obtain

1 a a
P ToaTsy = 3P s (5.36)

Combining these results, the Casimir operator in Eq. (5.33)) simplifies to

C'=6Py)s®1+2G, (5.37)
where
_ o)
G = PYsH, (5.384)
H = T8 eT, (5.38b)
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with components

[H]a1a2a3b1b2b3 _ _(Fa1b1a3b35a2b2+Fa252a3b36a1b1) (539&)
[G]a1a2a3b1bzb3 _ [7)1(41/)5] a1a2by by [H]bllbéai”bleb?’_ (539b)

The projection operators 7520/)5 that separate the invariant components of (7T%7°)gx /s1¢
are given by
3 0—dPY. o1
~(0 " A/S
Pil/)s = H 06 _ C/~ ) (540)

i=1

where the coefficients ¢, represent the eigenvalues of the quadratic Casimir C' for the repre-

sentations 1, 8, 10 @ 10, and 27 in the tensor product 8 ® 8. These eigenvalues are:
=0, =3 =6 d=S8. (5.41)

Using Egs. (5.37) and (5.39)) in ((5.40)), the projection operators 7515‘0/)5 can be expressed as

[75(0)] aia2a3b1b2bs _ 2_].4fa1(12a3fb1b263, (542&)
|:75é0):|a1a2a3b1b2b3 _ %da1a2a3dblb2b3- (542b)

Therefore, the two SU(3) invariant contributions of the product of three generators T%T°T*

in the IBM Hamiltonian are

H® = qeberarbre, (5.43a)
a®» = peepertye (5.43b)

as expected. The term H,S?’) in (5.43) can be further simplified to
7® _ 3ipeqe

implying that the only genuine 3-body term that can be included in the IBM Hamiltonian

is Hég). This term corresponds to the cubic Casimir operator, whose eigenvalues for the
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irrep (A, ) are given by [44]

1

18(A—u)(2k+u+3)(k+2u+3)- (5.45)

5-Body Terms For 5-body terms, as outlined in the previous sections, the invariant com-
ponents of the tensor TT*TTT* are required. This product falls into the representation
8®8®8®8®8, which decomposes as

8R8R8®8®S = 32(1)® 145(8) © 100(10 @ 10) & 180(27) & 20(28 & 28)
©100(35 @ 35) @ 94(64) @ 5(80 & 80) & 36(81 ¢ 81)
®20(125) @ 4(154 @ 154) @ 216. (5.46)

Thus, there are 32 invariant components in T%T°T°TT*, which can be separated through
a systematic decomposition of the tensor space 8 ® 8 ® 8 ® 8 ® 8, and the corresponding 32
projection operators P with ten indices. The detailed calculations are overcomplicated
out from the illustrative purposes of this section, so they will be discussed in a separated
work.

The contributions obtained so far consider the exact dynamical symmetry, but this is an

ideal case. The complete analysis for a partial dynamical symmetry is constructed in [42].
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Chapter 6
Conclusions

Since the construction of the projection operators method [25], it has shown good applica-
bility over different theories of particle and nuclear physics.

The very first applications appeared on the 1/N, expansion for computations of baryon
properties as magnetic moments, quadrupole moments, baryon masses, and axial coupling
[18, 24]. Then, the method was implemented using numerical methods for the tree-level
analysis of the baryon-meson scattering. The results provided by the application of the
projection operators represent an improvement in the classification of n-body operators
that appear in the construction of the basis of spin-flavor operators. In this way, the
computations can be addressed more systematically, which also implies an improvement in
the 1/N, expansion formalism.

Moreover, projection operators were applied in the interacting boson model to construct
a higher-order Hamiltonian in the partial symmetries context. This was possible due to the
presence of the SU(N) group in the group chain of the rotational bands for atomic nuclei.
Additionally, in order to improve the predictive power of the theory, a Hamiltonian with
partial dynamical symmetry has been constructed [42].

The above applications are proof of the versatility of the projection operators since the
method just needs the theory or model to contain the SU(N) symmetry in the formulation.
Also, the obtained results from both cases are evidence of the improvement in the theories
generated by using the projectors technique.

In conclusion, the projection operators method represents an improvement in the clas-

sification of operators and a systematic way to construct operators that transform under
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particular irreducible representations, which can be applied in many different theories for

particle and nuclear physics.
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Appendix A

Identities for SU(N) Structure

Constants

The next identities can be derived from the fundamental structure of the SU(N) group

fabefcde + fczzefbde + fbcefade _ 07 (A]_)
2
facefbde — N (5ab50d . 6ad5bc) + dabedcde o dcbed(lde7 (A2)
1 N
fealflfc]cebmfmfd — 5 (5cb5da + 5ca5db =+ 2(scd6ba) + Z (feabfecd =+ deabdecd) ’ (A3>
2
fhalfelmffmehbnfenpffpd — % (fbeffad + ffaCffbd) + N(Sab50d + % (deabdecd + feabfecd) ’
(A.4)
2
—4
dabcdade bdf __ n cef A5
/ 2n U (4-5)
1
DclbchbQ + DClecle + Dclcgblbz — § (502b1501b2 + 5c1b1502b2 + 50162551172) . (A6)
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Appendix B

Operators Basis at Tree Level

The operators S5

Syj)(ab) _ Z-(;z‘jfabeTe,

S?()ij)(ab) _ ieijrdabeGre7

Séij)(ab) — giigab 2

S§ij)(ab) _ {Gib’Gja},

Séij)(ab) _ ieijr{Gra’ Tb},

Sﬁj)(ab) = 4 {Ji, G,

Sg)(ab) — ifeel Ji, Gie},

S%j)(ab) — fabeD;e7

ng)(ab) — T OlabeOge7

Sg)(ab) — ieimLm (G G,
S;ilj)(ab) _ Z-éijfabe{J2’ T},
Sééj)(ab) _ Z-Eimr{Gja’ {Jm7Grb}}’
Sy = i@ TG,
Séz%j)(ab) _ Z-eijm{Gma’ {JT)GTI)}}7
Séigj)(ab) _ ifaegdbeh{Th’ {Ji7 ng}},
S?()ilj)(ab) _ dabe[J2, {J’7 Gje}],
Ségj)(ab) _ Z-fabe[JQ’ {Ji’ Gje}],

61

that constitute the basis, comprising up to 7-body operators, read

Séij)(ab) _ ieijr(;abjr’

Siij)(ab) = 5L J I},

Séij)(ab) = {Gie, G,

Séz’j)(ab) _ 5ij{Gra’ Grb},

S%j)(ab) _ Z-Eijr{Grb, T},

ng)(ab) = ifeL ] Gy,

S&j)(ab) _ 5ijdabe{JT7 Gre}’
S%j)(ab) = i qebepre,

S&j)(ab) = e T T, T},
Ségj)(ab) _ Z-fabe{Te> {Ji’ Jj}}’
SE =i {2, Y,
Séij)(ab) — M {Gia (g™ G,
Sézéj)(ab) — LG L G,
Séisj)(ab) = G {G™ LT G} ),
Ségj)(ab) = 39 freh{T9 (]I GiM}),
Ségj)(ab) = d°[J2, {J7, G},
S50 = if (P AT, G,



S?()éj)(ab) = i [J2, {Gm, T,

Sét‘?j)(ab) = ¢l pabepre,

Ségj)(ab) _ Z-eijM{D;nb’ {J7, G},

Sﬁj)(ab) — QeI { J2 {G", TP,
sﬁ“—ﬂ%ﬂweﬁ}

S = {7 4G, Gy,

S(zg )(ab) _ dabe{{Ji’Jj}7{Jr7Gre}}7

Sig ) = e JF (G (T G,
Sy = i [{I T G AT G,
853 = ie™ {7 AT GOV AT, G,
S = i [ AG™ TG,
%“—wwawwm

SUab) _ gijgabf g2 21

Séilj)(ab) = id™ [ J2, (G, {J™, GTY,
Ségj)(“b) — ir fabeore

S = {ok, DI},

SE\D = {2 AT, G,

Ségj)(ab) _ Z-fabe{JZ, {Te’ {Jz’, Jj}}}’
SYab) _ jeiirgabf g2 £ 72 JrYY,
sgij)(““ — i J2 {9, {J" G
S = jeimrf J2 LGP (™, G},
S — jeam (2 fGma {7 G},
S%j)(“b) _ -faegdbeh{J2 {Th {J°,GI9} )Y,
SEPEO = amte{ 2 (2 {J7, G°H},
s&ﬁ“b<—zlﬂ{Jl{{Jr<rﬂ} {7, G™ 1},
= {J Y AT AT, G,

Sé?“““:=ieﬂm{{Jﬂ{;ﬂ,cmm}},{Jﬁ<?“}},
— Z'Gjlm{{(]i, {Jl,Gmb}}, {JT,GM}},

Ség]) (ab)
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Sééj)(ab) o Z'Eijr[J2 {Grb Ta}]

S = i T, PYATT G,
Sﬂ))(ab) _ ZE”m{'DZ o« {J7, Grb}}’
S =i {2 (G, T} },

Siij)(ab) _ Z'fabe{JZ’ {Jj’ Gie}}7

Siij)(ab) = {J2{G™, GI}),

S = 8P AT Y

S50 = i€ L G AT G
853V = i {1 AT G AT, G,
S = {6 0},

853 = eI (G AT, G,
Séé )(ab) _51]dabe{J2 {J7,GYY,

Ss " = {[7.G]. [, G},

Sé;])(ab) _ Zezgrdabel)ge7

_ iez‘jrdabeoge’

S = {Dy, OF'},
%“—U%WW@%}

SUINab) _ i pabef g2 £ J2 T},

S%j)(ab) _ Z-eijm{JQ’ {Jm7 {Gra7Grb}}}7
S(ij)(ab) _ Z-ejmr{JQ’ {Gi“, {Jm7Grb}}},
SUDMb) — jeimr( J2 LGP {J™ G,
S%J)(ab) _ ieijm{J27 {Gmb7 {JT7G7‘a}}}7
Ségj)(ab) _ ~daegfbeh{J2 {Tg {Jj Gih}}}7
S = dete {2 [ {0, G

S = (LT AT AT G,
S =i ({7, I AG™ (T G
SE =it L T G AT G
Se ) =it L TG T, G

Séﬁ;j )(ab)



S = eGP AT {7 G,
Sy = i ([P {GT T},
Sééj)(ab) = ifae{ g2 [J2, {7, G*N},

Sy = i f LT LT Y AT G,
Sog ) = i {2 ADY {7, G,

S = i {2 A{TAG™ T,

St = if LI AP AT G

St = {72 T2 AG". G,

Sigp ™ = 0L AP AT I
%W“ e L (AT GOV AT G,
IR = {° G 0F'}),

St ™ = ie T {2 (G AT G Y,
%JKWWWﬁUmeM}
St = {72 {17 GRL [P GMy

Sti " = i LI [T AGP AT G,
ngl)(ab) T dabeore

Stz " = i [T AT AT T,
Sy = eI LG T G
S Tt AN G PAN G
St = i€ T2 AL AG™ AT G
5%]1 )(ab) _ Zfaegdbeh{J27 {J27 {Th’ {JZ7GJ9}}}}7
Sgg(ab) _ dabe{JQ {Jz [J2 {Ji Gje}]}}

SN = e 2 { T LT, G { T G,
SERED = ™ T2 T AT Gy (T, G,

S%gg)(ab) —_ ZG'Lmr{JZ, {G‘jb7 {J27 {Jm’ Gr‘a}}}}.

(s)

The operator coefficients ¢;;, and 052) (m=1,...,
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Séiéj)(ab) _ Z'Eijr{J2 [Jz {G'ra Tb}]}
S =i 2 [T PN

Sé% 3)(ab) _ i fabeDre

S =i {2 Dyt {7, GV,
St = i {2 {2 G T
St = if LI AP AT G,
St = {7 A7 AG", Gy,

Stoe ™ = d LT LT T} ATL G,

SSRY =™ L2 T (T, Gl {7, G,
SN = e L2 {7, LT, G {7, G,
S = e (I[P AG™ T G,

St = 0P AG, G,

Siie ™ = §U8 LI {7, Ty},

SR = i (P[P AGT AT G,

Sggmb) — jélirgabepre,

S = i LS AT AT AT P

%vawﬂﬁwwﬂfm

St = i LI APAG T G

S = i LI A AGE {7 G

St = i (2T AG™ AT G,

Sy " = it AL AT L, G,

S = d (AP AP G,

Siio " = i LI ALT S SHAG (T G

S = iU ALT T G AT G
(B.1)

139) that that also appear on the



baryon matrix elements in (4.13)) are

& =0, (B.3)
& =0, (B.4)
AT 1
(s) 2
V- ] (B5)
g A
=15 54| (B.6)
LA
« =13 54| (B.7)
LA
) =5 |54t (B.8)
o AT 1
& = |34 (B.9)
- B.10
Cg ) ( . )
=0 (B.11)
10 — Y% .
S AT 1
=554 (B.12)
1 1 1 1 1 1 AT 1 613 1481
(s) - b - b—— —b2——b 2 = 1_- o 2
‘12 G102 T gMbs = gg@als 920y — 5obsC GG T g 1 9763 T 11664733 T 6998
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AT 1, 1 2 149
Sl Za2 o —ab _ B.13
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P N L P LS LI 1b . _ OBy T
“13 612 T g™ T g0 T g T gy T 10 | T916™M P T 11664 2 T 699843
A2 T 1 23
e [_galb?’ * 437403] ’ (B-14)
L AT
oty 0 [gaf] ; (B.15)
o = o [9“103 o8 T o] T | @) (B.16)
2 AT 7 A2 T2 1 13
O N St NUNIPS ictl S | e Payy SRS 2l (BT
o = TR RIS TGS T o { 388863] RTe {81 ST 1166463}’ (B.17)
(5) Ly Lpe— Lo At 1. 109 431 ,
ar eI T T 16 T o | T3™M T 9B T g T 77
A2 1 1 485
by — —— 29902 B.18
T [81 A T 2332863] ’ (B.18)
=0 (B.19)
18 — Y% .
o _2p 2, 1 L AT 1b+1272A2 2T
= —— —— a —ayc
cly = gl gt g | T3 T 3t T g3 302 | g1 MY T 97 M T 5ggg G|
(B.20)
2
(S) — _b2 _b2 b 1 2 é L 2 A_ _i b ]' 13 2
0 =357 5% T 5B T oS T 0 2502 T 02 | 52 M T 108 T Trre B
(B.21)
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o 1 2, 2 L, A T A 2 -
=— —— Gt — | ———|+— | —a - — —
“1 T RN TR TR T 1603 T k0 | 738883 T 102 |18 T 81 T 1S T 116643
(B.22)
O_ A A 2 5 A T G AM4 2 13,
G =~ el T 5uat — 3G T I | T rg3 102 | 24317 T g1 T 17496
(B.23)
e 1 L, A 1 L 269 ), A 1 75,
= ——ajc3— 3 — ———C5|+— | —=—=a1c3 — ——cC
23 T TINS5 k0 | T 216M P T 11664 2 T 3499273 T 02 | T 361 T 699847
(B.24)
) = _L c~|—4b ibc%—ic2—|rA ! —&04— 16702
Q0 T TIRUS T B TIPS T 5B T k0 1216M 7 T 11664 2 T 3490923
A2T 1, 4 17 547
W |i—§a1 8—1a1b3 + 324a103 + —6998403 s (B25>
© 1 2, 2, Lo AT 5 317, 6T,
= — — —bgcy — —c5+ — | ———a103 — ——
2 18113 T g1 T g1 162 3750 | T 216™ T 11664 2@ T 349927
A2 T2 1
S 2 20 B.26
AT [81a1 TR 69984 ] (B-26)
9 _ 1.2, 2 1, A5 3176_8032
o = UGS T gl T 1mS T 1w | 36M P T Tieea™® T 32992
A2T1, 2 5 517
222y Lo, — _ 22l 2 B.27
T {9“1 TR T 324 T Gogsa® 1 (B:27)
1 1 1 ATl 155 343
S o= b2 —bye — b33 — o~
a = gkt ips Tt {36“ “ " Toaq % 777603]
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A2T1 , 1 1 371
S — b+ ——aqey — 2 B.28
T Lsal 31M% T 108 T 2338 3} ’ (B:28)
2
o_ Lp 1, 1 o A 49, 605 - LA, 1 127 ,
s = g g T 1S T 0 | a8 ™ T 93308 | Tz | T 1™ T g1 M T 3™ T 7|
(B.29)
© 1o +1b 1, e AT PRIERY 14812
Cy9 = —a1bg— —ayc — -
29 gMP3 T RN T 520 T e T TS T 16 1916 T 11664 2 T 699843
AZT 1 1 2 149
T {_§a% ~gpbs  gyaes - 174966?"] ! (B-30)
o 1 1 Lo 1 AT 1 613 1733 ] APT1 23,
G = ~ghbstigaics—grbitarbacat g | Sreacs + rebsts — Gasr e | s | gbs — 437G
(B.31)
© Lo +2b 2, L AL 5 102, 33,
= — — — | ==a c —
31 187173 T 3 M B T g1 T g1 T 108 T ko |72 M T 516M A T 93308 T 8743
A2 T 1 o 2 11 2051
= |-= ab — 2 B.32
M { 184 T g1 M T Gag 139968631 ’ (B-32)
© _ 1., .1 162+1b L, A[ 1169, 1073,
G = —ygbs+gpaics — b+ grbscs — gordi + o | —mpabs — manes — gaaaabaes + anees
A2 1 1 1087
A% b 2 B.3:
02 {81 A T 13996863] ’ (
o _ AT 13 3 - A2 23 )] 534
5 7 30 (201670 T 34992 T k0% | 17496 (B:34)
AT 13 37 A2T 23
e bsc 20 |22 2 B.35
4 =30 | T 2916 0 T 340992 } T [1749663_ ’ (B-35)
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s Al
055):E Smaba |, (B.36)

_36 -
(S) . A [ ]_ T
€6 = 70 _%Chbz_ ; (B.37)
(S):é _i b_i _ﬂb _5472 A_Q L 257 5 B.38
e T O T el PR o] R
g 1 1 A% 1
Ci(’>8) = 2—7b2b3 — abQC;g -+ W [—ﬁ&lbg] s (B39>
g A? 1
62(39) = W |:—5—4(11b2:| s (B40)
A2 T1 1
() __ = | &
€10 = 12 _5400152_ ; (B.41)
- -
(S) . A 1
1 = 0 _aéhbz_ , (B.42)
o A? 1
o = 702 [—5—4@152} ; (B.43)
1 1 1 A 31 29 A? 2 1 11
(s) _ 2 2 2
Cy3 = abgCg—i—gbgCg—@C?,—F@ |:— 1944b303 + _388803:| +W [—8—101103 — EbgCg + @03} s
(B.44)
s 1 1 1 , A 31 43
= 5T T 1S T 0 1041 T 388
A? 1 2 1 1 1
+ p |:2—76L1b2 + 8—1a1b3 - ﬁalcg - @5303 - @Cg] , (B45)
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AT1 4 191 191 A2 1 493
©_ 211 4 il SO 2 L2 |2 2 B.46
5= o lz’r‘“ 37 970 T 9976 218703} e { 511 1749603] . (B46)
o_A[ 1 . 2 491 2092 AT 1 493 BT
a6 = }0 { o7 ibs = grancs = garglacs + orgr| e (10t raggs) 0 (BAT)
AT 1 1]
(s) _ 2
“T TR0 |75 T 486 (B43)
g0 AT 1 1]
i = 70 __8_1 13 — 72903_ ; (B.49)
AT 1 1 A2 7
@ _ A 2| LB T B.50
¢ = 70 | 1922™ T 3016 } T _1166403] ’ (B:50)
o A 1 1 40 191 ,] A2[ 1 198 5] ne
%50 = %o { 27l = 55010 ~ Tiga" t grag | T e? (3224 F Goosa ) (B
AT1 1 491 209 A2 1 493
) _ B b _ 2 L 2 - 2 52
517§ {54 M08 T 7B T 166470 874803] T { 32411 6998403]’ (B:52)
w A1 485 115 ,] A2 1 535 5o
2 = %o [216 M T 16640 T 13723 T 7 | 7324 T Goosa® (B:53)
AT 1 1 485 62 A? 535
@_Af 1 _ 48 il B.54
55 = o { 5210 T 5750 ~ 11664 0% T 97575 ]+k;02 {324 s+ 6998463]’ (B:54)
g AT 1 4
Cé4) =70 [—§CL1C3 — %03} ; (B.55)

69



Al 1 1
(s) _ 2
55 L0 [27 1bs 54a103 243 } (B.56)

céSG) = % 2i7a1b3 + 2—17a103 + %bgCg — %03] + ?—OZ [—%alcg — %ci] ,  (B.57)
Ct(')S?) = lﬁj { 227 ayc3 — 212136%} ) (B.58)
Césé) = lﬁ) -2—17CL103 + % | ; (B-59)
= |G+ o] (B.60)
céso) = % [5%1@103} : (B.61)
&) = % [—5%1@1@} : (B.62)

(s) A? 4
o = 15 {7296 @03} : (B.63)
&) = % [—9%63 cs + % 2} + kA—OZ {%9(:31 , (B.64)
ol = li {514@” s 7121903} * ?2 {7;963 s 73903] ’ (B:65)
céSS) = % :—%bgcg - %c%} + kA—OZ {%cg , (B.66)
o :% :_ 11112863 e 8173418 2} * k;A_OQ? [3%63: ’ (B-67)
&) = % 2;61)303 - %cﬂ + kA—OZ [_671865} ) (B.68)
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AT 1 A7 A2 19
(s) _ 2 il 2
o8 = 3o {32463 Gt 874803} e { 1749663] ’ (B-69)

W L 1y +1 —l—A ! 2—|—A—2 L by 4+ ——ares — ——bye 5T
69 = 762737 162 2T 648 TR0 | 77763 T k02 | T 162170 T 3244 T 486 23328
(B.70)
g 1 A2 1 2 1
Cr(m) = @Cg + W {8—1@03 + ﬁgbgCg — HQC?{| s (B?l)
DN B P (B.72)
11T 02 | 2187 3 T 21873 '
72 = 0 [291663] T [T T g 725 (B73)
1 Al 7 65 A2 T 1 5
(s) -2 = | _ b 2 = |_ = v 2 B 4
3 = "1 c3+ 0 { 972”8 C3+ —5on 58303 } + 102 { g7 ¢s 72903} (B.74)
@ 1, AT 65 ,] A2] 1 4 5
R TR [ﬁbg’c‘“’ ~aea | e | T T gt tiggs) . (BTY)
(S>_—452 4, 12A T 132A—2ib—3 2, 5,
= TRI TR TR ST 0 o7 T Taps®| oz |31 ™ T g1 T 79 T Bg5
(B.76)
1 A 31 A2 1 2 1
6 _ _+ 2, = O 2 2 s _ 2 B
6 = 1623 + 0 [ 97253 3+ F332 3 ] + 102 {2761103 + 7295363 72903} ; (B.77)
g ALy W) AL .
C”‘kO[ 8172 T 7% | T e (BTN T 1521 72933+729 (B.78)
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©_Af2, 4 L) AT 11 L B.79
78 = §o {81 5~ Tp5s %3] T [Tl T 1 T gl F g (BT9)
= Ly ! +A L —1—29 2+A—2 2 ey — e +11 3
g 1623 10 | 71044 2 T 38883 T k02 | T 81 M T 243733 T 58323 |
(B.80)
1 1 AT 31 43 A2 2 1 1
(S) — b 2 i b 2 = |1_= b . b
G0 = TR T S o { 194475 T 3383 ] 02 { S1bs + g + gt 7556
(B.81)
c(s)—lb — —|—A 67b +ﬂ2+A—2 —iac—ibc—i-lc
5L 16209 7 304 s 0 | 73888 2 T 933083 T o2 | T g1 M T 7293 T 4303
(B.82)
c(s)——ib —i—l —i—A > _ 4 +A—2 —iab—l— —ayc —i——bc—ic2
827 7762 2930497 k0 | 3888 2 T 23328 3| T 02 | T 1P T 1621 T 72933 T 14583
(B.83)
S AT 7
o _A[_ 17, 1312 AT 1] B
Sl bl el P 85
T30 | s30T 32002 T 0 | 1206 (B:85)
AT 1 A7 A2 19 ]
5 _ A _ of L BT |V 2 B.86
w0 T 30 | 648 T 17496 } T [3499203_ ’ (B-86)
2
(S):__b2 1b Ll a AT L AL b—i 13
oo = 7" T g1 T 5003 T o | T3sse @] T o7 |31 T 162MP T 116643
(B.87)
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7 = % {_1219687303 - ﬁc‘z’} * /?_OZ {_1:32 s+ % 2} (B-88)
&) = % {121961)3 cs + % } + kA—OZ {—%cg} : (B.89)

& :% [12196 T %63] ,ﬁ; {162 e %6?64 2} (B-90)
i = /ﬁ) [_12196173 Gt 7§§6 2} * kA_OZ {%Cg} ’ (B-91)

sl = %bQ 84 bscs + 821 “ +/§> {1974403} /f_oz [ 841‘“b3 * %‘“C?’ N 551522 31 - (B92)
) = ké {3%17203 — 3%1)3 c3 — % 2} + kA—OZ [%cﬁ} : (B.93)
ey = ké [3%52 ¢+ 251):66 %cgl + kA—OZ {—&cg (B.94)
s % _1974463 Gt 2£1)I6 2} * k:A_OZ [ﬁcé: (B-95)

i = Iﬁ] _19744 36 2;664 lf_oz {_fwcg: (B.96)

i = Iﬁ) [1(152b3 @ 2;60‘3’} ’ (B.97)

et ﬁf; —&bzc; : (B.98)

i kA—OZ —ﬁbﬁg- : (B.99)

5 = kA—z {ﬁ 2C 3} ; (B.100)



AT 1
oo = {—6203} ; (B.101)

k02 | 486
i = kA—OZ [—%5203} , (B.102)
cfh = ?—; {—%05} : (B.103)
€103 = ?2 {%@Q& + %b:a% - %903} ; (B.104)
Cgsb)z; = % {—%b:}, c3 + %Cg} , (B.105)
ol = % [%bgcs - %cﬁ} , (B.106)
e = % {—9—;264 : (B.107)
o = % [—%‘58(/@1 : (B.108)
ol = % [—ﬁbg s + 29716 2] (B.109)
ol = % [—ﬁbz%c:s + 7719%} , (B.110)
o = kA [4;663 c3— 2;16%] , (B.111)
o = % {%03] , (B.112)
o = kA [Qi?)bz cs— 72903} , (B.113)
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137 o | g1 2 T 145873

© _ A1 1,

S Al 1
C%Z@ @03 )

S AT 1

051)62@ @03 )

L A8

W™ 10 [ 7297317

(s)

& - —

CESQ)O =0,
6552)1 = 07

A 1, 1,
Cl2z = 3 | T a8 T 59165

Lo AT L,
123 ]{;OQ 1458 31

0552)4 =0,

o A 1,
729 3|7
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(B.114)

(B.115)

(B.116)

(B.117)

(B.118)

(B.119)

(B.120)

(B.121)

(B.122)

(B.123)

(B.124)

(B.125)

(B.126)



AZ? 2
=2 [——CQ} | (B.127)

K07 | 7297
o = kAQ [7;19193 c3 — 7;9%}, (B.128)
i = kA—OZ l%gci] , (B.129)
i = kA—Q {%9?)363} ; (B.130)
o = ?—; [—%95303} , (B.131)
o = kA—; [—%cﬁ] , (B.132)
o = ?—; { 7591)3 s+ 7;9 } (B.133)
ol = ?—; [—fgg%} : (B.134)
o = ?—; [ 7;963 ¢+ 1158 21 (B.135)
s =0, (B.136)
Cgszs)ta kAQ {7;953 €3 — 1415863} , (B.137)
oy = kA—OZ [_T{%Cﬂ : (B.138)
o = kA—OZ {ngcﬁ} , (B.139)
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Ci39 = W _@5303 + @Cg )
c(la) =0,
& - 1,
&) =1t
cff) =0,
™ =,

ng):Q
@ A1 +107b
C = — | —a1C —03Cg —
127 0 | 7971 T gy 78

7

—C
1944 3|’

(B.140)

(B.141)

(B.142)

(B.143)

(B.144)

(B.145)

(B.146)

(B.147)

(B.148)

(B.149)

(B.150)

(B.151)
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AT 1 19 49
(@) _ =2 | _ — by 2 B.153
13 ko[ 721 T 347 T 13063 } (B.153)
¥ =0, (B.154)
o AT 1 1 1 5
C§5) =70 [—Eﬁ T gtcs + mb303 - —259203] ; (B.155)
O gy L AL G AL, 2
G = 3N T 15T 1 {3888b3 = T | e [T T R T 7ag ) o (B150)
Y = 1a ¢ +L62+é —ia by — ioz c3 — 935 c Ec2 —|—A—2 1a2 + ! aics + 3
17 T NS T g8 o | 36 M T M T prre S T 1923 T o2 |9 T 324MB T 530
(B.157)
@ _ L B.158
@ _A[ T, T L] AT S B.159
= g0 { 3888 4 T 77763 T po? | T 162™ T Toad® (B.159)
A 7
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o AT T 1
cgl) =10 {3888[)363 — —777603] , (B.161)
c(a)—lac—l—1 —i—A 7bc = 02+A2 1a2+4 + 7o 1 c
22 7 57 MB35 T 10 1583204 T 11664 | T 02 [27M1 T 243M B T 51873
(B.162)
C(a)_1ac+12 AT 1 o 205, 1152+A 11 L5
28 T 18NS T 1620 T R0 | T M T 777673 T B1sa | T 02 | 3241 T 38883 |
(B.163)
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(B.168)
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W A1 19 19
C39 = ﬁ [5a103+ @bgC;; - T%C?) s (B170)
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oy = % [glgbm - %cé] : (B.173)

o = ké {%Salbz 24363 5+ 3;28 2] (B.174)
oY) = % [% 152} ; (B.175)

) = % {—%albg} , (B.176)
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cis :% 13314[’3 Gt 1;)6 =k (B.183)
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Cgl = ﬁb303 ~391% + 10 ——Dbscs + === o7 31M% ~ §7g

2 B.221
3888 7776 03] - (B221)

céz) — _%bgcg‘i‘ 3;4 3—1—]?) [ 19%1)363} +kA_022 [—8%@1173 + 16%2@163 + 2971663} , (B.222)
céd = gbz 811)303 + 3;4 c5 + lﬁ) {—%cg} + ?—022 { 811a1b3 + 1(1326“63] , (B.223)
ot :% {—ﬁbs c3+ ﬁ 2} + ?—; {ﬁei} : (B.224)

2 — % {—4—;663 cs + 2373—128 2} - kA—OZ {—ﬁcﬂ : (B.225)

B = % {387881)3% - %cg] : (B.226)

cg;) = % [— 12196b3C3 — ﬁcg] + lﬁ; {162 103] , (B.227)

2 = % {—%bg cs + 19% 2] + ?—OZ {—%cg} , (B.228)

& :% {1219663 G 25592 2} - kA : [1(152‘“63} ’ (B.229)

& = % {9—;21)3(;3 - ﬁcﬁ] + kA—OZ [—%9(:3] , (B.230)

i = % {_19744@ “r 38188 2} (5231

i = kA {3;4172 - 2i3b3 st 1176164 2} * kA_Oz [_%Cg} ’ (B-232)
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céz) = A [ —Dbocs + = ——bscs — LCZ} + A_Q _LCQ}
B0 | 324 243 11664 2| k0% | 17496 °|’
H _% [ 19744[’3 Gt 38188 “
i = k:é [ﬁbQ Cs 197446363 N @Cg] ’
= {%ngcg - %cé} ,
cg;) =0,
) = ]{A—OZ —ﬁbﬂs_ ;
g;) = ?—02 —&bz%_ )
= 5 g
g?))l = kA_OZ :Kl(;lbc?’ ’
b =0,
oy =0,
cfoh = % [—8%53’33 2411363} ’
ofos = ;{;A {81163 €t 24113 3] ’

85

(B.233)

(B.234)

(B.235)

(B.236)

(B.237)

(B.238)

(B.239)

(B.240)

(B.241)

(B.242)

(B.243)

(B.244)

(B.245)



cios = 0,
(B.246)

coh =0,
(B.247)
(a) o A 1
Cios = E {_Eb%?)} )
ZS (B.248)
(@) _ 1
c JE—
109 = 70 {—mbf’) ot e }
Z& (B.249)
(@) _ 1
162 32473
(B.250)
C111 =0,
(B.251)
o A
= | w5
6 M
) (B.252)
@ _ 1
C JE—
13 g0 { 81533_F122 }
(B.253)
A7) =0,
(B.254)
o =0,
(B.255)
CEBIL)G = 07
(B.256)
ik =0,
(B.257)
(a) o A 1
Ci1s = @ [_EC# )
(B.258)
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k0?
653)2 =0,
C§a2)3 =0,

(a) A2 1 2
Cl2a = 102 21873

a A% T 1
052)5 = 02 [@03} ,

(a)_A_2[ 2 2]

Ci26 = 1:02 7993
a A% T 1

052)7 = 102 {@Cg} 3
a A? 2

ng)s ~ 02 {—@Cg} ,

.
@ A2 1 1,
0 =107 | 729" T 729

@ A1 1 5

Cizp = W -@bg}Cg — @03_

C%)l =0,
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(B.259)

(B.260)

(B.261)

(B.262)

(B.263)

(B.264)

(B.265)

(B.266)

(B.267)

(B.268)

(B.269)

(B.270)

(B.271)



i =0,

“133 = 102 |7 1458
w AT 1

Cizqg = W _ﬁgbg’ 3+ ——

0%)5 = A—2 ——Lbs 3+ ———
k0% | 729
0136 0,
(a) AQ [ ]_

87 = 107 | 1458

(a) o AQ [ ].
138 = J07 | 1458

iy = 0.

Non-trivial matrix elements of the form:

38

2
g

1
1458

1
1458

2

2

(B.272)

(B.273)

(B.274)

(B.275)

(B.276)

(B.277)

(B.278)

(B.279)



Table B.1: Non-trivial matrix elements of operators involved in proton-pion scattering pro-

cesses

Operator p+7r+%p+7r+ p+mT —p+m +7roap+7r +7TT =-n+7
kil <S(ij)(ab)> k- -K k- -k 0 -k -k
kik'd (550D i(k x k)3 i(k x K')3 Li(k x K)? 0
kiK' <s(”><“”)) Lik x k)3 Lik x k)3 Lik x k)3 0
KiK' (5{)(e0)) k- K kK 1k-K 0
k’k”( (13)(115)) 3k K 3. K %k~k/ 0

2

KiK' <s(”>(“:)) LK — —z(k x k)3 1 4 Lk x k)3 WK —Lik x K)3
Kk (L) B0y e x k)3 Bk - ik x k)3 WK Hik x k')
Kk (S (U)(ab)> 19/ 19y K/ 9y K 0

4 4 8
kiK' <s(”><“”)) 3i(k x k)3 ik x K')? Si(k x k') 0
KiK' (S (”)(‘“’)) 3i(k x k)3 Sik x k') Zi(k x k)3 0
k‘k”( (U)(ab)) 1.k 1. K 12k-k' 0

6 6
k’k”(s(”)(ab)) —%k-k’ %k.k’ 0 —%k~k'
kzk/J< (13)((117)) 7%k-kl %kk/ 0 7%1(-1(/
kik/J<S(U)(ab)) 1k K %k.k/ %k~k' 0
Kik'd (S ab)y Li (k x k)3 —Li(k x k)3 0 Li(k x k)3
kik/]< (17)(‘11’)) % (k x k/)B %Z(k % kl)S i (k x k/)3 0
kiK' <s(”>(“’7)) i(k x k') i(k x k)3 Lik x k)3 0
k’k”(S(”)(“b)) ik x k)3 195k x k)3 Wik x k) 0
Kk (S (U)(ab)) k. K T 0 kK
Kik'I <s(”>(“”) Ak - dikx KD AR - dikx k)P —Zi(kx K)? k- K
KiRI(SEPE) |t 4+ dik x K)? Ak 4 di(k x K)3 2i(k x k)3 kK
KRS ) 1Ak — ik x k)3 Ak - Rikx k)3 —Zi(k x K/)3 EI N
Kk <s(”><“”)) ek + ik x K3 3k 4 di(k x k)3 2i(k x k)3 ik K
kik'I (S (”)(“b)) ik x k)3 Bik x K)? Bk x k)3 0
kik!I <s(”>(“b)) Bk x k') ik x k') ik x k') 0
kiR <S(u><ab)> _5k.K Sp k! 0 —3k-K
kzk/]< (U)(ab)> §4k LK 74§k LK 0 %ﬁ( K

4 4
kik13<s(1ﬂ)(ab)) 5k K 5k .k 0 —gk-k’

2

Kik'd (S5 (@b)y 3 (K x k)3 ik x k)3 Bi(k x k)3 0
kik/]< (13)(‘15)) g (k x k/)B %’L(k % kl)S g (k x k/)3 0
kik1J<S(’LJ)(ab)) 1k . K 1. K zllk'k, 0

2 2
Kk (S (@b)y 4i(k x k)3 —4i(k x k)3 0 4i(k x k)3
kik'I (S, (”)(“”)) 4k -k —i(k x k)3 4k -k +i(k x k)3 2%k - k' —i(k x k')3
kik'J <S(”>(“b)) Bk x k)3 ~ 2k x k)3 0 Bk x k)3
kik'3 (S (”><“”)) —8k -k’ +2i(k x k')  —8k-Kk — 2i(k x k)3 —dk - K/ 2i(k x k')3
kzk/J<S(1J)(ab)> Sk.Kk Sk.K Sk.k 0
klk/]<s(13)(ab)> gkk/ gkk/ %kk/ 0

4 4
kik' (S, (”>(“”)) ik x k') ik x k') ik x k') 0
lc%”(S(”)(“b)) Sk K Sk.K Sk K/ 0

2 2
k’k”(S(“)(ab)) gk~k/ gk~k' gk~k/ 0
kik'I (S (”><“”)) 4k K —4k - K/ 0 4k - K
kiK' <s(”>(“b)> 6k -k —6i(k x k')>  —6k -k’ — 6i(k x k') —3i(k x k)3 6k - kK’
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Table B.2: Non-trivial matrix elements of operators

involved in neutron-pion scattering

processes
Operator n+rt - n4+nt n+mn- —-n+m n+7m9 —-n+a° n+7r+%p+7r0

k.ik/j <S(ij)(ab)> k- -k —k- -k 0 _k- -k
kik'd (550D i(k x k)3 i(k x k)3 —Li(k x k)3 0
kik'1<s<”>(“b>> Lik x K')? Lik x k)3 —Lik x k)3 0
kik”<s<” (ab)y k- K k- K 1k K 0
k7,:k/.7< (1J)(0«Z)> %k-k/ 3k K %k_k/ 0
kl_k/](S“”(“ Yl Bkk 4+ ik x k)P Bk - —z(k x k)3 WK ——z(k x k)3
Kk (S50 | L9y g —z(k x K3 Bk 4+ Uik x k)3 WK ik x k)3
kik'7 (S (m)(ab)> 19 K/ 19 . K/ 19y K/ 0

4 4 8
kik”<s<”><“b>> ik x k') 3i(k x k)3 Zik x k') 0
kik'7 (S W’“‘”)) Si(k x k)3 ik x k) Zi(k x k)3 0
kik/]< LJ (ab)> %k-k' %k~k’ %k.kl 0
kik/]<s(13)(ab)> %k-k’ —%k-k’ 0 —%k'k/
k.ik/]< (1])(ab)> %kk/ 7%k-k/ 0 7%kkl
kik/]<s(’bﬂ)(‘lb)> %k-k' 1k K 1. K 0

4
k.ik/] <S<1J)(ab)> 7%1(1( X k’)3 % (k X k/)g 0 é ( X k,)a
kik' (S (”’(“b)> Li(k x k)3 Lik x K/)? Lik x ¥/)® 0
kik’]<S<”> ab)y i(k x k)3 i(k x k)3 Li(k x k)3 0
kik”(s‘”’(“b)> 195(k x k)3 194k x k)3 19(k x k)3 0
kik/7< (1])(ab)> k- -k —k- -k 0 k- -k
kik”(s“”(“b) Aok - dikxK)3 kK - dikx k)P —Zi(kx k)3 EVN
KRI(SED ) | Ak 4 dik x k) —3kK 4 di(k x k)3 2j(k x k')3 ik K
KRS ) | Ak K - Rikx k) Ak-K - g (k x k')3 ~2i(k x k)3 LN
kzik”<s<”>(”b>> AW 4 dikx K3 Ak K 4 di(k x k)P 2i(k x K')? ik K
kik'7 (S ‘”’“"”) ik x k)3 25(k x k)3 2k x k)3 0
kik'7 (S§ <” (ab)y 2k x k)3 25k x k')3 25k x k)3 0
kik/]<s(13)(ab)> %k-k’ S W 0 _5k.K
4 4
kl.k'” (1J)(aZ)> f%k-k’ %k-k/ 0 %k-k/
klk/]<5‘(7’.])(a )> gk-k' 5k Kk’ 0 —gk-k'
kik”<s<” (ab)y ik x k') 3 ( x k)3 Bi(k x k') 0
Kk (S (”’(“b’> Si(k x k)3 Bi(k x K')3 Si(k x K')3 0
kz:k/]<s<’b])(a§:)> %k-k' ék'k’ ik.k/ 0
Kik'd (SUD@b)y —4i(k x k)3 4i(k x K')3 0 4i(k x K')3
kRIS <”’(“")> 4k - +i(k x k)3 4k -k —i(k x k)3 %k - k' —i(k x kK')3
kik'd s(”’(“b) —2Z5(k x k)3 254(k x k)3 0 25(k x k')3
, b 8 8 8

kik'I (S} <”>(” )y | -8k -k —2i(k x k')>  —8k -k + 2i(k x k') —4k K 2i(k x k)3
k.ik/]<S<'LJ (ab)> %kk/ ékk/ §kk/ 0
kik'7<s(”’(“b’> Sk. K ERY kK 0

4 4 8
KiK' (S, <”>(“b>> ik x k') ik x k') ik x k') 0
k.zklj<s("])(ab)> gkkl %kk/ %kk/ 0
kikm<5(w)(ab)> gk-k’ gkvk/ %k.kl 0
k,’ik']< (1J)(ab)> _4k - K 4k - k/ 0 41k - Kk’
kik”<s<”>(“b)> —6k -k’ —6i(k x k') 6k-k — 6i(k x k') —3i(k x k)3 6k - k'
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Appendix C

Operators Basis for First Order SB

C.1 Operator basis contributing to SB effects

A list of spin-2 operators containing three adjoint indices is provided. These linearly inde-
pendent operators are used to build the different 1/N, expansions responsible for SB to the
scattering amplitude. It is important to remark that there is no a particular criterion to
rule out any of those operators and the reduction rules derived in [5] do not apply for all of

these operators.

Rgij)(abS) = 5 fabs, R(”) ab8) _ sij 48

R:(;‘j)(abS) — ¢idm pab8 ym. R )(@b8) _ . igm jab8 Jm.
R{VS) = giigebT®, Ry = g,

R? Jabs) _ s 58T, Rél 9)(ab8) iedmeebGms,
Réw)(abS) — jelimgasgmb, Rgzo)(ab8) — jeiImghsGma.
Rgzl)(abS) _ ZE'ijfabefSegGmg Rgg)(alﬂ) _ ZEZ]mfa8efbegGmg
Rgz;)(abs) — jelimabe gBeg ymy. R&)(alﬁ) _ him pabe gseg ma
R%ﬂ)(abB) — iim fa8e db.egGmg7 R(ij)(abS) — ¢idm gabe faaegGmg7
R%ﬂ)(ab& _ Z-fabS{Ji Jj}7 R% )(ab8) dabS{Jz Jg}

R§’9 Jj)(ab8) — 5 fabS Jz RSO ) (ab8) — § gab8 J2
Rgl)(abB) = jciimgabpms RSQ g)(ab8) _  ijm 5o,
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OPERATOR BASIS CONTRIBUTING TO SB EFFECTS

Régj)(abS) = jimgtEpma,

Réig)(abfi) = jeldm pase ghegpymg
Réﬁ'?j)(abfﬁ) = ¢lim pabegsegping.
R%’)(abB) — iim bee daegpmg7

R:(;l )(ab8) _5a8{J% G]b}
Ry = 6 {1, G,
R = g8 17, oy,

Ré@j)(abS) _ faSe‘]cbeg{Ji7 ng}’
Régj)(abfi) _ faSEfbeg{Jj7 Gig}’
Rz(lilj)(abB) _ dabed869{Jj GZQ}

RL(;?,) (ab8) _ faSedbeg{Jz G]g}
RYS) (ab8) — fabedBeg{Jj ng}
R47 )(ab8) — Zbeedaeg{Jj, ng}7

Rflgj)(abS) _ 6ij5a8dbeg{Te’ Tg}’
Réz‘lj)(abB) _ -5z‘jfabe{T8 Te}
Rélfg )(ab8) 52] daSe{Tb Te}

R = §U[T T, T*}],
R = i 7 ATS, ¢,
R = i f ™[ AT, GO,
R = i AT G,
R(ZJ (ab8) _ = d®e[ ] {T®, G,
R (7)(ab8) _ = d"e [ {T*, G,
R = ae (] {T°, G,
R((;g)(abB) = ieIm[Gma {G™, G"8Y,
R%ﬂ)(abs) —jermiam (TS, Gy,
R = jimqets {2, Jmy,

RY: (i7)(ab8) 5U5a8{J2 Tb}
Ry = i peef AT, T8 ),
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Rgilj)(abS) _ ieijmfabefSegD;ng7
Ré%j)(abS) — ,L'Eijmdabed8egzZ);7”Lg7
Réls)(abs) _ zjmfaSedbegDmg’

Ry = 5L, G,
R;(),Zg )(ab8) _ 5b8{J'L Gia,

Rz()fz; )(ab8) _ = 5L, sz}

R326j )(ab8) fabef8eg{J2 ng}
R:(;g) ab8) fabEfSeg{Jj G,
R4ZOJ )(ab8) _ jabe j8eg {J,GI9Y,
R517;2j)(ab8) _ Z-fabedSCg{Ji’ GI9}
Rz(é;j)(abS) _ vabSedaeg{Ji’ GJ'g}7
Rfliﬁj)(ab8) _ ,L'fSaedbeg{Jj’ Gy,
R[(;‘gj)(abS) _ 5ij6abd86g{Te7Tg}7

Rg)j)(abs) _ 5z'j6b8daeg{Te7 Tg}’
Réizj)(abS) _ 5ijdabe{T8 Te}
R = gl ghSe{Te, T},
R = (T8 AT, 1],
R(z )(ab8) faSe J'L’{Tb’Gje}L

[
Réz(])(ab8 _ fabe[Ji’ {(T°,G)],
Rgz)(ab8 _ fbge[Jz‘7 {Te’Gja}L
RGP = a1, G,
Ré%j)(abS) _ dabe[Ji {Te’ st}]’
Réﬁgj)(abS _ deB[Jz (T°, G},
R%)(abS) — e z]m[Gm8 {Gr, Grb}]

RIS = gim s 2,
R%j)(abfi) _ 5ij6ab{J2’T8}’
R%ﬂ')(abéi) _ 5ij5b8{J27Ta}7
R%j)(abS) = ¢fim pase ym fpe 1Y



C.1. OPERATOR BASIS CONTRIBUTING TO SB EFFECTS

Ry = i el g {77, T} ),
RGP = elimgese g {T°, T},
Rg)(abg) _ Z-fabe{Ji {T8 Gje}}
Rgg,) (ab8) — bee{Jz {Ta G]e}}
Rg?) (ab8) _ ZfaSe{J] {Tb Gze}}
Rgg) (ab8) _ Zfabe{Jz {Te G]S}}
Rgzlj )(ab8) _ Zbee{Jz7 {Te7 G]a}},
Rg()gj)(abB) = i feef i [T G},
Rg()zsj)(abS) = dobe{ g {Te G,
Ré?)(abB) _ dbSe{Ji {1, Gja}}
Rg(;g )(ab8) _daSe{J] (T, sz}}
R = iy,

Rgigg(abB) — jlim 5bspgna7

. ijm5a8omb

R%gz(ab& o
R = 6{T {T", T%}},
Rig™™ = 6"{T" {T®, T°}},
R = 69{T® {G™,G™}},
R%g )(ab) — 5ab{T8 {Gze Gje}}
35115 )(ab8) _ 5b8{Ta {Gle G]e}}
RS = (1% (G, G},
R = {12 (G, G},
R = {T° {G7®, ™},
R%g)(ab& _ Zemm{Gms {Ta Tb}}

Réioj)(abS) _ Z.Eijmdabe{Jm7 {T67T8}}’
Rgzj)(abS) = jelmgbse{ gm {Te TV,
R&) (ab8) _ Zf@Se{Jz {Tb G]e}}
Rgﬁ) (ab8) _ fabe{Jj {TS Gle}}
Rgg) (ab8) _ bee{Jj {Ta Gze}}
Ry = if S {1 AT, G,
Rgzzg )(ab8) _ Zfabe{(]j’ {Te’st;}}7
R&j)(abS) _ ~bee{Jj {T¢, GV},
Ry = de (' (T, G},
R = a7 {T*, G*}),
Rgzoo )(ab8) _ db8e{J] {Te Gm}}
R%Q)(ab@é) — e z]m6a8D§nb7
R = idimsb oy,
R%Jg(abs) — ieimghome,

R = ST AT, T}
Rglm )(ab8) 5@]{Ta {Grb Grs}}
R%Q )(ab8) 5;J{Tb {Grs Gm}}
R§Z14 )(ab8) _ 5a8{Tb {Gze G]e}}
Ry ™ = {T* {G", G™*}},
R ™ = (T {G", G},
Risg ™ = {T* {G",G"}},
Ry ™ = iem{Gme {T", T*}},
R = iem (G TS T},

R%B)(abg) — e z]mfaegfbeh{GmS {19, Th}} Rgl%)(abS) — e z]meegfaeh{Gmb {19, Th}}
R%?)(abs) — e zjmfbengeh{Gma {17, Th}} R%S)(abS) = ie ldeaegdbeh{GmS {17, Th}}
R%g(abs) — e z]mdSegdaeh{Gmb {Tg Th}} R%g(abﬁi) — ie ljmdbegdBeh{Gma {Tg Th}}
Rggl)(abs) — (iim aegdbeh{Gm8 {Tg Th}} R%Q)(alﬁ o zjmeegdaeh{Gmb {Tg Th}}7
Rgg(abs ¢idm gheg gseh fGma fg Y R%gi abs) — faeg gbeh (T8 rGia GibYY,
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C.1.

OPERATOR BASIS CONTRIBUTING TO SB EFFECTS

RER = feos fTh G, G,
Rg?(abg fSeg faeh {Tb {ng Gjh}}
R§’39 )(ab®) fSegfaeh{Tg {Gzh ng}}
R&l )(ab8) fbengeh{Th {Gm G]g}}
R&g )(ab8) fbegfaeh{Th {st G]g}}
REZ% )(ab) faengeh{Th {G’Lb ng}}
R&j7(ab8 _daegdbeh{Th {st G]g}}
R&jg(abs) _ dbegdBeh{Ta {ng Gjh}}

Rgzm) (ab8) _ daegfbeh{Th {G™, G791},
R%g) (ab8) _ d8egfaeh{Tb {ng G]h}}
5’5255) (ab8) _ dBegfaeh{Tg {G’h Gjb}}
RE@,? (ab8) _ dbengeh{Th (G, GI9Y,
R%g (ab8) _ dbegfaeh{Th (G, GI9}},

Ryl ™™ = id> fr T (G, GP)),

Rgigg(abS) _ -daengeh{Th {Glb ng}}
R§Z65) (ab8) daegfbeh{Th {Gj8 ng}}
Ryt ™™ = id* foM T (G, G},

Rgz&g (ab8) _ dbengeh{Th {Gja ng}}
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Rigg ™ = foo T {G™, G,
R = fro femTh (G0, G,
Rijp ™ = o T AGY, G,
R&Q )(ab8) fbengeh{Tg {G”h Gja}}
Ry = preo frTh Gl GO,

Rgz% )(ab8) _ daegdbeh{T8 {ng Gjh}}
R&s )(ab8) _ — (89 qach {Tb {ng Gjh}}
Rgo)(abza) _ daegfbeh{T8 (G, Gjh}}
R§Z52) (ab8) _ daegfbeh{Tg {G’h GJS}}
R%i (ab8) _ d8egfaeh{Th {sz GI9}Y,
R%g (ab8) _ dbengeh{Ta {ng G’]h}}
Rgzsg (ab8) _ dbengeh{Tg {Glh Gja}}
R&g (ab8) _ dbegfaeh{Tg {Gm G98}}

Ry ™™ = id*s fM{T {G™, G,
Rglﬁ]4 ab8) daegf8eh{Tg {Gzh G]b}}

Rglﬁg (ab8) daegfbeh{Tg {Gjh GzS}}
Ryl ™) = id™s fI{17 (G, G} ),
Rg;g (ab8) _ dbengeh{Tg {Gjh Gza}}



C.1. OPERATOR BASIS CONTRIBUTING TO SB EFFECTS

Table C.1:
to the scatterlng amphtude of the process p + 7w

Non-trivial matrix elements of the 1-; 2-, and 3-body operators corresponding
+ — p + 7", The entries correspond to

2\/_k’k'] <[7)(m R ](ab8)>

1 10 + 10 27
Eig'd <[P(m)R(u)](abs)> 2k - K/ 0 0 0
k’k”([P(m)R(”)](abS)) i(k x k)3 0 0 0
LI <[7;(m)R(U)](ab8)> 0 3k -k’ 0 0
KK ([P m)R(U)](abS ) 0 %z(k x k’)3 0 0
kik/3<['p(m)R(”)](ﬂ58)> 0 —Li(k x K')3 0 0
kzk/7<[7>(m)R(U)](ab8)> 0 %z‘(k x k)3 0 0
Kk ([P m>Rglsj>](ab8 ) k- K 0 0 0
kik!d ([P m)]:{(”“‘j)](llb8 ) %k .k 0 0 0
k%”([P(m)R(”)](abS)) 0 % (k x k)3 0 0
Kk ([P m)R(U)](abS ) 0 % (k x k')3 0 0
kik/3<['p(m)R(”)](ﬂ58)> 0 Li(k x k')? 0 0
LI <[7)(m)R(1J)](ab8)> 0 ék % 0 0
klkqu m>R(w>](abs ) 0 %k LK 0 0
Eig'd <[7>(m>R<w>](ab8)> 0 -1k K 0 0
kik!d <[7)(m)R(U)](ab8)> 0 —%k LK 0 0
kik!d ([P m)R(’LJ)](ab8 ) 0 _% Y 0 0
Eigd <[p(m>R<w>]<abs)> 0 -5k K 0 0
Eig!d <[73(m)R(U)](ab8)> 0 —3k -k 0 0
k”ﬂ”([? m)R(U)](abS ) 0 _%k‘k’ 0 —gk~k’
kzku<[7;(m)R(w)](abs)> Sk K/ Sk K 0 2k K
kik/J<[7>(m)R(”)](ab8)> 3k-K —2k K 0 kK
kik/]<[77 m)R(’LJ)](ab8 ) %k~k, —%k‘k' 0 %k.k/
kik/J<[rP(m)R(U)](ab8)> 0 kK 0 —Sk-K
Kik'I ([P m>R(”>](ab8>> 0 “Hikx k) —ikx k)P —Zi(kx k)3
Kk ([p(m) RUD(ab8)y 0 ik x k)3 ik x K)3 ~Zi(k x k)3
B (PO R | Lillex e — ik x e 0 1k x K)?
e (P BV | Tiex i) e i) 0 goilk x k)’
b (P BNy | Tiex i) e i) 0 goik x k)
B P RED @) | Liex i) — i x )P 0 1pik X K)?
KEI(POIREDYD) | Jile x k) ik x k) 0 soi(k x k)3
ERIP R | Litex i) il )P 0 soi(k X k)3
k’k”([P(m)R(”)](“”S)) 0 “ikx k) ik x k)3 — ik x k)3
Kk ([p(m) RUD(ab8)y 0 Lik xk)?  —Likxk)?  Likxk)?
kik/1<[p(m)R(1J)](ab8)> %z(k x k')3 0 0 0
Kk ([P m)R(U)](abS ) 0 gk k’ 0 0
kik/]<[fp(m)R(1J)](ab8)> 0 2i(k x k)3 0 Si(k x k)3
BRI R | Sitex k) Sidex )P 0 ik x k)*
B (P B9 | Sillex ) <Bifkex e 0 il x K)?
R ([P REDT) | Sk 10y f% (e xK'y? 0 Toi(k x k)3
kzku<[7>(m>R(w>]<ab8)> 0 Uy —k-K —2k-K
kik' ([P m)R(U)](ab8 ) 0 _}Tl)k.k/ k- K —%k~k/
kzku<[7><m>R<w>]<ab8)> 0 ~x.w k-K —2k-K
k:’k”(['P m)R(U)](abS ) 0 —%k-k’ k- -k —%k~k’
kzk/J<[rp(m)R(1J)](ab8)> %k~k’ %k.k’ 0 %k-k/



C.1.

OPERATOR BASIS CONTRIBUTING TO SB EFFECTS

Table C.2: First continuation of above table.

1 8 10 + 10 27

Kk ([P0m) RG] (ab8)) Tk K 2k-K 0 a5k - K
Eik!d <[73(m)Rg’7J)](ab8)> %k K %k ‘K 0 %k -k
ki k' ([pOm) RUD | (ab9)) lk-K ~3k-K 0 Sk-K
Eig!d <[P(m)Rég)](“b8>> %k K %k LK 0 %k -k’
kzk/J <[7)(m)Rg'LO]O)](ab8)> %k .k %k .k 0 %k Lk
Kk ([POm) R (b)) 0 Filk x K)? 0 0
kzkqu(m)R%Jg](abS)) 0 3k -k’ 0 0
kzkqu(m)Rg’OJB)](abs)) 0 3k -k’ 0 0
KU ([P0 Ry (b)) 0 3k K 0 0
Eig! <[P(m)R§i1]'O)](ab8)> 3k -k’ _%k % 0 %k 'Y
kzk.lj <[P(m)RgllJl)](ab8)> 3k -k’ %k k! 0 %k -k!
kzk./J <[7)(m)R(121]2)](ab8)> 3k -k’ 7%]( K 0 %k 'Y
kik!d <[7>(m)R§ilﬂg](ab8)> 0 19k - kK’ 0 0
ki k/3<[p(m)R§’136)](a58)> k- k' —%k K+ %i(k x k)3 0 %k k' — *Z(k x k)3
kzkm<[7>(m>Rgi1Q]<abs>> k-k Sk -k — Si(k x k)? —i(k x k)3 3k-K — i(k x kK')3
kik' ([p(m) R{7)](ab8)) k- K — g0k K + {5i(k x K')? 0 kK — fhi(k x k)
kzkqu(m)Rgilﬂg](abf%)) k- K -8Bk K - ik x k)3 0 kK + ik x k)3
kiK' ([P R3] (208)) k- K 63k K+ Zi(k x k') i(k x k)3 Sk + Li(k x )3
KT (POVRYS @) | kK Bk K - ik x k) 0 sk K + fi(k x K)?
KR (PO RZ@S)) | il x /)3 Toik x k)3 0 sille x K)?
kik'? ([P(m) R (208)) Fi(k x k)3 150k x k)3 0 agi(k x k')?
ki k,/]<[7)(m)REZ2J4)](ab8)> %’L(k X k/)S %Z(k % k/)3 0 9 'L(k X k/)
kR ([P RED @) | ik x k)3 ik x k)3 0 f—z<k x k)3
Kk <[p(m)R§gg](ab8>> Zi(k x k')? ik x k)3 0 —2Li(k x k')®
KR (PO RIZN@S) | il x )3 Bk x K)? 0 ~ il x
KR (PO RIS @) | —2i(k x k)3 10Li(k x K')? 0 ik x K)°
Kk (P RUD@08)) | — ik x k)3 B0 10)8 0 15k X K')?
KR (PR @) | —2ik x k)3 ~ g3l x k) 0 1ok x K
kzk/J<[7)(m)R(li311)](ab8)> 0 55 z(k x k')3 i(k x k)3 *ii(k x k’)3
ki kqu(m)RgiSQ](ab&) Sk K k. K — —z(k xk)3  =2ikxk)?  Fk-k — ik x k)?
kzk,lj <[fp(m)RgZ3]5)](ab8)> %k LK 107k k' — (k X k/) 0 7 k k' — fl(k X k/)g
kzk/]<[73(m)R(1§Jg](ab8)> %k LK 107k k' — —z(k X k/) 0 7 k k' — fl(k X k/)s
Kik7 ([POm) R()](ab8)) 3k K 331( K 0 kK
kzklj<[73(m)R%Jg](ab8)> %k K %k K+ 93 ik x k)3 0 5 k- k’ — —z(k x k)3
e peomdle) | e Bew- T 0 ek Dk
kik' <[77(m>R§ZO)](ab8>> %k K - 40k k' 0 lliok K
KR (PO R | Sk K S0k K = ik x K)° 0 — ik K ik x K)°
kzklj <[7)(m)R51432)](ab8)> %k LK 49k k/ + % ‘(k X k’)3 0 k k' — 71(1( X k/)
k’klj<[7’(m>R§Zg](ab8>> Sk K 107k k' + (l]i(k x k)3 0 370k k' + ggi(k x k)
SR | el el B0t 0 Sl llond!
Kik'7 ([p(m) R{11)](ab8)) 3k K E3 1 Oy ‘(k x k)3 0 k k' — *Z(k x k)3
SRR | el G - Biond)® Bcad? — kel — gl
kiR ([P0 R (@) —%k K Bk k' — ik x k)3 0 97()k K+ 55i(k x K')?
k’k”<[7’(m)RﬁJ_s)](“b8>> _*k K’ 14290k k' — %Z(k x k')? 0 _%k K+ %Z(k x k')?
KR (PO RGN @) | kX izok K = gi(k x k) 0 —aok K+ gilk x k)
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C.1. OPERATOR BASIS CONTRIBUTING TO SB EFFECTS

Table C.3: Second continuation of above table.

Kk (PRI @) | — Sk x k)3 —1Tk K + Zikx kK)* LTk k'  —2k-K - Zik x k)3
Kk (PRI @h8) | — Sk x k)3 —TLk-K + gi(k x k')3 %k K 2k-K - ik x k)3
kik’J<[7><m>R(”)]<ab8>> Dikx k)P —2k K+ Bikxk)? Lk K 2k K- Si(kxk)3
kk”([P(m)R(”)](“bS)) Si(k x k') Bk x K)? 0 ik x k)3

Kk (PRI @08) | _ 9k x k)3 Bk K — Bk x k') kK 2Kk — Bk x k)3
k%k'J'([P(m)R(”’](abS)) Fikxk)? =Bk kK - Bikxk)? —Ik-k -2k kK — 2ikxk)3
k’k”([P(m>R(”)](“b8>> Si(k x k') — ik x K)? 0 Bik x k)3
ka’J<[7><m>R(”)](“bs’> itk xK)? —gfk K + gk x k) 0 Sk K+ GGk x K1)
k’k”([P(m)R(”)](ab8>> Sk xK)? kK 4 Fik x k)3 0 —2k K+ 2Li(k x K)3
ka’J<[7>(m>R(”>]<ab8>> Sk x k)3 27470k K+ 3Bikxk)? Lk kK -2k K - Zi(kx k)3
k%”([P(m)R(”)](“bS)) Dk x K')3 22490k K + 3i(k x K')3 kK 2k-K - SikxK)?
k%”([P(m)R(”)](abS)) Sikx k)P —Bk.Kk - —z(k x k')3 ek 2k - Bk x k)3
Kk (PRI @) | — Sk x k)3 Bk K — Bk x k') koK 2k K — Bk x k)3
k%”([P(m)R(”)](abS)) Sk x k)P ATkoK 4+ Zik x k)3 0 —2k-K + Fi(k x K')3
k’k”([P(m)R(”)](abB)) Sikx k)P ATk K 4 Li(k x k)3 0 2K + 2Li(k x k)3
kiR ([P RUD (@8)) | 9k x k)3 27470k K —Bikxk)? Lk-kK  Zk K+ Zikxk)?
kik’j<[P(m)R(’j)](ab8>> SikxK) —2k-K - Bikxk)? Lk kK 2k K+ ik xK)3
ka’j<[7>(m>R(”)](ab8>> Sikx k)P Bk 4 Lk x k)3 kK 2K+ Bk x K)3
ka’J<[7><m>R(”)]<ab8>> Sk x k)3~ 4 Bk x k)3 kK —2k-K 4+ Bikx k)3
k%”([P(m)R(”)](abS)) Sikx k) ATk K - ik x k)3 0 2.k — 2Li(k x K/)3
KR (PRE@)) | il x k)3 kK — ik x k)3 0 2k K — 2Li(k x k)3
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C.1. OPERATOR BASIS CONTRIBUTING TO SB EFFECTS

Table C.4: Non-trivial matrix elements of the 1-, 2-, and 3-body operators corresponding

to the scattering amplitude of the process p + 7° — p + w°. The entries correspond to
V3K <[fp(m)R1(1ij)](ab8)>.

1 8 10+ 10 27
kikJ ([P(m) R{7)](ab8)) k- Kk 0 0 0
kik! [P(m)R(”)]<“b8>) Li(k x k') 0 0 0
kikm([p(m)R(w)](abs)> 0 %k K 0 0
klk”([P(m)R(”)](abg)> 0 Lik x k)3 0 0
kik'd ([P(m) R{H)](ab8) 0 — ik x K)3 0 0
Eig!d <[P(m)R(1])](ab8)> %k K 0 0 0
kig!d [p(m)R(ZJ)](ub8)> %k K 0 0 0
kik” ([’P(m)R(”)]<ab8>> 0 %Z(k x k/)3 0 0
kil ([P(m) R{i)](ab8)) 0 —Li(k x k)3 0 0
kiK' [P(m)R(”)]<“b8>> 0 1w 0 0
kik/3<[7p(m)R(za)](abs)> 0 ik K 0 0
Lik'd <[p(m)R(lJ)](ab8)> 0 —%k K 0 0
Lig'd (['P(m)R(U)](abS)> 0 —%k K 0 0
Eig!d <['p(m)R(1J)](ab8)> 0 7%}( K 0 0
Kk ([P(m)R(”)]<ab8>> 3K kK 0 kK
kik” ([fp(m)R(U)](abS)> %k % _l%k Lk 0 %k LK
kiklj<[7)(m)R(1])](ab8)> %k-k/ f%k-k' 0 %k-k’
kik’J([P(m)R(”)]<“b8>> ik xK)? —Zi(k x k) 0 ik x k)3
Kk (PRSP | Li x k)3 Bi(k x k)3 0 Lik x k)3
kik”([P(m>R<”)]<ab8>> Likx k)3 Zik x k) 0 Lk x k)3
kik”([P<m>R<”)1<ab8>> Li(k x k)3 _ii(k x k')3 0 ik x K)?
kik'ﬂ<[P<m)R(”)]<ab8>> Lik x k)3 Zik x k)3 0 Li(k x k)3
kik”([P(m)R(”)](abg)> Likxk)?  Zik x k) 0 Lk x k)3
kik” ([fp(m)R(U)](abS)> %Z(k x k/)3 0 0 0
Eig!d <[fp(m)R(1])](ab8)> 0 %k K 0 0
kik”([73<7">R<”)]<ab8>> BikxK)?  Fi(kx k) 0 ik x k)3
kik'd ([P(m) R{7))(ab8)y ik xk)?  —Zik x k)3 0 5i(k x k)3
kik’ﬂ([P(m>R<”)]<ab8>> Bikx k)P —Zi(k x k) 0 Li(k x k')
kik'd ([79<m)R<”)]<ab8>> 1k K —3k-K 0 3k-K
kik/3<[7p(m)R(za)](abs)> ik'k/ %k-k’ 0 %k-k’
kik/J<[p(m)R(lJ)](ab8)> ik.kl %k~k/ 0 &k~k’
kik/J([p(m)R(lj)](ab8)> ik,k/ —;—Ok‘k' 0 %k~k’
KiK' ([P(m)R(”)](abS)> 1k K SkK 0 dk K
Kk’ ([P(m)R(”)]<ab8>> 1k K 3k-K 0 Lk K
kiK' ([P(m) RU9)](ab8)) 0 3i(k x K/)3 0 0
Kik'I <[7><M>R(”)]<ab8>> 0 3k 0 0
kik' ([P(m)R(”)]<“b8>> 0 3k 0 0
kiklj<['P(m)R(ZJ)](ab8)> 0 %k K 0 0
Eig!d <[p(m)R(U)](ab8)> %k K —%k K/ 0 1—10k K
Lik'd ([p(m)R(ZJ)](ab8)> %k K/ %;‘)k K 0 %k LK
kik!d <[fp(m)R(U)](ab8)> %k K’ 7%1( K/ 0 %k K
kik! ([P R{)](ab®)) 0 WK 0 0
kik” ([fp(m)R(U)](abS)> %k Kk’ —%k Kk’ 0 %k LK
k%’ﬂ([P(m)R(”)](ab8>> 1k K Bk K 0 2k K
kik”([P(”L)R(”)]W’g)) 1k K —Brw 0 Lk K
kiklj ([’P(m)R(”)]<ab8>> %k Kk’ —%k Kk’ 0 %k LK




C.1.

OPERATOR BASIS CONTRIBUTING TO SB EFFECTS

Table C.5:

kzk/]<[7)(m)R<l] (ab8)
kzklj<[7)(m)R(7fJ (ab8)
kik/J<[73(m)R<1J (ab8)
kzkl]<[7)(m)R<'L] (ab8)
klkm([p(m)R(w (ab8)
k’bk”([p(m)R(W (ab8)
kzk/]<[p(m)R(1] (ab8)
klk/]({p(m)R(w (ab8)
kik/]qu(m)R(W (ab8)
kik”([P(m)R(” (ab8)
klk/]([fp(m)R(U (ab8)
kik/J<[p(m)R(w4 (ab8)
(ab8)
(ab8)

)
)
)
)
)
)
)
)
)
)
)
)
kig!d <[7)(m)R(1]5) )
k.zk/J <[73(m)R(1J) >
Eig'd <[p(m)R(u7) (ab8))
(ab8)>

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

O)

kzk/J <[7)(m)R(lJ)
kik/] <['P(m) R(W) (ab8)
kikl] <['P(m)R(7«J (ab8)
(
(

OO

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

kik/J [P(m)R(W }(ab8)

Lig!d [p(m)R(w }(abS)

kzklj<[7)(m)R(7fJ }(abS)

klk’J([P(m)RQJ }(abS)

kzkl]<[7)(m)R<'L] }(abS)

klkm([p(m)R(w }(ab8)

k’bk”([p(m)R(W }(abS)

kzk/]<[p(m)R(1] }(abs)

Eig'd <[7>(m)R(w }(ab8)

kik/]<[p(m)R(W }(abS)

kik”([P(m)R(” }(ab8)

kik/J <[7)(m)R<1J }(abS)

kikl]<[7p(m) R<” }(abS)

kzklj<[fp(m)R(lJ }(ab8)

kig!d <[p(m)R(1J }(abS))

k.zkl]<['P(m)R('L] }(abS)

kzk/J<[7)(m)R(1] }(ab8)

kik’]([PW)R(” }(abS)

kg <[p(m)R(lJ9}(ab8)

Eig! <[7)(m)R(1])}(ab8)

kik/]qu(m)R(Z }(abS)
]
]
]
]
]
]
]
]
]

O

)

)

)

)

)

)
kig!d <[p(m)R(11 (ab8)>
k.zklj <[73(m)R<1J3) (ab8)>
kiK' ([P(m) RUI)](ab8))
Lkik'I <[7)(m)R(l]5) >
kiR ([P(m) RUZ)](ab8))
)

)

)

)

kzkl] <[P(m) R('LJ)

N

(ab8)
(ab®)
(ab8)
(ab8)

\1

kzk/J <[7>(m)R(”8) (ab8)
kik/] <[p(m) R(W) (ab8)
(

kik.lj [P(m)R(ZJ) (ab8)

[ O e I S I
ool dletlotlotoBleollotlodledlel]e

1k K

1k_k/

(kkaS
i(k x k)3
i(k x k)3
15k x k)3
ﬁz(kxk’)
Fik x k)3

UDOO\C»J 00\0?(21\03

—2i(k x k)3
7—z(k x k)3

i(k x k)3
i(k x k/)3
i(k x k')
i(k x k')3
i(k x k)3
itk x k)3
i(k x k)3

‘“’w
<.

W
M

2

oo ileglofi]o

w
M
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Sk-K
-3k K
ik x k)3
5i(k x k)3
ik x k)3
ik x k)3
Bik x k)3
ik x k)3
ey
—12i(k x k)3
—ﬁoz(k x k’)3
329k Kk’
1

107 /
160k k

49

4gok k’
/

Teok Kk

49 /
160 k-k

k k’
45
160k K

49 /
160k k

107 /
160k k

49 /
160 k-k

49 /
160 k-k

431 /
240k k

(
o5k x k')?
fmz(k x k’)3
- Bk x k)3

32z(k x k)3
wukxkq
ik x k’)3
i(k x k)3

160
160

O O O O O O O O OO O O O O O OO OO OO O OO0 OO0 0oL oO 0O o000 o0 ooooooo oo o

First continuation of above table.

3k-K
kK
ik x kK')3
—Li(k x k)?
ik x K')3
—Bi(k x k)?
—2Lik x k)3
21i(k X k/)3
240z(k x k)3
=ik x k)3
ik x k)3
>k -k
kK
kK
sk K
-k K
-2k K
kK
-k K
-2k K
kK
-5k K
-2k K
3 k Kk’
T k-K

~ 180
1 k Kk’

ﬁz(k x k)3
961(k x k)3
lgi(k X k/)B
Li(k x k)3
Li(k x k)3
i(k x k)3
160z(k x k)3
Bik x k)3
13 '(k x k/)S
—ﬁz(k x k)3
i(k x k)3

160
160
160

B 160



C.1. OPERATOR BASIS CONTRIBUTING TO SB EFFECTS

Table C.6: Non-trivial matrix elements of the 1-, 2-, and 3-body operators corresponding
to the scattering amplitude of the process p + 7~ — n + 7°. The entries correspond to

\/6kiku <[7;(m)RnZJ)] (ab8)>'

1 8 10 + 10 27
i k”([’P(m (ﬁ)](abS)) 0 %z(k x k')3 0 0
KR (PIRIDI@®) | 0 Lik x k') 0 0
LI <[rp(m)R(1J)](ab8)> 0 ,%k LK 0 0
kik' ([P(™) R w>] ab8)y | 0 —2k K 0 0
kik!d <[p(m)R(ZJ)](ab8)> 0 ,%k LK 0 7gk k!
Eig!d <[’P(m)R(U)](ab8)> 0 9k LK 0 gk k'
kzk/]<[p(m ’LJ)] ab8)> 0 —%i(k X k’)3 —i(k X k/)?’ 2’L(k X kl)
k.zk/]<[7)(m)R(U)](ab8)> 0 7%1(1{ X k/)3 Z(k X kl)d 7% (k X kl)
k%k”([")(m)R LJi](abS)) 0 _41 (k % kl)3 %'L(k % k’)3 _Ez(k % kl)3
k.zk./]<[p(m (i ] ab8)> 0 0 (k x k)3 —1—12i(k x k')3 1—101(k x k)3
lc%”(['/’(m)R(“;] @) 1o Lifkx k)P 0 Sille x )

i m) p(i)1(a 11 2
BRI (PIRED@S) | o Mk kK 2K
kzk/]<[p(m R(U)](abS)) 0 ,%k.k/ —k -k 7%kk/
kzk/3<[p(m)R(17)](ab8)> 0 —%k-k/ k- K —%k~k’
Kok [P BUD @) | o —k K kK ~Zk K
k.zk/3<[7)(m) R(U)](abS)) 0 0 (k X k’) 0 71%7,(1{ X k/)3
kiK' <[7><m>R‘”>](ab8>) 0 —Ji(kxK)3 —i(k x k)3 —Li(k x k)3
k.ik/ <[73(m 74J)](ab8)> 0 % (k X k’) 0 —%Z(k X k/)B
kik/]<['P<m)R(”)](ab8)) 0 13 i(k x k')3 0 %l(k x k')3
k%”(['P(m ZJO)](ab8)> 0 § i(k x k)3 i(k x k)3 li(k x k)3
kikw<[p(m U)](abS)) 0 —Ez(k x k)3 0 % (k x k)3
kzk/]<[’p(m)R(U)](ab8)> 0 Li(k X k/) ’i(k X k/)3 % (k X k/)
Kik'd ((Pm R u>] 8y |0 ik x k)P —3ikx k)P —Zi(k x k)3
kzk/1<[7)(m)R('LJ>](ab8)> 0 —2i(kx k)3 0 —a5i(k x K')3
klk/3<[p(m)R(U)](ab8)> 0 _iz(k X k’) 0 QL (k X k/)
kzk/]<[p(m u)] ab8)> 0 (k x k)3 0 % (k x k')3
k.zk/]<[7)(m)R(lJ)](ab8)> 0 7*Z(k x k)3 0 ik x k)3
Lig!d <[7)(m)R LJ)](abS)) 0 _72(1{ x k')3 0 %Z(k x k’)3
KR (POVRINES) | 0 Bk x k)P 0 351k X k)3
kik/]<[7)(m)R(U)](ab8)> 0 21 '(k X k’) 0 %’L(k X kl)3
kik/]<[fp(m U)](abS)) 0 _iz(k X k’)3 0 %’L(k X kl)S
kzk/]<[p(m R(U)](abS)) 0 (k X k/) 0 %Z(k X k/)g
kzk/1<[’p(m)R(17)](ab8)> 0 1207,(1( xk)P =ik x k)P -k x k)3
kzk/]qp(m ’LJ)] abS)) 0 _71(1( X k’)3 0 %’L(k X k/)3
k.zk/3<[7)(m) R(U)](abS)) 0 731(1( X k’) 0 él(k X k/)3
(w) b 1, 1
KR (PO RUE@D) |0 — Lk x k)3 0 gill x k)
k.zk/]<[p(m (lji](ab8)> 0 17k K’ _T72k K %k K
kl_k”<[7><m>R J)]<ab8>) 0 2;4;01( K/ 71—12k-k’ 721%1( K
Lig!d <[P(7n J2 ](abS)) 0 2. K’ -k K k- k’
kiklj<[p(m 7~J)](ab8)> 0 ggk'k/ —%k-k/ —%k~k/
i (i5)

kzk/]<[P(m)R ij ](ab8)> 0 %k~k’ ék- / %k-k/
klk/]qu(m U)] ab®)y | %k.k/ 0 —%k~k’
kig!d <[p(m)R(ZJ)](ab8)> 0 ,%k LK 0 %k -k
klk/j<[7)(m)R(1J)](ab8)> 0 _%kk/ %kk/ %kk/
k"”k”([P(m ”())] ab8)> 0 —%k-k’ %k-k' —%k'k/




C.1.

OPERATOR BASIS CONTRIBUTING TO SB EFFECTS

Table C.7: First continuation of above table.

Eik'd ([P(m)R%jl)](“b8>>
Eig!d ([p(m)Rggz)](ab8)>
Eig'd ([p(m)Rggg](ab8)>
kig!d <[P(M)R§Z§5J_4)](ab8)>
KK (PO R (@)
KU (PO R{ (@)
K ([P Ryg2) ()
K (PO R (@)
KU (PO R{)) (@)
KR ([P O RYZE) )

SO O O O o o o o o o

Bg. ¥
_%k.k/
—%k~k’
kK
sk K
2k -k
-8k.K
Bk
kK
—3k K

101

i1k-K
-3k K

0

0
—5k K
— 5k K
-1k K
kK

0

0

2k - K

—%k-k/
2k K

-2k - K
-2k K
2k K

-2k K
2k - K

-2k K
2k K



C.1. OPERATOR BASIS CONTRIBUTING TO SB EFFECTS

Table C.8: Non-trivial matrix elements of the 1-, 2-, and 3-body operators corresponding
to the scatterlng amphtude of the process n + 7T+ — n + 7", The entries correspond to

2\/_k.zklj <[7)(m R ](ab8)>

1 10+ 10 27
k.zk/] <[7D(m)R(”)](”‘b8)> 2k - kK’ 0 0 0
kiK' <[73(m)R(U)](ab8)> (k x k) 0 0 0
klk/] <[7J(m)R(U)](ab8)> 0 3k -k’ 0 0
k;’k;”<[73 m)R(’LJ)](abS > 0 % (k x k/)3 0 0
kik/J<[P(m)R(1J)](ab8)> 0 ,% (k X k/)3 0 0
Lo <[7>(m>R<w>]<ab8)> 0 —2i(k x k)3 0 0
kik'd ([P m>R§;§>](ab8 ) k- K 0 0 0
ik ([P m)]:{(”“‘j)](llb8 ) %k Y 0 0 0
kik/1<[P(m)R(1J)](ab8)> 0 %z(k x k')3 0 0
kik' ([P m)R(U)](abS ) 0 % (k x k')3 0 0
kik/3<[rp(m)R(1J)](ab8)> 0 % (k x k)3 0 0
klk/] <[7)(m)R(U)](ab8)> 0 ék K’ 0 0
kzklj <[7) m)R(U>](ab8 > 0 %k Kk 0 0
k.zk/] <[/P(m)R(1J)](ab8)> 0 ,%k K 0 0
kik!J <[7)(m)R(U)](ab8)> 0 _%k LK 0 0
kzk/] <[7) m)R(U)](ab8 > 0 %k K 0 0
kzklj <[7)(m)R(U)](ab8)> 0 %k LK 0 0
Eig!d <[73(m)R(U)](ab8)> 0 —3k -k 0 0
k”ﬂ”([? m)R(U)](abS ) 0 %k.k/ 0 %k k’
kzk/]<[7)(m)R(U)](ab8)> Sk K/ Sk K 0 2k K
kik1]<[fp(m)R(U)](ab8)> Sk —%k LK 0 %Ok K
kik!? ([P m)R(m](abs ) %k CK —gk K 0 %kk’
kik/J<[fP(m)R(U)](ab8)> 0 gk.k’ 0 gk- k’

i3l

Kik'I ([P m>R(”>](ab8>> 0 Wik x k') i(k x k)3 2i(k x K')?
Kikd ([p(m) RUD(ab8)y 0 Wik x k)3 —i(k xK)3 2i(k x K')?
W]<[7><m>RZ7§]<abS>> %i(k x K')3 —Sl%z'(k x k') 0 %z‘(k x k')
KB (PO R [09) | ik x k)P ik x k) 0 goi(k x k')
ERIP R | Litex i) il ) 0 soi(k X k)3
k’k”([P(m)R(”)](abs)) Lik x k)3 —3i(k x k)3 0 ik x K)?
KEI(POIREDYD) | Jile x k) ik x k) 0 soi(k x k)3
ERIP R | Litex i) il )P 0 ik x K)?
kik'I <[7>(m>R(”)](“bS)) 0 ik x k)P —LikxK)® ik x k)3
kikqu(m)R(”)](abe)) 0 —%i(k x k')3 1—12i(k xk3  —ki(k x k)3
k%”([P(m)R(”)](abS)) 3i(k x k)3 0 0 0
kik.lj <[7) m)R(U>](ab8 > 0 9k Kk 0 0
kik/]<[fp(m)R(1J)](ab8)> 0 7%1(1( X k’)3 0 7%1(1( X kl)3
BRI R | Sitex k)P Sidex k)P 0 ik x k)*
PRty | Loy w0 bitocy
BRIPRE) | JiGex ) ~Silk x ) 0 Toi(k X K)?
Lig!d <[7>(m)R(1J)](ab8)> 0 %k LK k- K %k LK
k’k”([P m)R(U)](ab8 ) 0 %k-k' k- -k %k~k/
kzk/]<[rp(m)R(U)](ab8)> 0 L(l]k LK —k-K %k K
Kik'I ([P m)R(U)](abS ) 0 %k-k’ k- K %k.k’
kzk,lj<[rp(m)R(lJ)](ub8)> %kk, *%kkl 0 %kk/



C.1.

OPERATOR BASIS CONTRIBUTING TO SB EFFECTS

Eig!d [P(m)R(lj)](ab8)>
Lig!d [p(m R(w ](abS))
ki [P(m)R(U }(ab8)>
kig!d [p(m)R(w }(abS))
Lig!d [p(m R(U }(abS))
kik/] [p(m)R(U }(ab8)>
Eig!d [p(m R<” }(abS))
Lig!d [p(m R(U }(abS))
ki [P(m)R<” }(abS))
ki [P(m)R(U }(ab8)>
kig!d [p(m)R(w }(abS))
Lig!d [p(m R(U }(abS))
kik/] [p(m)R(U }(ab8)>
kig!d [fp(m)R(lJ }(abS))
Lig!d [p(m R(U }(abS))
Eig!d [P(m)R(U }(ab8)>
kig!d [7)(7n (U (ab8)y
Eig!d [p(m R(U (ab8)>
kik'd [rp(m)R(U (ab8)>
u
J

Lig!d [P(m ( (ab8)y
ki [p(m)R(U ab8)>
Eig!d [rp(m)R(U ab8)>

ab8)>

(

(

(
Eig!d [P(m)R(” (ab8)>
kik'] [fp(m)R(U (abS))
Lig!d [p(m R(U (ab8)>
ki [p(m)R(U (ab8)>
Eig!d [p(m R(w (ab8)y
kil [P(m)R<” (ab8)>
Eig!d [rp(m)R(IJ (ab8)>

(ab8)y
ki [p(m)R<” (ab8)>
kig!d [fp(m)R(lJ (ab8)y
Lig!d [p(m (U (ab8)>
ki [P(m)R(U (ab8)>
kig!d [p(m R(w (ab8)y
Lig!d [p(m (U (ab8)>
kik!d [rp(m)R(U (ab8)>
kiK' ([P(m) R<” (ab8)y
kil [p(m)R(lj (ab8)>
Eig!d [rp(m)RUJ (ab8)>
kiK' ([P(m) R(w (ab8))
ki [P(m)R(” (ab8)>
kik'] [fp(m)R(U (abS))

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
k%”(['P(m (1
(
¢
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
¢
k.ik/]<[p(m R(U) (ab8))

9]
]
}
5]
]
]
5]
]
]
]
]
]
]
]
Lig!d [P R <u}
]
]
3]
]
]
1]
]
]
]
]
]
]
]
]

Table C.9: First continuation of above table.

1k ¥
1k K
1k K
1k ¥
1k K
0
0
0
0
3k - K
3k - K’
3k -k
0
k- Kk’
k- K
k- k'
k- Kk’
k-k
k- k'
2i(k x k')?
3i(k x k)3
3i(k x k)3
Zi(k x k')?
Zi(k x k)3
Zi(k x k')?
g (k x k')3
—3i(k x k)3
—3i(k x K')3
0
3k-K
3k K
3k-K
3k K
3k K
3k-K
3k K
3k K
3k-K
3k K
3k-K
3k K
-3k K
-1k K
-1k K
-1k K

Sk-K
i
10
%k K
kK
2i(k x k)3
3k - K’
3k - K/
3k - K/
39 !
20
—%k LK
19k - k’
2k-K — Fi(k x kK')?
‘;’, DU
681 1 _ Barle x kY
e ‘;1 ey
20
3i(k x k)3
z(k x k)3
i(k x k)3
i(k x k')3
i(k x k)3
z(k x k’)3
i(k x k)3
oi(k x k)3
Bik x k)3
f%i(k x k')3
329 ’ 57, 7\3
41%71{1( kk'++4gi il;kxxkk?)?’
107k K + ﬁz‘(k x k')3
49k8~0k/
Bk K foﬁi(k x k)3
80 80
Bk + Bikx k)3
49 ’
29y . K/ f);z(l; x k')3
80 80
49k kK — 93i(k X k/)
107k k' — 2Li(k x k)3
ggk K + 22i(k x k)3
ok -k — 93i(k x k)3
g(l)k K+ 120 i(k x k')?
Bk -k + ik x k')?
;12901{ K + Li(k x k)3
Lik x k')®

w»—tm»—tw»a»—u—-»a =
‘wo‘wo‘oc‘wo"“o‘

0
1

49 /
120k k' +

103

O O O O OO0 o0 o0 oo o o oo

i(k x k/)3

|
=
=

~ x

O O O X © O O O O O O O O O O X X © O 0o oo o o0 o o x ©o

ol
<.

~
~

=
%

)
— k- K + f5i(k x k')
-2k K + Lik x k)3
— kK — Zi(k x k)3
— a5k K — Li(k x k)3
-k k' — Li(k x k)3

K+ Fi(k x k)3
K+ ik x K')?
K+ Zi(k x k)3
kK — ik x k)3
K — ik x K')?
K — 3 '(k X k/)3
—z(k x k)3
202(1{ x k)3
api(k x k)3
-3k x kK')?
—2Li(k x k)3
21i(k x k’)3
i(k x k)3
ik x k)3
ik x k)3
3 N3
ik-glikixil((k)x k’)3
Ek k! + Ei(k x k)3
ﬁk k' Ei(k x k)3
30 20
kK

Gl oo Gl &= cue &l
~ o r " x

120

-2k K + ik x k)3
-3k -k — Li(k x k)3

1
ok K

-3k K - Li(k xk)?

— 3k K + ik x k)?
7k K — ik x k)3

10k K — Li(k x k)3
3



C.1.

OPERATOR BASIS CONTRIBUTING TO SB EFFECTS

Table C.10: Second continuation of above table.

(m) R(U)](abS

Al ))
Al ))
(i ))
Al ))
(i ))
[ ))
Al ))
i ))
i ))
Al ))
[fP(m)R('L])](abS)>
Al ))
Al ))
i ))
Al ))
[ (m)R(m](abs>>
[ ))
[ ))
i ))
Al ))
(i ))

z(k x k)3
i(k x k)3

63 15
fgk-k’+ i
—atk kK — ghi(k x k)3

17k Kk’ + 212-(1{ X kI)S
— ok K + gi(k x k)3
- 2k-k + ik x k)3

— 3k x k)?
Bk kK - Bi(k x k)?

—Bk-k — 2k x k)?

—Ez(k x k)3

—4Tk K + Zi(k x k')?

kK + Zi(k x k')?
27470k K + 23i(k x K')3
22490k Kk’ + 33 '(k % k/)3
-8Bk Kk - —z(k x k)3
Bk kK - Bi(k x k)?
ok K + Zi(k x kK')?
—2Tk K + ik x kK')3
27470k k' —
240k k' —
Bk-K + Bi(k x kK)?
i(k x k)3

Tk-kK — Zi(k x kK')?

104

Bk x k)3
Bi(k x k)3

7k K’

2 21
BMAL
—2k- K - ik x k)3

2

5k-k’
2 7 21
—sk-k+ &

2Zk-kK + 3
-2k K + Zi(k x k)3
e+ &
—2k -k + 12
%kk/_ 21
-2k K — —z(kxk’)

-2k K — ZLi(k x k)3
2k kK — Zi(k x k)3
-2k K - Zi(k xK')?

——z(k x k’)3
%k~k’ - Bik x k')?

2
—2k- K - Bik x k)3

ik x k)3
2k -k + Zi(k x k')?
i(k x k)3

2k -k — Zi(k x k)3
2i(k x k)3
Bi(k x k)3
i(k x k)3
2li(k x k)3
i(k x k')3

2
gk~k’—
2
gk~k’+
i(k x k/)3

i(k x k')3
ik x k)3



C.1. OPERATOR BASIS CONTRIBUTING TO SB EFFECTS

Table C.11: Non-trivial matrix elements of the 1-, 2-; and 3-body operators corresponding
to the scatterlng amphtude of the process n + 7~ — n + 7m~. The entries correspond to

2\/_k’k'] <[7)(m R ](ab8)>

1 10 + 10 27
Eig'd <[P(m)R(u)](abs)> 2k - K/ 0 0 0
k’k”([P(m)R(”)](abS)) i(k x k)3 0 0 0
LI <[7;(m)R(U)](ab8)> 0 3k -k’ 0 0
KK ([P m)R(U)](abS ) 0 %z(k x k’)3 0 0
kik/3<['p(m)R(”)](ﬂ58)> 0 —Li(k x K')3 0 0
kzk/7<[7>(m)R(U)](ab8)> 0 %z‘(k x k)3 0 0
Kk ([P m>Rglsj>](ab8 ) k- K 0 0 0
kik!d ([P m)]:{(”“‘j)](llb8 ) %k .k 0 0 0
k%”([P(m)R(”)](abS)) 0 % (k x k)3 0 0
Kk ([P m)R(U)](abS ) 0 % (k x k')3 0 0
kik/3<['p(m)R(”)](ﬂ58)> 0 Li(k x k')? 0 0
LI <[7)(m)R(1J)](ab8)> 0 ék % 0 0
klkqu m>R(w>](abs ) 0 %k LK 0 0
Eig'd <[7>(m>R<w>](ab8)> 0 -1k K 0 0
kik!d <[7)(m)R(U)](ab8)> 0 —%k LK 0 0
kik!d ([P m)R(’LJ)](ab8 ) 0 _% Y 0 0
Eigd <[p(m>R<w>]<abs)> 0 -5k K 0 0
Eig!d <[73(m)R(U)](ab8)> 0 —3k -k 0 0
k”ﬂ”([? m)R(U)](abS ) 0 _%k‘k’ 0 —gk~k’
kzku<[7;(m)R(w)](abs)> Sk K/ Sk K 0 2k K
kik/J<[7>(m)R(”)](ab8)> 3k-K —2k K 0 kK
kik/]<[77 m)R(’LJ)](ab8 ) %k~k, —%k‘k' 0 %k.k/
kik/J<[rP(m)R(U)](ab8)> 0 kK 0 —Sk-K
Kik'I ([P m>R(”>](ab8>> 0 “Hikx k) —ikx k)P —Zi(kx k)3
Kk ([p(m) RUD(ab8)y 0 ik x k)3 ik x K)3 ~Zi(k x k)3
B (PO R | Lillex e — ik x e 0 1k x K)?
e (P BV | Tiex i) e i) 0 goilk x k)’
b (P BNy | Tiex i) e i) 0 goik x k)
B P RED @) | Liex i) — i x )P 0 1pik X K)?
KEI(POIREDYD) | Jile x k) ik x k) 0 soi(k x k)3
ERIP R | Litex i) il )P 0 soi(k X k)3
k’k”([P(m)R(”)](“”S)) 0 “ikx k) ik x k)3 — ik x k)3
Kk ([p(m) RUD(ab8)y 0 Lik xk)?  —Likxk)?  Likxk)?
kik/1<[p(m)R(1J)](ab8)> %z(k x k')3 0 0 0
Kk ([P m)R(U)](abS ) 0 gk k’ 0 0
kik/]<[fp(m)R(1J)](ab8)> 0 2i(k x k)3 0 Si(k x k)3
BRI R | Sitex k) Sidex )P 0 ik x k)*
Kk ([P m>R(w>](ab8 ) %i(k x k’)3 _% (k x k)3 0 %i(k x k)3
R ([P REDT) | Sk 10y %i(k x k)3 0 Toi(k x k)3
kzku<[7>(m>R(w>]<ab8)> 0 Uy —k-K —2k-K
kik' ([P m)R(U)](ab8 ) 0 _}Tl)k.k/ k- K —%k~k/
kzku<[7><m>R<w>]<ab8)> 0 ~x.w k-K —2k-K
k:’k”(['P m)R(U)](abS ) 0 —%k-k’ k- -k —%k~k’
kzk/J<[rp(m)R(1J)](ab8)> %k~k’ %k.k’ 0 %k-k/



C.1. OPERATOR BASIS CONTRIBUTING TO SB EFFECTS

Table C.12: First continuation of above table.

Kig!d <[7;(m)R(lJ)](ab8)> %k K %k LK 0 %k - k!

kil <[7)(m)R(".7)](ab8)> %k LK %k LK 0 %k -k’
kzk/1<[73(m)R(1])](ab8)> %k- K 7%1{.1{/ 0 1‘%k-k/

kik!d <[rp(m)R(1J)](ab8)> %k LK %k LK 0 %k -k’

kiklj <[7)(m)R('LJ)](ab8)> %k LK %k kK 0 %k -k!

Lig'd <[73(m)R(1J)](ab8)> 0 %z(k x k')3 0 0

Eig!d <[P(m)R(”)](ab8>> 0 3k -k’ 0 0

kik'J <[P(m>R(”)](ab8>> 0 3k -k’ 0 0

Eik'd <[’P(m)R(” ](ab®)) 0 3k -k’ 0 0

Eig!I <[7)(m)R(1])](ab8)> 3k -k’ 7%]( Y 0 %k 'Y

Eig'd <[rp(m)R(1J)](ab8)> 3k -k’ %k LK 0 %k -k!

kiklj <[7)(m)R('LJ)](ab8)> 3k -k’ _%k K 0 lk 'Y

kik'd ([P(m) R()](ab8)) 0 19k - K’ 0 0
k’k”(['P(m)R(”)](abS)) k-K _%k Sk + f’—oz(k x k’)3 0 Tlsk k' — % (k x k)3
kiK' ([P0m) R(7)](ab8)) kK Brok - ZikxK)?  —i(kxk)®  3koK - ik xK)3
eogpe o) | e B Bioa 0 Sl oo
kzk./J<[fp(m)RE:J;](ab8)> k- K —§k LK — %’L(k % k/)S 0 %k k! + 10 (k X k’)s
kzkqu(m)R(lﬂ)](abs» k- K 217)1« k' + 2i(k x k)3 i(k X k)3 3k-K + itk x K)?
kfk”([P(m)R J)(ab8)) k-K —3ok -k — ik x k)3 0 kK + ik x k)3
kfkfﬂ<[7><m>R(’J>]<ab8>> 3i(k x k)3 Bik x K)? 0 2i(k x K')?
Eik'd <[73(m)R(2])](ab8)> %Z(k x k)3 17101(1{ x k)3 0 %z(k x k)3
k’k”([P(m)R(”)](a”S)) 3i(k x k)3 Bikx k)? 0 Si(k x k')

kik'd <[P(m>R(”)](“b8>> 9i(k x k)3 ik x k)3 0 Bk x k)3
kik’J<[7><m>R(”)]<ab8>> ik x k')® Bk x k)3 0 f—z(k x k')3
kK <[7>(m>R<”>]<abS>> Zi(k x k)3 Bi(k x k)3 0 ik x k)3
kik’]<[P(m>RE:J;](ab8)> _gi(k < k')? 101 i(k x k)3 0 120 (k x k')?

KR (P REN@9) | i x )P i x K0y 0 ik x k)

ki k‘/J<[P(m)R(”)](ab8>> —%Z(k % k/)3 607’(1( % k/)S 0 %’L(k X k’)3
kzk/j<[7)(m)R(2J)](ab8)> 0 %’L(k X k’) i(k x k/)3 *Ai(k X k/)3
kzklj<['p(m)R(1])](ab8)> 3k K 320p K~ —z(k xk)P —2ikx k)3 Fk-k — ik x k)3
kzk.lj <[7;(m)R(ZJ)](ab8)> %k LK 107k K — ’L(k X k’)3 0 7 k k/ — fl(k X k,)3
kik/1<[7)(m)R(Z])](ab8)> %k LK 107k k' — —'L(k X k’)3 0 7 ok k' — —l(k X k/)3
Eig'd <[7;(m)R(ZJ)](ab8)> %k K 40k K’ 0 1 ok~ Kk’
kzklj<[7)(m)R('LJ)](ab8)> %k Lk %k K+ %Z(k % k/)3 0 k k/ _ 71(]‘ X k’)
kzk/J<[7)(m)R(l])](ab8)> %k-k’ %k.k/ _ %Z(k x k)3 0 10k k' + 107,(k>< k)3
kik./J <['p('m)R(1J)](ab8)> %k Y _%k k! 0 %k -k!

kik/] <[7)(m)R('LJ)](ab8)> %k Y %k Ck— %z(k X k/)3 0 3 k k' + 1 ’L(k X k,)g
kzklj<[73(m)R(lJ)](ab8)> %k LK %k K+ %i(k x k)3 0 k k' — —z(k x k)3
ki ([ RERI) | Sk — o koK o+ ik x k) 0 370k k' + g5i(k x k)3
kzk/1<[73(m)R(2])](ab8)> %k LK %k k! — —z(k x k)3 0 3 5k k' + 1 i(k x k)3
kif!d <[73(m)R(1])](ab8)> %k LK 49k Kk’ + (k X k/) 0 k k' — —z(k X k/)
PO RIS | S i - w(k K Bl k)P - Sk ik x )
kik/J<[7)(m)R(1])](ab8)> “lkK Dy - —z(k x k')3 0 97Ok K + Zi(k x k)3
kik!d <[rp(m)R(w)](ab8)> —%k LK 14290k K — éz(k x k')3 0 —%k K+ %Z(k x k')3
k’k’]<[73(m>R(m](ab8)> _%k K 14290k k' — %Z(k x k')? 0 _ﬁk K+ %i(k x k')?
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C.1. OPERATOR BASIS CONTRIBUTING TO SB EFFECTS

Table C.13: Second continuation of above table.

kiklj<[7;(m)R(w)](ab8)> Z(k x k’)3 17k K + Z—éz(k % k/)S _T72k LK %k K — 7Z(k % k')
Kk ([P RN (@b8)) | 9 4(k x K/)3 27470k K+ Bikxk)? Lk kK -2k kK- Zikxk)?
kik’J<[7><m>R(”)]<ab8>> Sikx k)P 2k K+ Bikxk)? —Lk K 2k K- Sikxk)3
kk”([P(m)R(”)](“bS)) Si(k x k') Bk x K)? 0 ik x k)3
KRI(PIRI)@8) | _ Sk x k)3 —8Bk. K - Bikxk)® —lk-k -2k kK - BikxK)3
k%k'J'([P(m)R(”’](abS)) Fikxk)3  Bk.k - 2i(k x k)3 ik K 2k K - Bik x kK)?
k’k”([P(m>R(”)](“b8>> Si(k x k') — ik x K')? 0 Bik x k)3
k%”([P(m)R(”)](“”8>> 2ik xkK)? kK + Zik x k)3 0 -2k -k + Zi(k x k)3
k%”([P(m)R(”)](abS)) Sikx k) ATk K 4 ik x k)3 0 2K + 2hi(k x K/)3
ka’J<[7>(m>R(”>]<ab8>> Sk x k)3 24LOk K + gi(k k)P EkK ZkK - Zikx k)P
Kik' 7><m>R(”) (ab8) Dk x K')3 Ok K + Bi(k x k') Trw “2k K - Zi(k x K)3
240 12 5
k%”([P(m)R(”)](abS)) z(k XK Bk - —z(k x k')3 1k K 2Kk — —z(k x k')3
KR (PIRII@) | — Lk x k)3 —8Bk. K - Bikx k) —ik-k -2k kK - BikxK)3
k%”([P(m)R(”)](abS)) Sk xK)? ATk K+ Zi(k x k)3 0 2k K+ 2k x K)3
kz‘k/J<[P(m)R(ZJ)](ab8)> z(k x k)3 47k K + 9 Li(k x K')3 0 —%k K+ %Z(k x k')3
kl_k’{([P(WR(”)](ab&) ik x k)3 27470k K — gi(k xk)?  —Lk kK —Zk K+ Zikxk)?
k’k’?([’P(m)R(“)](abS)) %z(k x k')3 22490k K — gl(k x k')3 —%k K %k K+ %z(k x k')3
KRI(PRI@E) | S50 x k)3 —8Bk. K+ Bikx k) -1k kK -2k K+ Bikx k)3
ka’J<[7><m>R(”)]<ab8>> Sk x k)3 Bk 4 5k xK)3 koK 21K 4 Bik x k)3
kfk'f<[7>(m>R(”>]<ab8>> Sk x k') e — ik x k)3 0 2k K - 2i(k x k)3
Kk (PRI @) | S5 x k)3 —4Tk. K — Li(k x k') 0 2k K — —z(k x k')3
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C.1. OPERATOR BASIS CONTRIBUTING TO SB EFFECTS

Table C.14: Non-trivial matrix elements of the 1-, 2-, and 3-body operators corresponding

to the scattering amplitude of the process n + 7° — n + 7°. The entries correspond to
\/gk:i/{:'j<[73(m)Rnij)](ab8)>.

1 8 10+ 10 27
kikJ ([P(m) R{7)](ab8)) k- Kk 0 0 0
kik! [P(m)R(”)]<“b8>) Li(k x k') 0 0 0
kikm([p(m)R(w)](abs)> 0 %k K 0 0
klk”([P(m)R(”)](abg)> 0 Lik x k)3 0 0
kik'd ([P(m) R{H)](ab8) 0 — ik x K)3 0 0
Eig!d <[P(m)R(1])](ab8)> %k K 0 0 0
kig!d [p(m)R(ZJ)](ub8)> %k K 0 0 0
kik” ([’P(m)R(”)]<ab8>> 0 %Z(k x k/)3 0 0
kil ([P(m) R{i)](ab8)) 0 —Li(k x k)3 0 0
kiK' [P(m)R(”)]<“b8>> 0 1w 0 0
kik/3<[7p(m)R(za)](abs)> 0 ik K 0 0
Lik'd <[p(m)R(lJ)](ab8)> 0 —%k K 0 0
Lig'd (['P(m)R(U)](abS)> 0 —%k K 0 0
Eig!d <['p(m)R(1J)](ab8)> 0 7%}( K 0 0
Kk ([P(m)R(”)]<ab8>> 3K kK 0 kK
kik” ([fp(m)R(U)](abS)> %k % _l%k Lk 0 %k LK
kiklj<[7)(m)R(1])](ab8)> %k-k/ f%k-k' 0 %k-k’
kik’J([P(m)R(”)]<“b8>> ik xK)? —Zi(k x k) 0 ik x k)3
Kk (PRSP | Li x k)3 Bi(k x k)3 0 Lik x k)3
kik”([P(m>R<”)]<ab8>> Likx k)3 Zik x k) 0 Lk x k)3
kik”([P<m>R<”)1<ab8>> Li(k x k)3 _ii(k x k')3 0 ik x K)?
kik'ﬂ<[P<m)R(”)]<ab8>> Lik x k)3 Zik x k)3 0 Li(k x k)3
kik”([P(m)R(”)](abg)> Likxk)?  Zik x k) 0 Lk x k)3
kik” ([fp(m)R(U)](abS)> %Z(k x k/)3 0 0 0
Eig!d <[fp(m)R(1])](ab8)> 0 %k K 0 0
kik”([73<7">R<”)]<ab8>> BikxK)?  Fi(kx k) 0 ik x k)3
kik'd ([P(m) R{7))(ab8)y ik xk)?  —Zik x k)3 0 5i(k x k)3
kik’ﬂ([P(m>R<”)]<ab8>> Bikx k)P —Zi(k x k) 0 Li(k x k')
kik'd ([79<m)R<”)]<ab8>> 1k K —3k-K 0 3k-K
kik/3<[7p(m)R(za)](abs)> ik'k/ %k-k’ 0 %k-k’
kik/J<[p(m)R(lJ)](ab8)> ik.kl %k~k/ 0 &k~k’
kik/J([p(m)R(lj)](ab8)> ik,k/ —;—Ok‘k' 0 %k~k’
KiK' ([P(m)R(”)](abS)> 1k K SkK 0 dk K
Kk’ ([P(m)R(”)]<ab8>> 1k K 3k-K 0 Lk K
kiK' ([P(m) RU9)](ab8)) 0 3i(k x K/)3 0 0
Kik'I <[7><M>R(”)]<ab8>> 0 3k 0 0
kik' ([P(m)R(”)]<“b8>> 0 3k 0 0
kiklj<['P(m)R(ZJ)](ab8)> 0 %k K 0 0
Eig!d <[p(m)R(U)](ab8)> %k K —%k K/ 0 1—10k K
Lik'd ([p(m)R(ZJ)](ab8)> %k K/ %;‘)k K 0 %k LK
kik!d <[fp(m)R(U)](ab8)> %k K’ 7%1( K/ 0 %k K
kik! ([P R{)](ab®)) 0 WK 0 0
kik” ([fp(m)R(U)](abS)> %k Kk’ —%k Kk’ 0 %k LK
k%’ﬂ([P(m)R(”)](ab8>> 1k K Bk K 0 2k K
lcfk”([73<"L>R(”)]<ab8>> 1k K —Brw 0 Lk K
klk'ﬂ<[P<m>R(”)]<ab8>> 1k K -8Bk K 0 kK




C.1.

OPERATOR BASIS CONTRIBUTING TO SB EFFECTS

Table C.15: First continuation of above table.

kzk/]<[7)(m)R<l] (ab8)
klk”(
kik/J<[73(m)R<1J (ab8)
kzkl]<[7)(m)R<'L] (ab8)
klkm([p(m)R(w (ab8)
k’bk”([p(m)R(W (ab8)
kzk/]<[p(m)R(1] (ab8)
kzk/J<[7)(m)R(lJ (ab8)
kik/]qu(m)R(W (ab8)
kik”([P(m)R(” (ab8)

(

(

[P(m) R(ZJ (ab8)

)

)

)

)

)

)

)

)

)

)
kik/J [P(m)R<1J (ab8)>
Lig!d [p(m)R(w4 (ab8)>
kik' ([P(m) R{)](ab8))
k,zk/J <[73(m)R(1J) >
Eig'd <[p(m)R(u7) (ab8)>
kzk/,] [p(m)R(lJ) (ab8)>
Lig!d [p(m)R(w) (ab8)>
)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

(ab8)
(ab8)

O)

OO

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

( ]

( ]
kik/]<[p(m)R(lJ }(abs)
kik/J <[7)(m)R(1] }(ab8)
kik/]<[p(m)R(W }(abS)
kzklj<[7)(m)R(7fJ }(abS)
kig!d <[73(m)R(1J }(abS)
kzkl]<[7)(m)R<'L] }(abS)
klkm([p(m)R(w }(ab8)
k’bk”([p(m)R(W }(abS)
kzk/]<[p(m)R(1] }(abs)
Eig'd <[7>(m)R(w }(ab8)
kik/]<[p(m)R(W }(abS)
kik”([P(m)R(” }(ab8)
kik/J <[7)(m)R<1J }(abS)
kikl]<[7p(m) R<” }(abS)
kzklj<[fp(m)R(lJ }(ab8)
kig!d <[p(m)R(1J }(abS))
k.zkl]<['P(m)R('L] }(abS)
kzk/J<[7)(m)R(1] }(ab8)
kik’]([PW)R(” }(abS)
kg <[p(m)R(lJ9}(ab8)
Eig! <[7)(m)R(1])}(ab8)
kik/]qu(m)R(Z }(abS)

]
]
]
]
]
]
]
]
]

O

)

)

)

)

)

)
kig!d <[p(m)R(11 (ab8)>
k.zklj <[73(m)R<1J3) (ab8)>
kiK' ([P(m) RUI)](ab8))
Lkik'I <[7)(m)R(l]5) >
kiR ([P(m) RUZ)](ab8))
)

)

)

)

kzkl] <[P(m) R('LJ)

N

(ab8)
(ab®)
(ab8)
(ab8)

\1

kzk/J <[7>(m)R(”8) (ab8)
kik/] <[p(m) R(W) (ab8)
(

kik.lj [P(m)R(ZJ) (ab8)

1k K
1k . k/
(kkaS
i(k x k)3
i(k x k)3
15k x k)3
ﬁz(kx K’)3
Fik x k)3
—2i(k x k)3
7—z(k x k)3

UDOO\C»J 00\0?(21\03

[ O e I S I
ool dletlotlotoBleollotlodledlel]e

i(k x k)3
i(k x k/)3
i(k x k')
i(k x k')3
i(k x k)3
itk x k)3
i(k x k)3

‘“’w
<.

W
M

2

oo ileglofi]o

w
M

109

Sk-K
-3k K
ik x k)3
5i(k x k)3
ik x k)3
ik x k)3
Bik x k)3
13i(k % k/)3
101 (k x k/)

120°

—12i(k x k)3

—ﬁoz(k x k’)3

329 k- -k
107
160 kK

107 /
160k k

49

4gok k’
/

Teok Kk

49 /
160 k-k

k k’
45
160k K

49 /
160k k

107 /
160k k

49 /
160 k-k

49 /
160 k-k

431 /
240k k

i(k x k)3
fmz(k x k’)3
- Bk x k)3
32z(k x k)3
wukxkq
ik x k’)3
i(k x k)3

160
160

O O O O O O O O OO O O O O O OO OO OO O OO0 OO0 0oL oO 0O o000 o0 ooooooo oo o

3k-K
kK
ik x kK')3
—Li(k x k)?
ik x K')3
—Bi(k x k)?
—2Lik x k)3
21i(k X k/)3
240z(k x k)3
=ik x k)3
ik x k)3
>k -k
kK
kK
sk K
-k K
-2k K
kK
-k K
-2k K
kK
-5k K
-2k K
3 k Kk’
T k-K

~ 180
1 k Kk’

ﬁz(k x k)3
961(k x k)3
lgi(k X k/)B
Li(k x k)3

160 )
Li(k x k)3
)
)?

160
i(k x k)3

160z(k x k’
Bik x k)3
13 '(k x k/)S
—ﬁz(k x k)3
i(k x k)3

160

B 160
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Table C.16: Non-trivial matrix elements of the 1-, 2-, and 3-body operators corresponding

to the scatterin

amplitude of the process n + 7+ — p + 70,

The entries correspond to

\/6kiku <[7;(m)RnZJ)] (ab8)>'

1 8 10 + 10 27
kzk/]<[fp(m (’LJ‘>](ab8)> 0 %’L(k % k/)S 0 0
kzk/]<[p(m (’LJ;](abS)) 0 %’L(k X k/)3 0 0

i
kzk/]<[P(m)R J ](ab8)> 0 ,%k LK 0 0
kik' ([P(™) R ’LJ)](abS)) 0 —2k K 0 0
kik!d <[p(m)R(ZJ)](ab8)> 0 ,%k LK 0 7gk k!
kik!d <[rp(m)R(U)](ab8)> 0 9k Y 0 gk k’
Kk (PR U)] abd)y | _%i(k x k)3 —i(k x k)3 27,(k x k')3
k.zk/]<[7)(m)R(”)](ab8)> 0 7%1(1{ X k/)3 Z(k X kl)d 7% (k X kl)
kiK' (PR ”i]wbS)) 0 % (kxk)3  Likx k)3 -k x k)3
FRIPOIRED @) |0 Ak x k)P —Fitkx k)P itk x K)?
kzk/]<[7)(m)R(U)](abS)> 0 %z(k X k/)3 0 g’b(k X k/)3
krblk/ <[P(m U)](abS)) 0 _%k.k’ k- K —%k~k/
Kik!d <[7)(m R(U)](abS)) 0 7%1{.1{/ _k-K 7%kk/
kzkmqrp(m)R(w;](abB)) 0 —%k-k/ k- K —%k~k’
i m) p(i a 11 2
K9 ([P(m) Rg)1(ab8)y | —l—ok~k’ k- -k -2k K
kzk/J<[7)(m) R(¢J)](ab8)> 0 0 (k X k’) 0 71%7,(1{ X k/)3
kzk/]<[7)(m)R('LJ)](ab8)> 0 gz(k x k)3 —i(k x k)3 —Li(k x k)3
kiR ([P (lji]“”””) 0 ik x k) 0 ik x k')°
kzk/]<[7)(m)R ] ](abS)) 0 1%2(1{ x k/).S 0 %“k X k’)5
kik/]<[fp(m 1]@)](ab8)> 0 %’L(k x k/)s i(k % k/)S li(k % k’)3
kzk/]<[p(m U)](abS)) 0 —1%7,(1{ X k/)3 0 % (k X kl)
kzk/]<[’p(m)R(U)](ab8)> 0 Li(k X k/) ’i(k X k/)3 % (k X k/)
Kik'd ((Pm R U)](abs)) 0 —2Tikxk)? —2ikxk)® —Fi(kxk)?
kzk/.7<['p(m) R(U)](abS)) 0 ——z(k X k/) 0 % (k X k/)g
klk/3<[p(m)R(U)](ab8)> 0 ——z(k X k') 0 QL (k X k/)
kzk/]<[p(m w)] ab8)> 0 (k x k)3 0 % (k x k')3
k.zk/]<[7)(m)R(lJ)](ab8)> 0 7*Z(k x k)3 0 ik x k)3
Lig!d <[7)(m)R LJ)](abS)) 0 _72(1{ x k')3 0 %Z(k x k’)3
KRIPOIRIEN @) | 0 ik x k)3 0 — 1gilk x k)3
kik/]<[7)(m)R(U)](abS)> 0 21 '(k X k’) 0 %’L(k X kl)3
kik/ <['P(m U)](abS)) 0 _72(1( X k/)3 0 %’L(k X kl)S
kik/ <[7)(m R(U)](abg)> 0 (k X k/) 0 %Z(k X k/)g
kzk/1<[’p(m)R(17)](ab8)> 0 1207,(1( xk)P =ik x k)P -k x k)3
kzk/]qp(m ’LJ)](abS)) 0 _71(1( X k’)3 0 %’L(k X k/)3
kzk/J<[7)(m) R(U)](ab8)> 0 731(1( X k’) 0 él(k X k/)3
o |8 s L D
R ([P0 B 501(*¥®) | 0 ik K —1gk K 3koK
kzk/] <[7)(m)R(7'J)](ab8)> 0 274701( K’ 717121( LK 7%1( LK
kik/] <[fp(m 1J2)](ab8)> 0 224901( Kk’ _T12k LK %k LK
kiklj<[p(m 7~j)](ab8)> 0 ggk'k/ —%k-k/ —%k~k/
kik!d <[p(m)R(1J)](ab8)> 0 %k K %k 1/ 2K . K
klk/]<[fp(m U)](abS)) 0 %k.k/ 0 —%k~k’
kig!d <[p(m)R(ZJ)](ab8)> 0 ,%k LK 0 %k -k
( ) 77 1 2

kzk/j<[7)(m)R U)](abs)) 0 —%k-k’ ?k-k/ 1—52k.k/
k,zk/]<[p(m ]0] ab8)> 0 _mkk/ ﬁkkl _gkk/
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Table C.17: First continuation of above table.

Eik'd ([P(m)R%jl)](“b8>>
Eig!d ([p(m)Rggz)](ab8)>
Eig'd <[7;(m)R§%JB)]<abs>>
kig!d <[p(m)R§g4)](abs)>
KK (PO R (@)
KU (PO R{ (@)
K ([P Ryg2) ()
K (PO R (@)
KU (PO R{)) (@)
KR ([P O RYZE) )

SO O O O o o o o o o

Bg. ¥
_%k.k/
—%k~k’
kK
sk K
2k -k
-8k.K
Bk
kK
—3k K

111

i1k-K
-3k K

0

0
—5k K
— 5k K
-1k K
kK

0

0

2k - K

—%k-k/
2k K

-2k - K
-2k K
2k K

-2k K
2k - K

-2k K
2k K
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