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Resumen

Este trabajo aborda el desarrollo de materiales multifuncionales con
propiedades adsorbentes, fotocataliticas y electrocataliticas para Ila
remediacion ambiental y aplicaciones energéticas sustentables, priorizando el uso
de materiales de bajo costo y derivados de biomasa. Se sintetizaron xerogeles de
resorcinol-formaldehido con una alta capacidad de adsorcion de metformina (hasta
325 mg g™), gobernada por interacciones electrostaticas y enlaces de hidrégeno,
con marcada dependencia del pH y la temperatura. Estos materiales mostraron
buena selectividad y estabilidad tras varios ciclos de reutilizacion.

Asimismo, residuos agroindustriales fueron valorizados como soportes
fotocataliticos eficientes. Los carbones derivados de bagazo de agave dopados con
oxido de cerio alcanzaron mas del 99.5% de degradaciéon de azul de metileno
bajo irradiacion UV, manteniendo su eficiencia en ciclos sucesivos. De manera
similar, hidrocarbones obtenidos de residuos de café y dopados con BiOCI,
BiOCl/CeO, y BiOCIl/Fe,O; exhibieron eficiencias fotocataliticas de hasta 100% en
la degradacién de colorantes, mediante mecanismos dependientes del dopante que
involucran especies reactivas de oxigeno y reacciones foto-Fenton.

Finalmente, la funcionalizacién solvotérmica alcalina de nanotubos de carbono de
paredes multiples, seguida del dopaje con Pt-Pd, mejoré notablemente su
desempefio electrocatalitico para la reaccion de evolucion de hidrégeno, logrando
bajos sobrepotenciales, cinéticas favorables y alta estabilidad. En conjunto, los
resultados demuestran que el disefio racional de materiales y la valorizacion de
biomasa permiten desarrollar soluciones eficientes, reutilizables y sustentables
para el tratamiento de contaminantes emergentes y la generacion de energia limpia.
Palabras clave:

Materiales multifuncionales, contaminantes emergentes, catalizadores derivados

de biomasa, degradacion fotocatalitica, reaccion de evolucion de hidrogeno



Summary

This work presents the development of multifunctional materials with adsorptive,
photocatalytic, and electrocatalytic activity for environmental remediation and
sustainable energy applications, emphasizing the valorization of low-cost and
biomass-derived resources. Resorcinol-formaldehyde xerogels were synthesized
and evaluated as adsorbents for metformin, a persistent pharmaceutical
contaminant. The xerogels exhibited a high adsorption capacity of up to 325 mg g™,
governed primarily by electrostatic interactions and hydrogen bonding, with strong
dependence on pH and temperature. Competitive adsorption and reuse studies
demonstrated good selectivity and stability over multiple cycles.

In parallel, agroindustrial wastes were transformed into efficient photocatalytic
supports. Cerium oxide—doped carbons derived from agave bagasse achieved over
99.5% degradation of methylene blue under UV irradiation, maintaining high
performance during reuse cycles. Similarly, hydrochars synthesized from coffee
grounds and doped with BiOCI, BiOCI/CeO,, and BiOCl/Fe,O; showed excellent
photocatalytic activity toward indigo blue degradation, with efficiencies up to 100%,
driven by dopant-dependent mechanisms involving reactive oxygen species, photo-
Fenton reactions, and enhanced charge separation.

Finally, alkaline solvothermal functionalization of multi-walled carbon nanotubes,
followed by Pt-Pd decoration, significantly improved their electrocatalytic
performance for the hydrogen evolution reaction, achieving a low overpotential
(-0.20 V at 10 mA cm™), favorable kinetics, and long-term stability.

Overall, this study demonstrates that rational material design combined with
biomass revalorization enables high-performance, reusable multifunctional

materials for contaminant removal and clean energy generation.

Keywords:

Multifunctional materials, emerging contaminants, biomass-derived catalysts,

photocatalytic degradation, hydrogen evolution reaction
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1. Introduction

In recent decades, rapid industrial, agricultural, pharmaceutical, and
urban growth has led to the continuous release of a wide variety of chemical
compounds into bodies of water (Nishmitha et al., 2025).Many of these
compounds, known as emerging contaminants, are not efficiently removed by
conventional wastewater treatment systems, which highlights the importance of
understanding their impact. Even at extremely low concentrations, on the order
of pg/L, these contaminants can cause significant disruptions to aquatic
ecosystems, affect human health, and compromise the quality of drinking water
sources (Balakrishnan et al., 2022a).

Emerging contaminants, such as pharmaceutical compounds, personal
care products, pesticides, herbicides, aromatic hydrocarbons, and synthetic
dyes, have physicochemical properties that hinder their natural degradation (X.
Li et al., 2024). Many of these pollutants possess high molecular stability, high
water solubility, and complex structures that confer resistance to biological and
chemical degradation, thereby favoring their persistence and bioaccumulation
in the environment (Nishmitha et al., 2025). It is estimated that more than
350,000 synthetic compounds are in circulation worldwide, and the processes
for eliminating, degrading, and controlling them are not clearly established,
which increases the urgency of developing new, more efficient, and sustainable
removal technologies (Balakrishnan et al., 2022a).

Among the most relevant emerging contaminants are pharmaceuticals
and synthetic dyes. Metformin, for example, is one of the most prescribed
antidiabetic drugs worldwide due to its low cost and high effectiveness.
However, its high consumption has led to its presence in groundwater, hospital
wastewater, and surface water bodies. Due to its high solubility, chemical
stability, and low biodegradation rate, metformin can persist in the environment
for extended periods, potentially causing adverse effects on aquatic organisms
and on human health, including reproductive disturbances and possible
carcinogenic effects (Balakrishnan et al., 2022a).



On the other hand, industrial dyes such as methylene blue and indigo
blue are widely used in the textile, paper, pharmaceutical, and cosmetic
industries (Groeneveld et al., 2023). These compounds not only alter the
appearance of water by increasing its turbidity and reducing sunlight
penetration, but also interfere with natural processes such as photosynthesis,
oxygenation of the aquatic environment, and ecosystem dynamics (Chiu et al.,
2019). Furthermore, many of these dyes exhibit toxicity, mutagenic potential,
and the ability to generate even more dangerous byproducts through chemical
transformations in the environment (Awad et al., 2023).

In response to this problem, multiple technologies have been proposed
for removing emerging contaminants, including physical processes (filtration,
sedimentation), chemical processes (coagulation, oxidation, ozonation), and
biological processes (biodegradation) (Reza et al., 2017). However, these
methodologies often have limitations, including high operating costs, low
selectivity, the production of toxic secondary byproducts, and reduced efficiency
when dealing with complex matrices (Asefa et al., 2024). For this reason,
alternative  technologies such as adsorption, photocatalysis, and
electrocatalysis have gained increasing interest in the scientific community due
to their high efficiency, simplicity, versatility, and compatibility with green
chemistry approaches (Reza et al., 2017).

Adsorption has become established as one of the most effective
techniques for removing contaminants from aqueous solutions. However, many
commercial adsorbents, such as traditional activated carbons, have limited
removal capacities, necessitating the use of large volumes of material or its
frequent replacement (McMichael et al., 2021). In this scenario, new highly
porous polymeric materials have emerged, such as xerogels derived from the
resorcinol-formaldehyde reaction, which have a high density of surface
functional groups and can interact efficiently with contaminant molecules
through hydrogen bonds and electrostatic interactions (Balakrishnan et al.,
2022a).

In parallel, heterogeneous photocatalysis has emerged as one of the
most promising technologies for the advanced degradation of organic pollutants



(Nasrollahpour & Moradi, 2016). This process involves activating semiconductor
materials under UV or visible irradiation, generating electron-hole pairs that
react with water and oxygen to form highly oxidizing reactive species, such as
hydroxyl radicals (*OH) and superoxide (O,+") (Chiu et al., 2019). These species
can break covalent bonds and mineralize complex pollutants, transforming them
into less toxic products or even CO, and H,O (Low et al., 2017).

Within this family of photocatalytic materials, semiconductor oxides such
as BiOCI, CeO,, and Fe,0O; stand out for their favorable crystalline structure,
good chemical stability, and appropriate band energy levels (Low et al., 2017).
Bismuth oxychloride (BiOCI) has been reported as a highly efficient material for
the degradation of dyes under UV and visible radiation (Vinoth et al., 2021),
while cerium oxide (CeO,) provides redox properties and oxygen vacancies that
improve charge separation and the formation of reactive species (Bakry et al.,
2022). The incorporation of iron oxides, through Fenton and photo-Fenton
mechanisms, further increases the degradation efficiency, especially under
acidic conditions (Yu et al., 2022).

A key advance in this field has been the use of carbonaceous materials
derived from residual biomass as catalytic supports (Nasrollahpour & Moradi,
2016). Agro-industrial waste, such as agave bagasse and coffee waste, has
been transformed through pyrolysis and hydrothermalization into highly porous
biochars and hydrochars (Huo et al., 2023; Mota-Resendiz et al., 2025). These
materials not only contribute to a circular economy but also serve as ideal
supports for the dispersion of catalytic nanoparticles, increasing the specific
surface area, improving light absorption, acting as electron reservoirs, reducing
electron-hole pair recombination, and significantly improving photocatalytic
efficiency (Dujearic-Stephane et al., 2021).

Additionally, the field of electrocatalysis has gained significant
importance due to its strategic role in the production of green hydrogen and in
advanced electrochemical degradation processes of pollutants (Qadeer et al.,
2024; M. Zhao et al., 2014). The hydrogen evolution reaction (HER) represents
a fundamental step toward sustainable energy systems. However, this reaction



has slow kinetics, which necessitates the development of highly efficient, stable,
and low-cost catalysts (S. Wang et al., 2021).

In this context, multi-walled carbon nanotubes (MWCNTSs) have proven
to be excellent electrocatalytic supports thanks to their high surface area, high
electrical conductivity, and chemical stability (M. Zhao et al., 2014). When these
materials are functionalized by solvothermal treatments in an alkaline medium,
controlled defects and oxygenated functional groups are generated that
facilitate the anchoring of metallic nanoparticles such as Pt and Pd (S. Li et al.,
2020). This synergy between the carbonaceous support and the metallic
nanoparticles results in highly active materials for HER, reducing overpotential,
increasing the exchange current density, and improving the durability of the
electrocatalytic system (Trivedi & Chakraborty, 2025). The simultaneous
presence of platinum and palladium nanoparticles generates metal-oxygen-
carbon interfaces that act as active sites for the Volmer-Heyrovsky/Tafel steps
of hydrogen evolution, promoting more efficient electron transfer (Quinson et al.,
2018). These materials also have high potential for use in the
electrodegradation of organic pollutants, especially in complex aqueous
systems, thereby expanding their applicability beyond the energy sector towards
comprehensive environmental treatment (Qadeer et al., 2024).

2. Background

The increased presence of emerging pharmaceutical contaminants, such
as metformin, in water bodies has generated an urgent need to develop
advanced materials and technologies capable of efficiently, selectively, and
sustainably removing and degrading them (X. Li et al., 2024). Several studies
have demonstrated high efficiency in removing this type of contaminant
(Nishmitha et al., 2025). Carbonaceous adsorbents have been extensively
tested for metformin adsorption and typically exhibit high capacities and good
regenerability (Balakrishnan et al., 2022a). Examples include conventional
activated carbons, biocarbons/nanobiocarbons, and magnetically modified

carbon compounds, which have been tested in batch and column modes



(Sanchez-Silva et al., 2022a). Water hyacinth activated carbon produced by
activation with H;PO3; achieved a Langmuir gmax of 122.47 mg/g and behaved
as a spontaneous endothermic adsorbent. Ninety-two percent of the metformin
was desorbed using 0.1 M HCl/ethanol, and the carbon retained approximately
84% recovery after five cycles (Huang et al., 2016). Magnetic carbon
compounds (Fe;O; grafted onto PAC, graphene nanoplatelets, and MWCNT)
were also used as regenerable adsorbents. Reported gm values were 8.83 mg/g
for the magnetic graphene nanoplatelet (M-GNP) composite under standard
conditions and 26.17 mg/g for magnetic MWCNT (M-MWCNT) at 318 K, with a
magnetic fraction of approximately 70% Fe304 and measurable desorption
using a phosphate buffer (M-GNP desorption approximately 66%) (Cusioli et al.,
2023). The silica-alumina (SA) composite exhibited a high BET surface area
(~470 m?/g) and removed high concentrations of metformin, with a maximum
reported uptake of 46 mg/L at an optimum pH of 9.0; thermal regeneration at
673 K resulted in complete regeneration and removal of ~95% after three cycles
(Mohammad et al., 2022). The Leucaena leucocephala pod biosorbent
(chemically/thermally modified) reached a maximum adsorption capacity of
56.18 mg/g at 313 K, achieved a removal of ~53.24% at 300 min in kinetic tests,
and showed a decrease in absorption in the presence of Na*, Ca?*, and Mg?*
salts (Hethnawi et al., 2020). The persistence and high solubility of metformin in
aquatic environments make it essential to continue research and development
of new, increasingly efficient, selective, and sustainable adsorbent and catalytic
materials for its removal and degradation.

Furthermore, the persistent presence of synthetic dyes such as
methylene blue and indigo in bodies of water has driven the development of
advanced materials and technologies capable of removing and degrading them
efficiently, sustainably, and safely. Materials such as carbonized Citrullus
Colocynthis have shown near-100% removal under UV irradiation, but their
long-term stability and reusability are critical factors for practical deployment.
Various materials for the photodegradation of methylene blue have been
investigated, demonstrating effective removal capabilities (Bhatti et al., 2024).

The chitosan-Al,O; compounds synthesized using the sol-gel method showed



promising results, with the 1:1 ratio compound achieving a degradation
efficiency of 79.35% at pH 10 after 200 minutes of contact time (Desnelli et al.,
2023). Metal-modified TiO, photocatalysts have also proven effective, with Au-
TiO, and Pt-TiO, materials showing improved performance because the metal
nanoparticles act as electron sinks during photocatalytic reactions (Murcia Mesa
et al., 2017). For the photodegradation of indigo blue, TiO,-based
photocatalysts have been used, demonstrating significant efficiency; a
combination of TiO, and natural zeolite achieved 58.7% degradation under UV
radiation at optimal conditions (Ulya et al., 2022). Advanced electrode materials
have shown great effectiveness, with Ti/RuO,-TiO, electrodes modified with tin
and tantalum oxides achieving complete degradation of indigo blue by
photoelectrocatalysis in 60 minutes (Tomaz et al., 2022). Furthermore, calcium
oxide nanoparticles (30-36 nm) have been successfully used as photocatalysts
for the degradation of indigo carmine under various radiation conditions,
showing optimal performance at pH 9 (Devarahosahalli Veeranna et al., 2014).
The persistence, toxicity, and resistance to degradation of dyes in bodies of
water make it essential to continue research and development of new, more
efficient, selective, and sustainable materials for their removal and disposal.
The increasing presence of pollutants in aqueous environments has
driven the development of electrochemical processes using advanced catalysts
that are highly effective at degrading pollutants and enabling sustainable
hydrogen production. Various electrode and photocatalyst materials have been
investigated for the electrochemical degradation of pollutants and the
simultaneous production of hydrogen. Composite electrodes incorporating N, C-
doped TiO,/ITO structures demonstrate effective photoelectrocatalytic
performance, achieving hydrogen production rates of 12.0 ymol cm™ h™" while
degrading organic pollutants under sunlight (K.-R. Wu et al., 2012). Traditional
metal electrodes, such as aluminum, titanium, iron, and magnesium, have been
evaluated for wastewater electrolysis, producing hydrogen with purities ranging
from 87.9% to 96.1% while removing ammonia and phosphate contaminants
(Antonini et al., 2025). Advanced photocatalytic materials encompass

heterojunction systems, metal oxides, g-C;N,, CeO,, metal-organic



frameworks, and carbon quantum dots, with multicomponent catalysts showing
superior performance compared to single-component systems (Balu et al.,
2024). Pt/CdS/TiO, photocatalysts achieve a quantum efficiency of 20% at 470
nm for hydrogen production while degrading both inorganic and organic
pollutants; CdS-rich materials favor inorganic degradation, and TiO,-rich
systems are more effective for organic pollutants (Daskalaki et al., 2010).

Recognizing the critical role of innovative materials, this work aims to
inspire researchers by emphasizing the importance of designing multifunctional
materials that integrate adsorbent, photocatalytic, and electrocatalytic
properties within a single platform. The combination of porous polymer
matrices (xerogels), carbonaceous materials derived from agro-industrial
waste (biochar/hydrochar), and nanoparticles of metal oxides and noble metals
represents a highly innovative strategy, aligned with the principles of green
chemistry, the circular economy, and sustainable development.

This approach not only enhances the efficiency of removing and
degrading emerging contaminants in water but also offers promising
opportunities for integrating these technologies into hybrid systems for clean
energy production, resource recovery, and the development of advanced
materials for environmental, industrial, and energy applications, inspiring

confidence in sustainable solutions.

3. Justification

The increasing presence of emerging contaminants in water bodies, such
as pharmaceuticals and synthetic dyes, should concern environmental
scientists because of their persistence, toxicity, and resistance to conventional
degradation. Compounds such as metformin, methylene blue, and indigo blue
have been detected in wastewater, groundwater, and industrial water, affecting
water quality, aquatic ecosystems, and potentially human health. This problem
underscores the importance of developing new, highly efficient materials that
allow for their removal and degradation, such as highly porous polymeric

xerogels for metformin adsorption and carbonaceous materials derived from



agro-industrial waste doped with metal oxides (BiOCI, CeO,, Fe,03) for the
photodegradation of dyes such as indigo blue and methylene blue.
Additionally, the transition to sustainable, energy-efficient processes is
inspiring for researchers, as it drives the development of multifunctional
materials capable not only of treating aqueous pollutants through adsorption
and photocatalysis, but also of actively participating in hydrogen production via
electrocatalysis. In this regard, the solvothermal alkaline functionalization of
carbon nanotubes doped with Pt-Pd nanoparticles increases the active surface
area, improves electron transfer, and reduces the overpotential of the hydrogen
evolution reaction, thereby consolidating an integrated strategy that connects

environmental remediation with the generation of clean, sustainable energy.
4. Hypothesis

The integration of porous polymer matrices and biomass-derived
carbonaceous and nanostructured carbon materials, both functionalized with
specific chemical groups, with the carbon materials additionally doped with
metal oxides and noble metal nanoparticles, will enable the development of
multifunctional materials capable of efficiently removing and degrading
emerging contaminants in water and enhancing electrocatalytic performance for

hydrogen production.
5. Objectives

5.1 General objective

To develop multifunctional materials with adsorbent, photocatalytic, and
electrocatalytic properties, based on polymeric matrices and carbonaceous
supports doped with oxides and metallic nanoparticles, for the efficient removal
of emerging contaminants in aqueous media and their application in sustainable

processes, including hydrogen production.

5.2 Specific objectives



To synthesize polymeric xerogels from resorcinol-formaldehyde with
different molar ratios to maximize their metformin adsorption capacity in
aqueous solution.

To physically and chemically characterize the obtained xerogels using
techniques such as FT-IR, SEM, XRD, BET, and TGA, and to relate their
structure to their adsorption performance, ensuring a thorough
understanding and reliable results.

To evaluate the influence of pH, temperature, and initial contaminant
concentration on the metformin adsorption efficiency of the synthesized
xerogels, addressing key environmental variables that affect real-world
applications.

To determine the adsorption isotherms and Kkinetic parameters
associated with the removal of metformin.

To investigate the reusability and regeneration capacity of the xerogels
without significant loss of efficiency.

Synthesize carbonaceous materials (biochar and hydrochar) from agro-
industrial waste such as coffee grounds and agave bagasse using
pyrolysis and hydrothermalion processes.

Dope the carbonaceous supports with semiconducting metal oxides such
as BiOCl, CeO,, and Fe,0O; to enhance their photocatalytic activity.

To characterize the optical, structural, and surface properties of the
photocatalytic materials using techniques such as Raman spectroscopy,
XPS, UV-Vis DRS, SEM-EDS, and TEM, with the goal of correlating
these properties to photocatalytic efficiency in pollutant degradation.
Assess the photodegradation efficiency of dyes like methylene blue and
indigo blue under UV and visible light to define clear research goals.
Analyze the role of reactive oxygen species (*OH, O.7, h*) in
photocatalytic degradation processes.

Determine the kinetic parameters of dye photodegradation using pseudo-
first-order, pseudo-second-order, and Langmuir—-Hinshelwood models.
Study the structural stability of the photocatalysts after multiple use

cycles to ensure robustness and build trust in the research outcomes.



e Functionalize multi-walled carbon nanotubes (MWCNTs) through
solvothermal treatment in an alkaline medium to systematically increase
surface area and active sites.

e Dope the functionalized MWCNTs with platinum and palladium
nanoparticles to develop efficient electrocatalysts.

e Characterize the electrocatalysts using electrochemical techniques
(LSV, CV, EIS, CA) to evaluate their performance in the hydrogen
evolution reaction (HER).

e Evaluate the electrochemical stability and durability of the catalysts after
multiple operating cycles.

¢ Analyze the potential of the developed catalysts in the electrodegradation
of aqueous pollutants.

e Integrate adsorbent, photocatalytic, and electrocatalytic properties into

multifunctional hybrid materials.

Chapter 1. Highly Adsorptive Organic Xerogels for
Efficient Removal of Metformin from Aqueous Solutions:
Experimental and Theoretical Approach

1.1 Introduction

Emerging contaminants in water effluents pose a global challenge, as even
trace concentrations [ppb (ug/L) to ppm (mg/L)] can harm environmental quality and
human health, threatening the availability of safe drinking water (Foretz et al., 2014;
Hernandez et al., 2015). Pharmaceuticals, personal care products, pesticides, dyes,
and industrial chemicals are increasingly recognized as major contributors to this
form of water pollution (Balakrishnan et al., 2022b).

For these reasons, emerging pollutants have received significant attention in
recent years due to their anthropogenic origins and the absence of well-established
regulations governing their disposal (Desai et al., 2014; Foretz et al., 2014). It is
estimated that globally, approximately 350,000 synthetic compounds have disposal
and control processes that remain uncertain (Balakrishnan et al., 2022b). Among
these emerging pollutants, pharmaceutical compounds pose a particularly

challenging removal process from water due to their complex nature. These
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accessible sites (i.e., the transfer of reactant molecules on active sites per unit
time), even when part of the carbon surface is masked by nanoparticle coverage
(Zahra et al., 2020).

4.4 Conclusions

This work demonstrates that alkaline solvothermal functionalization
significantly improves the structural and electrochemical properties of MWCNTSs
for HER. The treatment increased surface area from 109 to 189 m? g™', pore
volume from 0.44 to 0.97 cm® g™ and reduced the Ip/lg ratio from 1.16 to 0.96,
evidencing improved graphitic ordering. After Pt—Pd decoration, nanoparticles of
17.7-30.8 nm were uniformly dispersed, leading to a higher exchange current
density (1.09 x 107 A cm™) compared with functionalized MWCNTs (5.01 x 107°
A cm™). In acidic media, the MWCNT-KOH catalyst exhibited an overpotential of
-0.20 V at 10 mA cm™ with a Tafel slope of 84 mV dec™, while MWCNT+PdPt
further lowered the kinetic barrier and maintained stability over 1000 cycles. The
incorporation of Pt and Pd nanoparticles onto the functionalized MWCNTs
resulted in well-dispersed metallic clusters that served as highly active catalytic
sites, particularly effective in proton-rich acidic media. Among the key findings
was the successful introduction of oxygen-containing functional groups via
solvothermal alkaline treatment, which enhanced surface wettability, increased
the electrochemically active surface area, and reduced the charge-transfer
resistance.  Although noble metals limit scalability, the results highlight
solvothermal functionalization as a versatile, scalable strategy to enhance
porosity, surface chemistry, and active-site accessibility, providing a foundation
for integrating earth-abundant metals into next-generation HER catalysts.

6. General conclusions

This doctoral work demonstrates the successful development of multifunctional
materials with adsorbent, photocatalytic, and electrocatalytic activity, designed
for the efficient treatment of emerging contaminants and sustainable

environmental applications. Through rational material design, controlled

204



functionalization, and the use of low-cost precursors, the study establishes a
coherent strategy to address water pollution with advanced functional materials.

1. Structure—property—performance relationships were systematically
established across all material systems. The tuning of surface chemistry,
porosity, crystallinity, and electronic structure—via controlled synthesis
routes and targeted doping—proved decisive in enhancing adsorption
capacity, photocatalytic efficiency, and electrocatalytic activity.

2. Resorcinol-formaldehyde xerogels exhibited outstanding adsorption
performance for metformin, achieving a maximum capacity of 325 mg g™,
surpassing reported values in the literature. Adsorption was governed by
electrostatic interactions, hydrogen bonding, and ion exchange, strongly
influenced by pH, temperature, and competing ions. These findings
validate xerogels as highly tunable and robust adsorbents for
pharmaceutical contaminants.

3. Agro-industrial and biomass-derived supports (agave bagasse and coffee
grounds) were successfully transformed into high-performance catalytic
materials, demonstrating that waste-derived carbons can rival
conventional supports while improving sustainability and circular economy
metrics.

4. CeO,-doped agave bagasse carbons achieved complete (100%)
methylene blue removal, combining adsorption and photocatalysis. The
introduction of cerium oxide enhanced visible-light absorption, defect
density, and surface reactivity, while UV irradiation ensured superior
mineralization efficiency and long-term cyclic stability.

5. BiOCl-based hydrochars doped with CeO, and Fe,O3; showed exceptional
photocatalytic efficiencies (>99%), benefiting from reduced band gaps,
improved charge separation, and dopant-dependent reaction
mechanisms. The coexistence of photocatalytic and photo-Fenton
pathways enabled efficient degradation under diverse pH conditions,
highlighting the versatility of these materials for complex effluents.

6. Alkaline solvothermal functionalization of MWCNTSs significantly enhanced
their electrocatalytic performance for the hydrogen evolution reaction
(HER) by increasing surface area, improving graphitic ordering, and
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introducing oxygenated functional groups. Subsequent Pt—Pd decoration
generated highly active and stable catalytic sites, reducing overpotential
and charge-transfer resistance in acidic media.

7. Across all systems, synergistic effects between adsorption, catalytic
activity, and material structure were identified, confirming that
multifunctionality is a powerful approach for contaminant removal rather
than relying on single-function materials.

8. Operational parameters such as pH, temperature, light source, catalyst
mass, and reuse cycles were shown to critically affect performance,
providing practical design guidelines for scaling and real-world
implementation in water treatment and purification technologies.

9. Despite the use of noble metals in some systems, the work demonstrates
that surface functionalization and support engineering can maximize
catalytic efficiency while minimizing metal loading, offering a pathway

toward economically viable and scalable solutions.

Overall, this research provides a comprehensive and integrated framework for
designing multifunctional materials capable of addressing emerging
contaminants through adsorption, photocatalysis, and electrocatalysis. By
combining high performance, reusability, and sustainability—particularly through
the valorization of biomass waste—the study contributes meaningful advances
toward next-generation materials for environmental remediation, clean energy,

and resource-efficient water treatment systems.
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Abstract: Metformin, widely prescribed to treat type 2 diabetes for its effectiveness and low cost, has
raised concerns about its presence in aqueous effluents and its potential environmental and public
health impacts. To address this issue, xerogels were synthesized from resorcinol and formaldehyde,
with molar ratios ranging from 0.05 to 0.40. These xerogels were thoroughly characterized using
FT-IR, SEM, TGA, and TEM analyses. Batch adsorption experiments were performed with standard
metformin solutions at concentrations of 50 and 500 mg/L, varying pH, and temperature to determine
the adsorption isotherms of the synthesized xerogels. The adsorption data revealed a maximum
adsorption capacity of 325 mg/g at pH 11 and 25 °C. Quantum chemical calculations revealed
that electrostatic interactions govern metformin adsorption onto xerogels. The xerogels’ adsorption
capacity was evaluated in competitive systems with CaCl, NaCl, MgCl,, and synthetic urines.
Reuse cycles demonstrated that xerogels could be reused for up to three cycles without any loss in
adsorptive efficiency. The adsorption mechanisms of metformin in the adsorption process highlight
the strong electrostatic interactions and hydrogen bonds between the adsorbate and the adsorbent
material. Xerogels synth as efficient adsorbents to remove metformin from
aqueous solutions, helping to mitigate its environmental impact.
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1. Introduction

The regulation of discharge concentrations of emerging contaminants in water efflu-
ents is currently a global concern. Even at concentrations as low as ppb (ug/L) to ppm
(mg/L), these pollutants can degrade environment quality and have a direct impact on hu-
man health, leading to deficiencies in ensuring the availability of safe drinking water [1,2].
Furthermore, emerging contaminants like pharmaceuticals, personal care products, pes-
ticides, herbicides, dyes, and industrial chemicals such as hydrocarbons are increasingly
being recognized as significant contributors to water pollution [3].

For these reasons, emerging pollutants have received significant attention in recent
years due to their anthropogenic origins and the absence of well-established regula-
tions governing their disposal [1,4]. It is estimated that globally, there are approximately
350,000 synthetic compounds for which the disposal and control processes remain uncer-
tain [3]. Among these emerging pollutants, pharmaceutical compounds pose a particularly
challenging removal process from water due to their complex nature. These compounds
exhibit high solubility in water because of their polar properties, and their ionization de-
gree varies depending on pH levels. In addition, pharmaceutical compounds have a slow
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ARTICLEINFO ABSTRACT

Keywords: In this study, hydrochars were synthesized from coﬂee grounds via a solvothermal process and doped with

Waste-derived metallic oxides, resulting in hydrochars being d d as H, H-Bi (BiOCl), H-Bi/Ce (BiOCI-CeOy), and H-Bi/Fe

:oy"‘" ochar & (BiOCl-Fez04). The pholncaulyﬂc degradation of indigo blue dye was evaluated under UV light, with varying
fee groun

parameters such as pH (3, 7, and 11), initial hydrochar mass (0.1, 0.2, and 0.3 g/L), and dye concentration

:do;:o blue (25-75 mg/L). H is directly degraded by electron transfer and UV light, with limited reactive oxygen species
Photodegradation (ROS) g ion. H-Bi g bundant «OH and Oze", with h* predomi under alkal H.

Bi/Ce combines h* and OOH due to oxygen defects in CeOz. H-Bi/Fe uulius Fenton and photo-Fenton reactions at
acidic pH, with ¢OH being the primary mechanism. The highest degradation efficiency (100 %) was achieved
with H, H-Bi, and H-Bi/Fe, using 0.1 g/L of hydrochar at pH 3. Under the same conditions, the hydrochars
maintained their carbon-oxygen spherical structure and uniform dopant dispersion after four use cycles.
Meanwhile, DRS, XPS, and TEM confirmed the p of h yjunctions, which supp d their ph 1
activity. XPS and energy-EDS indicated the presence of BiOCl, CeO:, and Fe:O after four cycls The hxgher
photocurrent density at 1.23 V vs. RHE was obtained for H-Bi/Fe, d '3

stability under light and a higher el transfer resi in basic el ly pared to an acid medi

These results demonstrate the effectiveness of these doped hydrochars, oﬂ'erlng insights into the transformative
ial of bi based ites for inable industrial appli

P P PP

1. Introduction drinking water unsafe for human consumption and reduce soil produc-
tivity [2]. The toxicity of synthetic dyes is further complicated by their
Synthetic dyes used in the textile industry pose a significant envi- potential to undergo chemical transformations in the environment,

ronmental hazard, mainly through water pollution [1,2]. The poll Iting in more harmful byproducts [3]. Current techniques for
increase water turbidity, impede photosynthesis, and interfere with ing water inated with dyes include physical, chemical, and
oxygen transfer mechanisms, disrupting marine ecosystems and water biological methods. Adsorption is widely recognized as one of the most
self-purification processes [ 2]. Moreover, these contaminants can render effective and reliabl hni due to its simplicity, ibility, and
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ARTICLE INFO ABSTRACT

Keywords: Hydrogen is a clean, energy-dense fuel that requires efficient el 1 to drive the hydrogen evolution
HER reaction (HER). In this study, multi-walled carbon bes (MWCNTSs) were functionalized via an alkaline
Solvothermal functionalization solvothermal process (KOH, 200 °C, 2 h) and subsequently doped with Pt-Pd icles. The solvothermal
i KOH treatment increased the MWCNT surface area from 109 t0 189 m g " and reduced the crystallte size from
2.9 to 3.1 nm, while Pt-Pd loading further expanded it to 11.4 nm, indicating strong | The
1p/1; ratio decreased from 1.16 to 0.96, indicating improved graphitic order “TEM and XRD confirmed the doping
of Pt and Pd P les. These chang lated into enh metrics, including a
reduced overpotential of ~0.20 V at 10 mA cm™ , a lower Tafel slope of 84 mV dec ', and a high exchange
current density of 1.09 x 10~ YAem? d p d electrochemi: 'cfﬂdmcy The synergistic Pt/
Pd sites, oxygenated defects, and Pt-O-C interfaces act as active centers for HER (accelerate Volmer-] Hcymvsky
HER steps). Both catalysts retained their stability after 1000 cycles, d ing that alkali 1
ionalization is a scalable strategy for designing HER catal

1. Introduction

Hydrogen plays a vital role as an energy carrier, addressing key en-
ergy challenges and contributing to a sustainable future [1] With the
depletion of fossil fuel resources and inc
hydrogen emerges as a crucial chemical enerxy carrier that may com-
plement electricity in a future "hydrogen economy" [2]. In this envi-
sioned scenario, hydrogen produced from non-fossil sources has the
potential to extend the lifespan of existing fossil fuel reserves while
facilitating the development of infrastructure for hydrogen-based en-
ergy sy [3]. Hydrogen is ile and inable, making it a
critical element in the transition to a low-carbon economy [4,5]. Tran-

to green hydrogen (produced from renewable resources) re-

quires overcoming challenges like high production costs and the lack of

infrastructure, but advancing technologies such as electrolysis and fuel
cells can help overcome these obstacles [6,7].

The Hydrogen Evolution Reaction (HER) plays a central role in the
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78260, Mexico.
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do, Facultad de Ciencias Qs Uni

production of green hydrogen via water electrolysis [8]. This process
involves splitting water molecules into hydrogen and oxygen gas, with
the HER occurring as the cathode half-reaction, in which protons are
reduced to form hydrogen gas [9]. Achieving this step efficiently is
essential for enabling the sustainable and large-scale production of
green hydrogen. In the HER process, catalysts provide active sites that
lower the energy barrier for proton or water adsorption, accelerate in-
termediate formation (Volmer step), and facilitate hydrogen desorption
(Heyrovsky/Tafel steps), thereby enabling the reaction to proceed at
practical rates [10]. As the demand for clean energy alternatives grows,
the efficient execution of the HER becomes increasingly critical in sup-
porting the transition toward carbon-neutral energy systems [11,12].
Efficient, stable, and economically viable catalysts are essential for the
HER due to the inherently sluggish kinetics of the reaction, particularly
under alkaline conditions [13]. The HER requires catalysts that lower
energy barriers and enhance reaction rates, but the high cost of noble
metals like platinum has driven research toward developing efficient,
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8.3 Appendix tables

Table A1. Cartesian

£

coordinates of the different geometries for metformin-

xerogel complex on gas phase.

Xer-Met**_m1 Xer-Met** _m2

Center Atomic Atomic  Coordinates Center Atomic  Atomic Coordinates

(Angstroms) (Angstroms)

Number Number Type X Y Z Number Number Type X Y V4
1 6 0 7.439734 0.081368 -0.892415 1 6 0 -8.061647 -2.592002 -0.310050
2 6 0 6.433287 -0.194589 0.044858 2 6 0 -7.394840 -1.370171 -0.483454
3 6 0 5.437190 -1.156783 -0.187300 3 6 0 -6.185671 -1.270682 -1.190515
4 6 0 5.464960 -1.837265 -1.417914 4 6 0 -5.639935 -2.456146 -1.715000
5 6 0 6.444370 -1.569852 -2.369103 5 6 0 -6.275402 -3.681726 -1.542816
6 6 0 7.414773 -0.613193 -2.097911 6 6 0 -7.472982 -3.735851 -0.840466
7 1 0 6.426211 -2.115804 -3.303609 7 1 0 -5.818422 -4.569149 -1.961557
8 1 0 8.175576 -0.401819 -2.842052 8 1 0 -7.965680 -4.692656 -0.702556
9 6 0 4.368174 -1.447300 0.856011 9 6 0 -5.494095 0.071842 -1.377720
10 6 0 3.146309 -0.540113 0.796458 10 6 0 -4.567348 0.483252 -0.241336
11 6 0 2.996154 0.531637 1.679912 11 6 0 -4.974530 1.402464 0.728684
12 6 0 2.140253 -0.728371 -0.152632 12 6 0 -3.285857 -0.054382 -0.110595
13 6 0 1.881852 1.383613 1.641115 13 6 0 -4.140266 1.793084 1.787200
14 6 0 1.005896 0.073153 -0.231834 14 6 0 -2.408060 0.303680 0.907610
15 1 0 2.250348 -1.531123 -0.875120 15 1 0 -2.958243 -0.798827 -0.829616
16 6 0 0.883906 1.133898 0.678229 16 6 0 -2.847383 1.237364 1.858140
17 1 0 4.029634 -2.486157 0.770320 17 1 0 -4.916952 0.072400 -2.309429
18 1 0 4.810715 -1.399163 1.852815 18 1 0 -6.244896 0.848349 -1.536186
19 8 0 6.500744 0.520518 1.216166 19 8 0 -8.015522 -0.272542 0.062308
20 8 0 4.531023 -2.787201 -1.756039 20 8 0 -4.454655 -2.477226 -2.410425
21 8 0 4.025344 0.715537 2.588598 21 8 0 -6.262532 1.893986 0.593714
22 8 0 -0.205995 1.933769 0.575012 22 8 0 -2.001706 1.557177 2.868526
23 1 0 5.676133 0.475416 1.724455 23 1 0 -7.423427 0.492764 0.126371
24 1 0 3.868300 1.494768 3.130134 24 1 0 -6.480930 2.485085 1.320369
25 1 0 -0.318716 2.422753 1.408398 25 1 0 -2.292024 2.394314 3.270101
26 1 0 4.036090 -3.050888 -0.975067 26 1 0 -4.205057 -1.582149 -2.657296
27 6 0 -0.090880 -0.194615 -1.236774 27 6 0 -1.006626 -0.257016 0.985880
28 8 0 -1.241934 -0.824259 -0.669707 28 8 0 -0.001689 0.656734 0.540792
29 6 0 -1.046553 -2.198044 -0.338292 29 6 0 0.024635 0.845275 -0.873087
30 6 0 -2.332244 -2.774595 0.201437 30 6 0 1.149479 1.783173 -1.236122
31 6 0 -2.428712 -3.081920 1.558344 31 6 0 0.851376 3.073632 -1.672930
32 6 0 -3.448267 -3.001581 -0.626293 32 6 0 2.499419 1.396423 -1.134868
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33 6 0 -3.597454 -3.608240 2.101346 33 6 0 1.856776 3.975068 -2.011174
34 1 0 -1.576504 -2.892807 2.203600 34 1 0 -0.187530 3.381883 -1.736432
35 6 0 -4.608174 -3.544173 -0.077041 35 6 0 3.498394 2.299954 -1.491448
36 6 0 -4.698105 -3.850437 1.282327 36 6 0 3.193251 3.590438 -1.928833
37 1 0 -3.650097 -3.823351 3.164254 37 1 0 1.596434 4.978775 -2.333060
38 1 0 -5.462481 -3.725146 -0.714821 38 1 0 4.534826 1.999740 -1.420474
39 1 0 -0.460617 0.742600 -1.651686 39 1 0 -0.745126 -0.478329 2.020225
40 1 0 0.308034 -0.807587 -2.057383 40 1 0 -0.953361 -1.188265 0.404328
41 1 0 -0.716187 -2.745740 -1.235828 41 1 0 0.151361 -0.131110 -1.368362
42 1 0 -0.256628 -2.301960 0.415474 42 1 0 -0.926477 1.265899 -1.221516
43 6 0 -3.395410 -2.677112 -2.111360 43 6 0 2.876549 0.002304 -0.657687
44 8 0 -4.658286 -2.722081 -2.762248 44 8 0 4.259105 -0.160309 -0.370239
45 1 0 -5.205785 -2.025824 -2.384185 45 1 0 4.471351 0.413194 0.373741
46 1 0 -2.913277 -1.703963 -2.249221 46 1 0 2.258715 -0.260486 0.207009
47 1 0 -2.780277 -3.421922 -2.627621 47 1 0 2.660271 -0.726123 -1.446530
48 6 0 -5.950533 -4.475734 1.849461 48 6 0 4.289719 4.540320 -2.349183
49 8 0 -7.083433 -4.065384 1.089855 49 8 0 5.485382 4.247298 -1.632676
50 1 0 -7.813788 -4.651903 1.304212 50 1 0 6.215062 4.684099 -2.080048
51 6 0 8.504255 1.108586 -0.574659 51 6 0 -9.377085 -2.633283 0.436455
52 8 0 7.986243 2.407956 -0.298921 52 8 0 -9.296171 -2.143036 1.772809
53 1 0 7.414550 2.296656 0.468873 53 1 0 -9.007138 -1.227325 1.691187
54 6 0 1.736460 2.598639 2.527494 54 6 0 -4.585770 2.718759 2.895238
55 8 0 0.422764 2.716496 3.102425 55 8 0 -3.607100 3.725723 3.209026
56 1 0 0.245801 1.918045 3.614415 56 1 0 -3.434102 4.236623 2.409009
57 1 0 2.481616 2.631807 3.333132 57 1 0 -5.545040 3.208892 2.683150
58 1 0 1.861276 3.517499 1.948422 58 1 0 -4.716292 2.168198 3.830681
59 1 0 9.115602 0.756672 0.269256 59 1 0 -10.138410 -2.074549 -0.127442
60 1 0 9.166299 1.220092 -1.435376 60 1 0 -9.717363 -3.667815 0.510776
61 1 0 -5.845850 -5.571001 1.821665 61 1 0 4.455689 4.435862 -3.432180
62 1 0 -6.054971 -4.183643 2.903794 62 1 0 3.962770 5.573534 -2.166387
63 1 0 -6.406230 5.737253 -1.802312 63 1 0 12.210704 -2.277484 1.190472
64 1 0 -4.978407 3.481392 -3.218512 64 1 0 10.240827 -4.096961 -0.203214
65 1 0 -6.660304 5.026816 0.649913 65 1 0 11.227107 0.090115 1.091946
66 7 0 -4.478907 2.924283 -2.530333 66 7 0 9.327658 -3.650264 -0.209897
67 6 0 -4.802812 3.092194 -1.330836 67 6 0 9.301451 -2.423664 0.048303
68 7 0 -4.225428 2.357179 -0.282664 68 7 0 8.114485 -1.673299 0.030244
69 6 0 -5.424344 6.135447 -1.537039 69 6 0 11.636233 -2.428092 2.107174
70 6 0 -5.680883 5.481408 0.814945 70 6 0 10.718686 -0.152749 2.027730
71 1 0 -4.547234 2.602778 0.642009 71 1 0 8.216970 -0.701615 0.283677
72 1 0 -3.240803 1.519491 -2.388162 72 1 0 7.528269 -3.979552 -0.634513
73 6 0 -3.365302 1.309332 -0.396231 73 6 0 6.886597 -2.095787 -0.375356
74 7 0 -2.896830 0.976698 -1.585757 74 7 0 6.704321 -3.366906 -0.685345
75 7 0 -4.882223 5.376066 -0.408084 75 7 0 10.436287 -1.589125 2.070563
76 7 0 -3.009700 0.642972 0.711340 76 7 0 5.887186 -1.204854 -0.443321
77 1 0 -4.761017 6.038412 -2.398003 77 1 0 11.348669 -3.478608 2.173587
78 1 0 -2.301860 0.172514 -1.714420 78 1 0 5.823098 -3.703648 -1.042157
79 1 0 -5.537589 7.202162 -1.305726 79 1 0 12.283982 -2.191834 2.960885
80 1 0 -5.836262 6.522055 1.128378 80 1 0 11.357136  0.176091 2.858140
81 1 0 -3.406717 0.860601 1.611590 81 1 0 6.036444 -0.225459 -0.259106
82 1 0 -5.183212 4.956981 1.634714 82 1 0 9.786062 0.414965 2.079055
83 1 0 -2.357857 -0.125506 0.672519 83 1 0 4.957425 -1.482112 -0.718356
84 1 0 -3.921045 5.653202 -0.231715 84 1 0 9.832443 -1.810910 2.856669

Xer-1Met+_ml Xer-1Met+_m2

Center Atomic  Atomic Coordinates Center Atomic  Atomic Coordinates

(Angstroms) (Angstroms)

Number Number Type X Y V4 Number Number Type X Y Z
1 6 0 6.264453 -0.385530 0.154844 1 6 0 3.226105 3.986494 0.121743
2 6 0 5.185434 -0.931577 -0.555873 2 6 0 2.325405 3.240756 -0.652973
3 6 0 3.947002 -0.277278 -0.656383 3 6 0 0.935302 3.418473 -0.563795
4 6 0 3.808385 0.956846 0.003889 4 6 0 0.459365 4.370551 0.355591
5 6 0 4.859635 1.510952 0.727320 5 6 0 1.332791 5.111336 1.145450
6 6 0 6.070388 0.833078 0.797954 6 6 (1} 2.701756 4.907987 1.022946
7 1 0 4.707952 2.461884 1.221703 7 1 (1} 0.922567 5.831770 1.841429
8 1 0 6.888358 1.263546 1.366169 8 1 0 3.382178 5.482741 1.642567
9 6 0 2.799796 -0.886006 -1.449518 9 6 0 -0.016878 2.607079 -1.430217
10 6 0 1.929671 -1.866695 -0.674521 10 6 0 -0.411110 1.251404 -0.859065
11 6 0 2.089582 -3.247071 -0.818319 11 6 0 0.191304 0.073485 -1.307718
12 6 0 0.954661 -1.429022 0.223343 12 6 0 -1.371569 1.131983 0.146729
13 6 0 1.303202 -4.169663 -0.111589 13 6 0 -0.151962 -1.186123 -0.793333
14 6 0 0.134988 -2.293812 0.941503 14 6 0 -1.764308 -0.088796 0.686112
15 1 0 0.835085 -0.361744 0.381899 15 1 0 -1.828327 2.035029 0.539666
16 6 0 0.317063 -3.673539 0.764078 16 6 0 -1.145117 -1.251758 0.204032
17 1 0 2.154760 -0.094613 -1.848016 17 1 0 -0.932115 3.178548 -1.622415
18 1 0 3.194412 -1.374464 -2.342526 18 1 0 0.419242  2.472863 -2.421964
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19 8 0 5.427646 -2.137200 -1.168816 19 8 0 2.893640 2.342429 -1.523610
20 8 0 2.637022 1.675516 -0.015373 20 8 0 -0.881004 4.615299 0.535743
21 8 0 3.086780 -3.653166 -1.689779 21 8 0 1.164670 0.224578 -2.281622
22 8 0 -0.460013 -4.512925 1.492032 22 8 0 -1.505617 -2.436054 0.757036
23 1 0 4.611094 -2.583337 -1.441908 23 1 0 2.252383 1.696908 -1.858972
24 1 0 3.161716 -4.612012 -1.700853 24 1 0 1.559150 -0.623614 -2.505404
25 1 0 -0.446309 -5.393610 1.079055 25 1 0 -1.239166 -3.156980 0.160702
26 1 0 2.053162 1.329907 -0.696600 26 1 0 -1.384030 4.223156 -0.183698
27 6 0 -0.948854 -1.783619 1.863191 27 6 0 -2.848431 -0.185162 1.734878
28 8 0 -2.261569 -1.876865 1.305495 28 8 0 -4.104366 -0.629339 1.216924
29 6 0 -2.522754 -0.924124 0.276240 29 6 0 -4.785371 0.347801 0.431605
30 6 0 -3.945287 -1.076616 -0.203204 30 6 0 -6.115135 -0.204684 -0.019179
31 6 0 -4.188300 -1.613405 -1.467227 31 6 0 -6.299064 -0.538113 -1.360801
32 6 0 -5.041661 -0.702376 0.596844 32 6 0 -7.178186 -0.406378 0.881603
33 6 0 -5.484244 -1.779508 -1.947604 33 6 0 -7.506066 -1.057882 -1.819942
34 1 0 -3.346652 -1.919078 -2.080881 34 1 0 -5.476697 -0.400191 -2.055831
35 6 0 -6.334609 -0.856925 0.100993 35 6 0 -8.388019 -0.911529 0.409805
36 6 0 -6.571188 -1.394361 -1.165877 36 6 0 -8.566032 -1.242714 -0.934961
37 1 0 -5.644789 -2.214833 -2.929202 37 1 0 -7.616311 -1.323695 -2.866845
38 1 0 -7.175982 -0.562395 0.713119 38 1 0 -9.206513 -1.059249 1.100892
39 1 0 -0.987249 -2.384979 2.771003 39 1 0 -2.579993 -0.923961 2.489430
40 1 0 -0.730804 -0.742848 2.141610 40 1 0 -2.967614 0.790495 2.226969
41 1 0 -2.346022 0.091296 0.666587 41 1 0 -4.922203 1.263995 1.028721
42 1 0 -1.836909 -1.072673 -0.566666 42 1 0 -4.187166 0.618292 -0.446989
43 6 0 -4.829431 -0.118120 1.985044 43 6 0 -7.025451 -0.064434 2.355796
44 8 0 -6.014785 -0.022437 2.763703 44 8 0 -8.079351 -0.548389 3.177753
45 1 0 -6.329634 -0.917944 2.926181 45 1 0 -8.051347 -1.510653 3.150815
46 1 0 -4.059956 -0.698013 2.504763 46 1 0 -6.052466 -0.421631 2.708197
47 1 0 -4.460194 0.909355 1.897777 47 1 0 -7.039194 1.023345 2.483098
48 6 0 -7.978653 -1.515455 -1.700285 48 6 0 -9.898445 -1.750523 -1.432978
49 8 0 -8.892853 -1.689378 -0.621933 49 8 0 -10.574466 -2.442523 -0.387519
50 1 0 -9.778877 -1.518841 -0.952464 50 1 0 -11.496416 -2.537641 -0.641154
51 6 0 7.584813 -1.122813 0.203987 51 6 0 4.715262 3.771904 -0.038609
52 8 0 7.492177 -2.432997 0.758575 52 8 0 5.134892 2.433692 0.217964
53 1 0 6.884106 -2.910694 0.183437 53 1 0 4.665809 1.891669 -0.426164
54 6 0 1.512678 -5.664295 -0.184336 54 6 0 0.543389 -2.464635 -1.199524
55 8 0 0.281087 -6.394559 -0.326222 55 8 0 -0.374569 -3.542824 -1.454663
56 1 0 -0.159038 -6.088951 -1.128636 56 1 0 -0.977899 -3.264905 -2.154469
57 1 0 2.197201 -5.961414 -0.989667 57 1 0 1.194967 -2.337745 -2.074027
58 1 0 1.944021 -6.040586 0.747090 58 1 0 1.176742 -2.835212 -0.389127
59 1 0 8.019525 -1.167687 -0.805365 59 1 0 5.025337 4.080086 -1.047895
60 1 0 8.282357 -0.571686 0.837438 60 1 0 5.249401 4.401632 0.675330
61 1 0 -8.223562 -0.605095 -2.268268 61 1 0 -10.499024 -0.895357 -1.778426
62 1 0 -8.028067 -2.361176 -2.400396 62 1 0 -9.734465 -2.406502 -2.299376
63 1 0 0.909316 6.341905 1.979088 63 1 0 9.151437 -0.920819 -0.959148
64 1 0 0.398205 9.164136 0.250830 64 1 0 10.597354 -3.600190 0.434906
65 7 0 0.968926 6.901122 1.132249 65 7 0 9.352053 -1.523500 -0.165454
66 6 0 0.055453 6.631095 0.279464 66 6 0 8.401380 -2.332151 0.111843
67 1 0 -1.765900 5.531093 0.288377 67 1 0 6.616315 -2.978428 -0.849027
68 6 0 0.315678 8.787884 -0.765951 68 6 0 9.919954 -3.812540 1.258454
69 7 0 -0.762315 5.422105 0.358151 69 7 0 7.049885 -2.170508 -0.420997
70 1 0 -0.327632 9.441994 -1.355181 70 1 0 9.932520 -4.878611 1.487025
71 7 0 -0.284733 7.447904 -0.746256 71 7 0 8.551717 -3.439663 0.877228
72 1 0 -2.110333  3.269570 0.551268 72 1 0 4.714643 -1.785889 -1.362588
73 6 0 -0.269026 4.182160 0.510503 73 6 0 6.348575 -1.025978 -0.373792
74 7 0 -1.110798 3.143655 0.587771 74 7 0 5.121670 -0.983143 -0.908500
75 1 0 1.315319 8.767810 -1.210993 75 1 0 10.253822 -3.250819 2.136386
76 7 0 1.046356 3.979668 0.565951 76 7 0 6.857082 0.055000 0.215460
77 1 0 -0.774817 2.206763 0.750112 77 1 0 4.589044 -0.127118 -0.931961
78 1 0 1.679082 4.770800 0.541346 78 1 0 7.798762 0.028946 0.588840
79 1 0 -1.614071 7.636197 -2.361204 79 1 0 7.512392 -5.099690 1.635332
80 6 0 -0.802155 6.983044 -2.036214 80 6 0 7.497453 -4.011516 1.719430
81 1 0 1.434188 3.050856 0.626146 81 1 0 6.323127 0.905459 0.306703
82 1 0 -1.177445 5.963948 -1.972473 82 1 0 6.513282 -3.651723 1.427184
83 1 0 -0.011918 7.009020 -2.793981 83 1 0 7.661601 -3.742609 2.768297

Xer-2Met+_ml Xer-2Met+_m2

Center Atomic  Atomic Coordinates Center Atomic  Atomic Coordinates

(Angstroms) (Angstroms)

Number Number Type X Y V4 Number Number Type X Y V4
1 6 0 -6.055142 -1.232775 0.074545 1 6 0 -8.307217 -2.147460 -0.063668
2 6 0 -5.188638 -0.289711 -0.502377 2 6 0 -7.349479 -1.307514 -0.662449
3 6 0 -4.016271 -0.662379 -1.185152 3 6 0 -5.988324 -1.661818 -0.711712
4 6 0 -3.772143 -2.036387 -1.305553 4 6 0 -5.610100 -2.883150 -0.123343
5 6 0 -4.609515 -2.994955 -0.750314 5 6 0 -6.554210 -3.730207 0.471413
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-5.744388
-4.375278
-6.400034
-3.088998
-2.363839
-2.720350
-1.314123
-2.047725
-0.605652
-1.045299
-0.977065
-2.346485
-3.649925
-5.567108
-2.624734
-3.820808
-0.296725
-5.019994
-4.026608
-0.455209
-2.885025
0.507263
1.836272
2.185009
3.655897
4.043419
4.660901
5.385918
3.280417
6.005494
6.385806
5.651774
6.784226
0.458109
0.392458
1.944160
1.594887
4.341972
4.316300
5.187772
5.082817
3.358480
7.842539
8.640747
9.567272
-7.294987
-7.008740
-6.622765
-2.477463
-1.369432
-0.963645
-3.204252
-2.953550
-7.951771
-7.845737
7.991625
8.116920
0.389676
0.101639
0.709398
1.320084
3.314338
-0.380962
-0.689417
0.931806
1.338879
1.746379
2.703387
-0.079332
1.511801
-1.048998
2.402687
2.208764
2.944380
-0.166290
3.286856

-2.580720
-4.049162
-3.322150
0.374164
1.279119
2.622855
0.806067
3.481091
1.606754
-0.243474
2.955651
-0.153836
0.991895
1.014382
-2.455382
3.036288
3.716424
1.638219
3.962739
4.658701
-3.186746
1.047420
1.357605
0.770240
0.976729
1.782170
0.382392
1.987481
2.258858
0.613914
1.406030
2.613039
0.176935
1.461247
-0.044561
-0.304644
1.208850
-0.523626
-1.939236
-2.168933
-0.403603
-0.318403
1.668755
0.656293
0.906213
-0.766315
0.037230
0.860410
4.910893
5.824430
5.890529
5.274681
5.001890
-0.223558
-1.631584
1.688266
2.658776
-3.286434
-3.711327
-2.396414
-1.778385
-3.794418
-3.031931
-3.257210
-2.985474
-3.494182
-3.149519
-2.803482
-3.970367
-2.758278
-2.945825
-3.584170
-3.677788
-2.987207
-1.817590
-3.158646

-0.057808
-0.851393
0.385094
-1.802133
-0.811073
-0.648691
-0.024382
0.234184
0.868125
-0.097910
0.984192
-2.400378
-2.508031
-0.356967
-2.009438
-1.378472
1.875276
-0.858948
-1.217237
1.688795
-2.581279
1.721381
1.275134
0.029511
-0.247021
-1.320256
0.539572
-1.627821
-1.926771
0.235882
-0.847996
-2.474089
0.851456
2.727895
1.785366
0.057561
-0.783766
1.701266
1.313079
0.967669
2.495333
2.115762
-1.148905
-0.543576
-0.609300
0.805188
1.948048
1.628269
0.485647
0.541145
-0.331407
-0.250418
1.465719
0.113589
1.176388
-2.235978
-0.758930
-3.260572
2.305113
-2.708513
-3.365886
-1.139289
-0.187951
0.773143
-0.345195
2.056213
0.742819
0.668138
3.269544
-1.536449
-0.950877
2.907151
3.891198
-1.770830
-2.422289
2.650654
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-7.888748
-6.238340
-8.626798
-4.976727
-4.363236
-4.862380
-3.245479
-4.256446
-2.624582
-2.854326
-3.140067
-4.168343
-5.434121
-7.829049
-4.320290
-5.950301
-2.512594
-7.089332
-6.307642
-2.976698
-3.760053
-1.433568
-0.194920
0.172903
1.456123
1.404570
2.692498
2.562665
0.438119
3.851799
3.796269
2.505783
4.818175
-1.392655
-1.470945
0.299167
-0.625868
2.807590
3.757531
4.552502
3.029732
1.862524
5.036513
6.076933
6.818623
-9.769470
-10.036951
-9.464155
-4.786677
-4.095359
-4.022439
-5.873693
-4.649633
-10.240599
-10.296896
5.319440
4.857102
9.832120
9.679946
10.503652
9.592064
9.020562
9.161034
8.231120
9.510818
7.503163
8.312170
9.211984
10.235569
6.924322
8.390699
7.638354
9.678063
10.594204

-3.353551
-4.680427
-4.014137
-0.792648
0.212530
1.516755
-0.157464
2.441077
0.718131
-1.182972
2.023719
-1.432696
-0.292284
-0.150138
-3.337137
1.846034
2.837192
0.446449
2.665930
3.670097
-2.640825
0.247169
0.649351
-0.040615
0.566077
1.776387
-0.054904
2.361793
2.271274
0.530862
1.734925
3.317467
0.026538
0.710679
-0.853162
-1.125615
0.055074
-1.330987
-2.239784
-1.745361
-1.084031
-1.911831
2.355544
2.270256
2.720758
-1.791844
-0.436509
0.062102
3.842152
4.781221
4.433562
3.884198
4.231215
-2.109883
-2.302489
1.816214
3.414542
1.527995
1.556528
1.059708
2.585097
-3.182028
-4.156128
-2.702125
-2.796915
-0.803584
-0.564784
-1.416752
-3.537552
-0.045454
0.834789
1.348994
-1.144457
-3.106369

0.494973
0.916733
0.965647
-1.394759
-0.466547
-0.323395
0.282880
0.547219
1.165423
0.172320
1.298500
-1.815454
-2.273725
-1.216195
-0.100123
-1.093692
2.188807
-1.356699
-0.760054
2.214295
-0.442393
1.958087
1.414382
0.223933
-0.267462
-0.962866
-0.060407
-1.454706
-1.113254
-0.573627
-1.268833
-1.988308
-0.418327
2.959626
2.090684
0.441263
-0.538850
0.730804
0.243917
0.062100
1.788272
0.709513
-1.845737
-0.897673
-1.277686
-0.032543
0.202075
-0.380241
0.685623
-0.095402
-0.975447
0.453430
1.714885
-0.984641
0.793101
-2.772582
-2.120604
-0.912248
0.165243
0.672103
0.512663
-1.188433
-1.411181
-1.595368
0.016040
-1.094173
-0.161749
0.385638
0.747272
-1.438298
0.488687
0.025768
1.236754
1.593090

8.066994 0.845142 1.964629
8.894553 0.412276 2.522903
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82 1 0 3.072379 -3.295724 -2.807847 82 1 0 7.927613 1.879985 2.274792
83 1 0 3.531937 -2.081918 -1.597692 83 1 0 7.155527 0.272503 2.127932

Xer-1Met" Xer-2Met"

Center Atomic  Atomic Coordinates Center Atomic  Atomic Coordinates

(Angstroms) (Angstroms)

Number Number Type X Y Z Number Number Type X Y V4
1 6 (1} 5.873175 -2.131530 -0.495424 1 6 0 6.181721 -0.560488 -0.164539
2 6 0 4.588370 -2.501831 -0.951268 2 6 0 4985015 -1.014995 -0.762000
3 6 0 3.528490 -1.625002 -1.027907 3 6 0 3.792191 -0.329568 -0.688445
4 6 0 3.682720 -0.234667 -0.615187 4 6 0 3.701551 0.927962 0.044738
5 6 0 5.000840 0.120645 -0.142966 5 6 0 4.933423 1.369623 0.656381
6 6 (1} 6.031439 -0.793765 -0.088965 6 6 0 6.104105 0.648865 0.550521
7 1 (1} 5.142762 1.146486 0.182153 7 1 0 4.893986 2.297128 1.218851
8 1 0 7.010189 -0.478558 0.271692 8 1 0 7.009918 1.023605 1.026393
9 6 0 2.164209 -2.048270 -1.523443 9 6 0 2.526737 -0.838222 -1.341035
10 6 0 1.211766 -2.517288 -0.435645 10 6 0 1.654069 -1.701906 -0.444972
11 6 0 1.131401 -3.865820 -0.049230 11 6 0 1.799861 -3.098284 -0.388535
12 6 0 0.388459 -1.605085 0.224079 12 6 0 0.678627 -1.120037 0.364428
13 6 0 0.204599 -4.286084 0.923397 13 6 0 0.945650 -3.883616 0.408437
14 6 0 -0.547099 -1.979642 1.193032 14 6 0 -0.191960 -1.862156 1.168025
15 1 0 0.517428 -0.556604 -0.028677 15 1 0 0.630153 -0.034935 0.370390
16 6 0 -0.638927 -3.337495 1.523267 16 6 0 -0.055133 -3.255903 1.167128
17 1 0 1.721950 -1.165051 -1.990719 17 1 0 1.946466 0.047037 -1.612358
18 1 0 2.255536 -2.824283 -2.289955 18 1 0 2.759160 -1.383205 -2.261388
19 8 0 4.378865 -3.836182 -1.345087 19 8 0 5.011396 -2.232430 -1.466722
20 8 0 2.721136  0.579922 -0.662752 20 8 0 2.615809 1.562839 0.137248
21 8 0 1.930725 -4.826736 -0.592942 21 8 0 2.758460 -3.758398 -1.097930
22 8 0 -1.541269 -3.719203 2.481779 22 8 0 -0.891637 -3.996974 1.960691
23 1 0 5.078976 -4.365162 -0.921388 23 1 0 5.785860 -2.726229 -1.141355
24 1 0 2.752024 -4.431767 -0.959220 24 1 0 3.505079 -3.159265 -1.317680
25 1 0 -1.688203 -4.674830 2.377843 25 1 0 -0.872020 -4.910906 1.629088
26 6 0 -1.447578 -0.967505 1.849278 26 6 0 -1.260437 -1.196330 1.993237
27 8 0 -2.785374 -0.915664 1.308567 27 8 0 -2.580252 -1.235043 1.408992
28 6 0 -2.841687 -0.401110 -0.015079 28 6 0 -2.706136 -0.435432 0.240765
29 6 0 -4.278513 -0.379477 -0.483829 29 6 0 -4.119312 -0.536352 -0.285933
30 6 0 -4.684835 -1.254794 -1.489930 30 6 0 -4.357114 -1.200083 -1.488609
31 6 0 -5.231439 0.496447 0.073422 31 6 0 -5.214926 0.014189 0.408598
32 6 0 -5.998935 -1.271219 -1.952664 32 6 0 -5.642961 -1.318923 -2.011798
33 1 0 -3.959730 -1.945828 -1.907029 33 1 0 -3.519341 -1.644134 -2.016088
34 6 0 -6.539508 0.483922 -0.406056 34 6 0 -6.495276 -0.095937 -0.129619
35 6 0 -6.937909 -0.393110 -1.418011 35 6 0 -6.724904 -0.758625 -1.337956
36 1 0 -6.290082 -1.975257 -2.726625 36 1 0 -5.799552 -1.855403 -2.942991
37 1 0 -7.266045 1.159768 0.025759 37 1 0 -7.332061 0.329825 0.408531
38 1 0 -1.600109 -1.209685 2.900917 38 1 0 -1.383211 -1.704167 2.949737
39 1 0 -0.990562 0.028967 1.775569 39 1 0 -0.979180 -0.150453 2.178409
40 1 0 -2.410491 0.613617 -0.040069 40 1 0 -2.454072 0.612087 0.476122
41 1 0 -2.243191 -1.017184 -0.694975 41 1 0 -2.002443 -0.765533 -0.531150
42 6 0 -4.841871 1.465512 1.177919 42 6 0 -5.010915 0.741443 1.727781
43 8 0 -5.954851 2.033262 1.867403 43 8 0 -6.213388 0.939349 2.470308
44 1 0 -6.415560 1.308605 2.303314 44 1 0 -6.549407 0.066579 2.700012
45 1 0 -4.161838 0.962905 1.871143 45 1 0 -4.264269 0.205250 2.319926
46 1 0 -4.304847 2.318168 0.749611 46 1 0 -4.621642 1.747344 1.539377
47 6 0 -8.346832 -0.352533 -1.956087 47 6 0 -8.112911 -0.820313 -1.926063
48 8 0 -9.272711 -0.124327 -0.891181 48 8 0 -9.078047 -1.006724 -0.888220
49 1 0 -10.097296 0.177376 -1.281442 49 1 0 -9.936818 -0.758730 -1.240756
50 6 0 7.000365 -3.102911 -0.553312 50 6 0 7.458758 -1.293360 -0.387174
51 8 0 6.691300 -4.364438 0.134283 51 8 0 7.360427 -2.715563 -0.030206
52 1 0 6.308094 -4.097165 0.979874 52 1 0 6.926177 -2.723961 0.832732
53 6 0 0.155136 -5.718861 1.380583 53 6 0 1.135332 -5.372526 0.515592
54 8 0 -1.204837 -6.238068 1.434960 54 8 0 -0.116730 -6.103675 0.374807
55 1 0 -1.579439 -6.107978 0.555909 55 1 0 -0.496460 -5.830070 -0.468358
56 1 0 0.774852 -6.345080 0.739269 56 1 0 1.861156 -5.718104 -0.220095
57 1 0 0.511693 -5.821287 2.410245 57 1 0 1.490587 -5.658554 1.510483
58 1 0 7.236448 -3.440476 -1.570262 58 1 0 7.762295 -1.335242 -1.440732
59 1 0 7.909965 -2.662190 -0.128433 59 1 0 8.274185 -0.825040 0.176638
60 1 0 -8.425505 0.453200 -2.701996 60 1 0 -8.318082 0.116428 -2.466614
61 1 0 -8.566939 -1.298394 -2.470514 61 1 0 -8.161664 -1.638744 -2.657862
62 1 0 -0.014454 6.551752 -1.269003 62 1 0 -0.817545 6.432577 1.263332
63 7 0 0.322482 7.181319 -0.545445 63 1 0 -2.439193 3.348816 -0.034099
64 1 0 1.189067 9.499723 -0.232613 64 1 0 -2.450703 6.218287 0.656250
65 6 0 1.537847 6.967440 -0.211162 65 1 0 2.925733 6.794806 1.224996
66 6 0 1.754351 9.209023 0.649512 66 6 0 -1.404096 6.250185 0.361730
67 7 0 2.248597 5.741372 -0.569199 67 1 0 -0.178566 2.568372 -0.738044
68 1 0 3.161605 5.837492 -0.994766 68 7 0 0.523824 3.285377 -0.658023
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69 6 0 1.772245 4.502222 -0.365195 69 6 0 0.212893 4.521441 -0.296153
70 7 0 2.305201 7.861399 0.457425 70 6 0 2.611673 5.106056 0.079432
71 7 0 0.594146 4.319856 0.229051 71 7 0 -1.052173 4.954082 -0.237539
72 1 0 0.030447 5.121683 0.486254 72 7 0 3.036968 3.971919 -0.316701
73 1 0 2.584530 9.898579 0.805126 73 7 0 3.327315 6.187811 0.524523
74 7 0 2.500674 3.445696 -0.747523 74 6 0 -2.140183 4.112390 -0.758597
75 1 0 3.393884 3.555936 -1.201699 75 1 0 4.032063 3.828611 -0.175337
76 1 0 1.087553 9.244787 1.516613 76 7 0 1.220964 5.396807 0.016652
77 1 0 0.246864 3.396525 0.437800 77 1 0 1.535345 3.075704 -0.707598
78 1 0 2.150595 2.504746 -0.652215 78 1 0 4.328019 6.076888 0.595960
79 6 0 3.384963 7.497476 1.379097 79 1 0 0.984944 6.377473 0.000765
80 1 0 4.237726 8.160738 1.223176 80 1 0 -2.998048 4.747526 -0.967352
81 1 0 3.709175 6.469951 1.229027 81 1 0 -1.842121 3.641083 -1.696576
82 1 0 3.049933  7.601630 2.416543 82 1 0 -1.273381 7.073638 -0.347873

Xer-Met™_m1 Xer-Met™_m2

Center Atomic  Atomic Coordinates Center Atomic  Atomic Coordinates

(Angstroms) (Angstroms)

Number Number Type X Y V4 Number Number Type X Y Z
1 6 (1} 5.716385 -1.618168 -0.279645 1 6 0 6.298326 -0.161664 -0.258873
2 6 0 4.451088 -1.932628 -0.823501 2 6 0 5.163603 -0.767251 -0.843089
3 6 (1} 3.393762 -1.049657 -0.845220 3 6 0 3.898989 -0.223702 -0.785170
4 6 0 3.529560 0.286646 -0.276881 4 6 0 3.661432 1.032753 -0.083713
5 6 0 4.827522 0.584318 0.282908 5 6 0 4.832555 1.630035 0.514957
6 6 0 5.856538 -0.333444 0.276873 6 6 0 6.079342 1.048018 0.425660
7 1 0 4.955011 1.567955 0.723815 7 1 0 4.684537 2.560484 1.053982
8 1 0 6.819850 -0.062444 0.708114 8 1 0 6.934626 1.537490 0.890727
9 6 (1} 2.050693 -1.412189 -1.437429 9 6 0 2.702375 -0.892439 -1.423042
10 6 0 1.056814 -1.994838 -0.445887 10 6 0 1.934761 -1.829041 -0.504361
11 6 0 0.963269 -3.377352 -0.213039 11 6 0 2.242013 -3.197094 -0.413033
12 6 0 0.206806 -1.158056 0.276931 12 6 0 0.896946 -1.344517 0.291479
13 6 0 -0.000523 -3.898996 0.670467 13 6 0 1.483766 -4.056243 0.404594
14 6 0 -0.765657 -1.633840 1.161452 14 6 0 0.117394 -2.162501 1.114664
15 1 0 0.344092 -0.088568 0.145864 15 1 0 0.722484 -0.272630 0.270223
16 6 0 -0.868429 -3.019431 1.337030 16 6 0 0.415525 -3.530425 1.148623
17 1 0 1.625893 -0.481835 -1.822135 17 1 0 2.023432 -0.087844 -1.715748
18 1 0 2.173298 -2.099812 -2.280175 18 1 0 2.998105 -1.429618 -2.329718
19 8 0 4.259230 -3.215198 -1.369106 19 8 0 5.332626 -1.990662 -1.517015
20 8 0 2.569399 1.104286 -0.272677 20 8 0 2.509026 1.539053 -0.005717
21 8 0 1.784813 -4.275195 -0.826915 21 8 0 3.272050 -3.758753 -1.106909
22 8 0 -1.807280 -3.501274 2.211703 22 8 0 -0.330281 -4.343653 1.961704
23 1 0 4.942878 -3.789410 -0.978719 23 1 0 6.158790 -2.382620 -1.180389
24 1 0 2.619325 -3.844823 -1.115116 24 1 0 3.944199 -3.082496 -1.342669
25 1 0 -1.948597 -4.439338 1.997973 25 1 0 -0.203892 -5.257131 1.653159
26 6 0 -1.692787 -0.697123 1.888731 26 6 0 -1.022622 -1.605050 1.924328
27 8 0 -3.008311 -0.582535 1.304761 27 8 0 -2.328036 -1.811800 1.343035
28 6 0 -3.013175 0.074094 0.044289 28 6 0 -2.544298 -1.061890 0.155246
29 6 0 -4.430443 0.151056 -0.475415 29 6 0 -3.935289 -1.339826 -0.366825
30 6 0 -4.795512 -0.607603 -1.586577 30 6 0 -4.092320 -2.056738 -1.552109
31 6 0 -5.405878 0.963375 0.136553 31 6 0 -5.088632 -0.903283 0.315134
32 6 0 -6.090331 -0.569480 -2.099649 32 6 0 -5.354766 -2.337557 -2.070395
33 1 0 -4.053516 -1.250849 -2.048046 33 1 0 -3.207724 -2.413365 -2.069395
34 6 0 -6.694015 1.007191 -0.392486 34 6 0 -6.346610 -1.175188 -0.218402
35 6 0 -7.050936 0.247446 -1.509337 35 6 0 -6.495635 -1.890254 -1.409382
36 1 0 -6.349714 -1.183653 -2.956949 36 1 0 -5.446378 -2.911848 -2.987591
37 1 0 -7.437999 1.633733 0.081879 37 1 0 -7.228113 -0.836337 0.310010
38 1 0 -1.886286 -1.052623 2.900680 38 1 0 -1.086956 -2.099528 2.893459
39 1 0 -1.234689 0.300116 1.942696 39 1 0 -0.865310 -0.529223 2.082762
40 1 0 -2.582824 1.084216 0.147627 40 1 0 -2.416252 0.013431 0.363849
41 1 0 -2.387445 -0.465491 -0.674955 41 1 0 -1.805749 -1.327128 -0.609081
42 6 0 -5.061565 1.804484 1.355055 42 6 0 -4.972740 -0.124305 1.615336
43 8 0 -6.201687 2.296456 2.058291 43 8 0 -6.191245 -0.049121 2.354287
44 1 0 -6.678149 1.529723 2.393706 44 1 0 -6.423750 -0.949021 2.606319
45 1 0 -4.408639 1.227015 2.015233 45 1 0 -4.169692 -0.554890 2.219759
46 1 0 -4.509336 2.697395 1.044219 46 1 0 -4.702904 0.915015 1.401171
47 6 0 -8.437619 0.350754 -2.094723 47 6 0 -7.866097 -2.127851 -1.993864
48 8 0 -9.405079 0.463561 -1.048468 48 8 0 -8.804609 -2.399200 -0.950351
49 1 0 -10.214088 0.808559 -1.435445 49 1 0 -9.685852 -2.261794 -1.307842
50 6 0 6.846409 -2.580576 -0.399252 50 6 0 7.652338 -0.746264 -0.464749
51 8 0 6.512345 -3.908952 0.133267 51 8 0 7.719659 -2.160822 -0.072002
52 1 0 6.095721 -3.734834 0.987323 52 1 0 7.287979 -2.198024 0.791464
53 6 0 -0.065854 -5.373088 0.965588 53 6 0 1.845300 -5.509785 0.548892
54 8 0 -1.426148 -5.891241 0.909208 54 8 0 0.687079 -6.385014 0.428237
55 1 0 -1.766009 -5.664559 0.035657 55 1 0 0.279411 -6.178747 -0.421023
56 1 0 0.579575 -5.927045 0.284387 56 1 0 2.607574 -5.786904 -0.178861

250



57 1 0 0.250000 -5.588722 1.991047 57 1 0 2.229866 -5.727424 1.550176
58 1 0 7.122881 -2.805367 -1.436992 58 1 0 7.960348 -0.778991 -1.517332
59 1 0 7.737909 -2.191655 0.106809 59 1 0 8.406820 -0.172190 0.086001
60 1 0 -8.488022 1.233577 -2.750357 60 1 0 -8.178058 -1.235243 -2.557517
61 1 0 -8.635889 -0.532423 -2.717960 61 1 0 -7.818099 -2.964523 -2.704788
62 1 0 4.671313 4.731223 -2.269232 62 1 0 -1.144557 8.214367 -2.160885
63 6 0 5.108080 4.886108 -1.284749 63 6 0 -1.692662 8.343514 -1.229837
64 1 0 5.839384 5.696402 -1.334135 64 1 0 -2.753332 8.488090 -1.448654
65 7 0 2.899458 3.341338 -0.997490 65 7 0 0.769469 7.378169 -0.635805
66 7 0 4.062908 5.270542 -0.337758 66 7 0 -1.554997 7.142928 -0.407272
67 6 0 2.923037 4.440240 -0.363846 67 6 0 -0.227732 6.687919 -0.263246
68 1 0 1.973304 2.918017 -0.941520 68 1 0 1.634734 6.855775 -0.499686
69 1 0 5.616361 3.957946 -0.991732 69 1 0 -1.301412  9.239453 -0.729919
70 7 0 1.850731 5.039686 0.339339 70 7 0 -0.202829 5.378290 0.273316
71 1 0 -0.172311 6.385188 0.905136 71 1 0 -0.194186 2.893645 0.496107
72 1 0 1.984228 6.010195 0.573679 72 1 0 -1.092517 4.906198 0.286899
73 6 0 0.597557 4.499416 0.583092 73 6 0 0.912919 4.629429 0.614002
74 7 0 0.327898 3.277909 0.312923 74 7 0 2.087510 5.137458 0.619631
75 7 0 -0.260637 5.421106 1.198195 75 7 0 0.572510 3.324534 0.995739
76 1 0 -0.636600 3.046210 0.534659 76 1 0 2.793972 4.452397 0.874006
77 6 0 4.611597 5.596888 0.983059 77 6 0 -2.362894 7.218962 0.814888
78 1 0 -1.225270 S5.125312 1.232008 78 1 0 1.362645 2.702020 1.081269
79 1 0 5.294540 6.444020 0.889145 79 1 0 -3.416982 7.309688 0.543753
80 1 0 3.824505 5.870931 1.685180 80 1 0 -2.245010 6.325115 1.427036
81 1 0 5.166202 4.749080 1.413333 81 1 0 -2.086285 8.087896 1.431282

Xer-Met"_m3 Xer*-Met_m1

Center Atomic  Atomic Coordinates Center Atomic  Atomic Coordinates

(Angstroms) (Angstroms)

Number Number Type X Y Z Number Number Type X Y Z
1 6 0 5.218679 -2.986187 -0.556648 1 6 0 -9.116072 -2.223575 -0.429960
2 6 0 3.884509 -3.122840 -1.000449 2 6 0 -7.963552 -1.604620 -0.969105
3 6 0 3.003305 -2.067755 -1.091678 3 6 0 -6.675994 -1.966589 -0.639488
4 6 0 3.413335 -0.721623 -0.708325 4 6 0 -6.436996 -3.052205 0.309844
5 6 0 4.777612 -0.605504 -0.247952 5 6 0 -7.628664 -3.659907 0.862478
6 6 0 5.622968 -1.692584 -0.178481 6 6 0 -8.895223 -3.254285 0.502583
7 1 (1} 5.107939 0.382957 0.055400 7 1 0 -7.476461 -4.455817 1.585084
8 1 0 6.645504 -1.555675 0.172313 8 1 0 -9.763748 -3.747675 0.939485
9 6 0 1.581000 -2.242629 -1.573802 9 6 0 -5.459779 -1.293326 -1.241883
10 6 0 0.566311 -2.506967 -0.473365 10 6 0 -4.884382 -0.128604 -0.446371
11 6 0 0.242225 -3.809839 -0.058869 11 6 0 -5.363483 1.182137 -0.600877
12 6 0 -0.070642 -1.446097 0.170087 12 6 0 -3.834040 -0.330202 0.452852
13 6 0 -0.739117 -4.033250 0.925329 13 6 0 -4.790746 2.250176 0.114325
14 6 0 -1.052217 -1.623051 1.149695 14 6 0 -3.225239 0.701504 1.170976
15 1 0 0.247022 -0.444402 -0.104734 15 1 0 -3.497613 -1.351717 0.599368
16 6 0 -1.389680 -2.934084 1.508254 16 6 0 -3.723679 1.997743 0.991298
17 1 0 1.305291 -1.302539 -2.057773 17 1 0 -4.685571 -2.061764 -1.300220
18 1 0 1.522731 -3.037168 -2.324396 18 1 0 -5.676983 -0.962049 -2.263270
19 8 0 3.430569 -4.403418 -1.365878 19 8 0 -8.148228 -0.561805 -1.895453
20 8 0 2.617517 0.254794 -0.769527 20 8 0 -5.274216 -3.416921 0.619965
21 8 0 0.847474 -4.911884 -0.585246 21 8 0 -6.389732 1.493927 -1.446944
22 8 0 -2.339993 -3.124380 2.477460 22 8 0 -3.177463 3.018036 1.723696
23 1 0 4.024525 -5.043653 -0.933662 23 1 0 -9.043495 -0.210267 -1.745977
24 1 0 1.724755 -4.681973 -0.962352 24 1 0 -6.917952 0.699777 -1.670208
25 1 0 -2.660777 -4.038554 2.393807 25 1 0 -3.365471 3.847798 1.255016
26 6 0 -1.746685 -0.449849 1.787858 26 6 0 -2.057579 0.452137 2.100017
27 8 0 -3.055963 -0.163571 1.250653 27 8 0 -0.801169 0.948955 1.634353
28 6 0 -3.026124 0.326356 -0.083160 28 6 0 -0.238701 0.194397 0.553515
29 6 0 -4.437784 0.602577 -0.547466 29 6 0 1.109530 0.748500 0.164871
30 6 0 -5.005161 -0.202770 -1.533883 30 6 0 1.238233 1.472017 -1.027409
31 6 0 -5.209538 1.649607 -0.005282 31 6 0 2.259182 0.560569 0.958916
32 6 0 -6.303140 0.013601 -1.991796 32 6 0 2.462217 2.000231 -1.430543
33 1 0 -4.422371 -1.023443 -1.939012 33 1 0 0.351967 1.622839 -1.640527
34 6 0 -6.500991 1.868371 -0.480036 34 6 0 3.480761 1.082258 0.529250
35 6 0 -7.060938 1.059767 -1.472297 35 6 0 3.604849 1.814112 -0.652329
36 1 0 -6.724184 -0.640021 -2.750051 36 1 0 2.532008 2.565491 -2.359622
37 1 0 -7.087875 2.674672 -0.059876 37 1 0 4.421337 0.960494 1.064093
38 1 0 -1.933675 -0.639063 2.844785 38 1 0 -2.216332 0.966508 3.050258
39 1 0 -1.114859 0.443944 1.692027 39 1 0 -1.985225 -0.627866 2.298159
40 1 0 -2.415979 1.243799 -0.130574 40 1 0 -0.161481 -0.861318 0.864213
41 1 0 -2.555869 -0.402552 -0.752156 41 1 0 -0.911413 0.225083 -0.312263
42 6 0 -4.640706 2.552105 1.077626 42 6 0 2.160659 -0.190751 2.276137
43 8 0 -5.625482 3.328317 1.758923 43 8 0 3.329275 -0.108019 3.092715
44 1 0 -6.208421 2.709472 2.211266 44 1 0 3.725958 0.752083 2.915753
45 1 0 -4.059731 1.946794 1.778829 45 1 0 1.284650 0.172869 2.826637

251




46 1 0 -3.959177 3.282858 0.629982 46 1 0 2.003212 -1.261525 2.091080
47 6 0 -8.442181 1.348107 -2.006398 47 6 0 5.016074 2.363209 -1.009024
48 8 0 -9.302790 1.763630 -0.943362 48 8 0 5.971191 2.102676 -0.145305
49 1 0 -10.060627 2.204059 -1.337030 49 6 0 -10.468518 -1.857608 -0.929002
50 6 0 6.147716 -4.149224 -0.598184 50 8 0 -10.743163 -0.416129 -0.815858
51 8 0 5.616953 -5.318598 0.116388 51 1 0 -10.424056 -0.177421 0.064512
52 1 0 5.295389 -4.968793 0.957541 52 6 0 -5.338832 3.645821 -0.000100
53 6 0 -1.047808 -5.423200 1.412220 53 8 0 -4.295320 4.639201 -0.213190
54 8 0 -2.479616 -5.682305 1.481859 54 1 0 -3.772193  4.325926 -0.960776
55 1 0 -2.830144 -5.502914 0.601558 55 1 0 -6.080255 3.698920 -0.797399
56 1 0 -0.558286 -6.165219 0.781937 56 1 0 -5.811977 3.966154 0.934103
57 1 0 -0.708866 -5.569116 2.442586 57 1 0 -10.605955 -2.038317 -2.003128
58 1 0 6.310537 -4.544433 -1.608714 58 1 0 -11.240485 -2.423618 -0.393223
59 1 0 7.125803 -3.874984 -0.185548 59 1 0 5.170198 1.970274 -2.076833
60 1 0 -8.376719 2.139697 -2.768550 60 1 0 4.800430 3.471928 -1.213392
61 1 0 -8.836001 0.448889 -2.500411 61 1 0 7.806809 1.496329 -0.713024
62 1 0 5.099254 7.325026 -1.651325 62 7 0 8.775582 1.213045 -0.720286
63 6 0 4.928393 7.708431 -0.647447 63 7 0 8.229279 -1.040009 -0.148097
64 1 0 4.577827 8.741570 -0.706920 64 1 0 7.250277 -0.779306 -0.214009
65 7 0 5.180010 5.014040 -0.493149 65 6 0 9.039786 -0.106810 -0.458350
66 7 0 3.895899 6.912591 0.014037 66 1 0 11.031512 0.438638 -0.391622
67 6 0 4.095996 5.518881 -0.069258 67 7 0 10.436958 -0.370354 -0.490115
68 1 0 5.108517 3.997380 -0.530415 68 1 0 9.287450 -2.477490 0.009344
69 1 0 5.885087 7.681846 -0.109183 69 1 0 13.396746 0.183596 -0.175157
70 7 0 2.925353 4.821217 0.313501 70 1 0 12.662186 -3.357214 0.745684
71 1 0 0.715635 3.664670 0.261388 71 1 0 9.349079 1.711774 -1.385674
72 1 0 2.097396 5.389332 0.393248 72 7 0 10.298918 -2.658248 -0.108269
73 6 0 2.760347 3.448925 0.419973 73 6 0 11.044481 -1.593141 -0.363535
74 7 0 3.750270 2.643384 0.325371 74 7 0 12.375004 -1.663308 -0.489206
75 7 0 1.431859 3.100231 0.699077 75 6 0 13.078042 -2.912735 -0.159993
76 1 0 3.457164 1.673651 0.407924 76 1 0 10.675290 -3.590246 -0.168019
77 6 0 3.548045 7.451717 1.333308 77 6 0 13.171315 -0.527123 -0.976883
78 1 0 1.238842 2.113250 0.611008 78 1 0 14.121949 -2.679630 0.037096
79 1 0 3.154600 8.463741 1.215562 79 1 0 12.661827 -0.020471 -1.797802
80 1 0 2.786405 6.845738 1.823497 80 1 0 14.112100 -0.910288 -1.365813
81 1 0 4.423888 7.494266 1.998572 81 1 0 13.030213 -3.629713 -0.985212
Xer”-Met_m2
Center Atomic  Atomic Coordinates
(Angstroms)
Number Number Type X Y V4
1 6 0 6.458822 -0.701333 -0.243891
2 6 0 5.244551 -1.155204 -0.811017
3 6 0 4.042680 -0.496449 -0.673085
4 6 0 3.970078 0.750861 0.085769
5 6 0 5.219081 1.188171 0.671885
6 6 0 6.393461 0.486609 0.507970
7 1 0 5.186284 2.102234 1.256873
8 1 0 7.311972  0.859536 0.961749
9 6 0 2.759523 -1.000120 -1.301704
10 6 0 1.891361 -1.886421 -0.417811
11 6 0 2.090446 -3.273990 -0.337375
12 6 0 0.843806 -1.340238 0.328360
13 6 0 1.251480 -4.079978 0.454312
14 6 0 -0.022772 -2.103437 1.114063
15 1 0 0.722700 -0.262100 0.295289
16 6 0 0.200124 -3.484805 1.169752
17 1 0 2.173357 -0.111771 -1.547762
18 1 0 2.976968 -1.524887 -2.238449
19 8 0 5.271630 -2.346664 -1.558931
20 8 0 2.891809 1.384322 0.217343
21 8 0 3.087082 -3.913559 -1.018474
22 8 0 -0.604122 -4.247191 1.974558
23 1 0 6.057716 -2.841570 -1.268135
24 1 0 3.787532 -3.286012 -1.292501
25 1 0 -0.562654 -5.161090 1.648087
26 6 0 -1.176673 -1.482962 1.870539
27 8 0 -2.471633 -1.786408 1.347819
28 6 0 -2.777981 -1.114942 0.119315
29 6 0 -4.180357 -1.443339 -0.329350
30 6 0 -4.370653 -2.305449 -1.416607
31 6 0 -5.319701 -0.907162 0.304631
32 6 0 -5.645390 -2.635864 -1.869968
33 1 0 -3.493526 -2.724694 -1.905493
34 6 0 -6.588720 -1.235929 -0.175504

252




35 6 0 -6.777097 -2.105335 -1.250578
36 1 0  -5.764277 -3.315154 -2.713773
37 1 0 -7.519089 -0.846303 0.234585
38 1 0  -1.202681 -1.862239 2.894361
39 1 0  -1.031927 -0.392763 1.908169
40 1 0  -2.651571 -0.029513 0.270626
41 1 0  -2.064401 -1.415265 -0.657642
42 6 0 -5.162231 0.007558 1.507856
43 8 0  -6.379390 0.289297 2.199559
44 1 0  -6.935805 -0.491375 2.102588
45 1 0  -4.427483 -0.431954 2.193157
46 1 0 -4.766913 0.982587 1.193797
47 6 0  -8.242163 -2.411293 -1.675154
48 8 0 -9.181744 -1.832696 -0.962028
49 6 0 7.735729 -1.403608 -0.541218
50 8 0 7.687762 -2.834652 -0.200767
51 1 0 7.260180 -2.863069 0.665390
52 6 0 1.496684 -5.557095 0.593301
53 8 0 0.284454 -6.343408 0.410710
54 1 0  -0.102503 -6.054020 -0.424279
55 1 0 2.267304 -5.881995 -0.105840
56 1 0 1.819483 -5.813916 1.607726
57 1 0 7.988474 -1.425621 -1.609360
58 1 0 8.568247 -0.925604 -0.010382
59 1 0  -8.228718 -2.168927 -2.797404
60 1 0  -8.252971 -3.558815 -1.699749
61 1 0 2.355698 3.373184 0.347818
62 7 0 1.472824 3.839157 0.198741
63 7 0 2.442145 5.999522 0.507512
64 1 0 3.345258 5.541809 0.582489
65 6 0 1.476993 5.209638 0.245590
66 1 0  -0.584488 5.089713 0.175927
67 7 0 0.174410 5.738066 0.029724
68 1 0 1.705720 7.625590 0.351023
69 1 0  -2.850520 5.842062 0.103093
70 1 0  -1.449589 9.265344 0.596479
71 1 0 0.857680 3.366229 -0.448026
72 7 0 0.767661 7.983514 0.102987
73 6 0 -0.166436 7.061779 -0.079615
74 7 0  -1.438257 7.375086 -0.354069
75 6 0 -1.881628 8.775541 -0.277704
76 1 0 0.604016 8.950513 -0.124999
77 6 0  -2.419544 6.358064 -0.761023
78 1 0 -2.962971 8.789292 -0.161900
79 1 0 -1.969716 5.637024 -1.445093
80 1 0  -3.225320 6.854872 -1.296818
81 1 0  -1.620567 9.329309 -1.184637

Table A2. Cartesian coordinates of the different geometries for metformin-

xerogel complex on aqueous solution.

Xer Xer”

Center Atomic  Atomic Coordinates Center Atomic  Atomic Coordinates

(Angstroms) (Angstroms)

Number Number Type X Y Z Number Number Type X Y V4
1 6 0 -6.189545 -1.315003 -0.027316 1 6 0 -6.229109 -1.233785 -0.314336
2 6 0 -5.122907 -0.644340 -0.642770 2 6 0 -5.037777 -0.725802 -0.875378
3 6 0 -3.886928 -1.264809 -0.892304 3 6 0 -3.805239 -1.327108 -0.723005
4 6 0 -3.748395 -2.607588 -0.495891 4 6 0 -3.673289 -2.546359 0.062985
5 6 0 -4.788176 -3.291749 0.126725 5 6 0 -4.897747 -3.045681 0.639431
6 6 0 -5.992201 -2.638313 0.357421 6 6 0 -6.106901 -2.406841 0.454028
7 1 0 -4.635663 -4.323236 0.417600 7 1 0 -4.829977 -3.947193 1.239653
8 1 0 -6.800997 -3.170391 0.847152 8 1 (1} -7.007087 -2.823817 0.903596
9 6 0 -2.752190 -0.510853 -1.572351 9 6 0 -2.549812 -0.759404 -1.349465
10 6 0 -1.894998 0.346835 -0.649042 10 6 0 -1.756922 0.182556 -0.456814
11 6 0 -2.059169 1.732817 -0.581828 11 6 0 -1.986611 1.568835 -0.439773
12 6 0 -0.918204 -0.217477 0.173373 12 6 0 -0.764960 -0.316520 0.386741
13 6 0 -1.284797 2.540226 0.265769 13 6 0 -1.203671 2.426946 0.355999
14 6 0 -0.104262  0.530948 1.018622 14 6 0 0.038499 0.497964 1.190378
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15 1 0 -0.786058 -1.295210 0.161878 15 1 0 -0.643113 -1.395488 0.418394
16 6 0 -0.299315 1.919524 1.058114 16 6 0 -0.187822 1.879301 1.154602
17 1 0 -2.092169 -1.212989 -2.093920 17 1 0 -1.905584 -1.611186 -1.580157
18 1 0 -3.156270 0.108478 -2.375680 18 1 0 -2.786047 -0.258399 -2.293457
19 8 0 -5.373118 0.660823 -0.992028 19 8 0 -5.101713  0.463369 -1.624510
20 8 0 -2.587639 -3.319704 -0.685871 20 8 0 -2.551164 -3.107383 0.229480
21 8 0 -3.056538 2.261443 -1.386782 21 8 0 -2.967669 2.151557 -1.187889
22 8 0 0.471568 2.641860 1.911429 22 8 0 0.584265 2.687102 1.951029
23 1 0 -4.571589 1.147033 -1.240385 23 1 0 -5.923306 0.920679 -1.375240
24 1 0 -3.139329 3.211627 -1.260396 24 1 0 -3.664220 1.502211 -1.426571
25 1 0 0.471855 3.574790 1.639220 25 1 0 0.534983 3.592141 1.601179
26 1 0 -1.991945 -2.838859 -1.267805 26 6 0 1.110321 -0.085639 2.068110
27 6 0 0.978257 -0.113839 1.853854 27 8 0 2.447493 -0.024719 1.505514
28 8 0 2.289974 0.024885 1.299273 28 6 0 2.634729 -0.875291 0.372010
29 6 0 2.527975 -0.788740 0.150530 29 6 0 4.054040 -0.766728 -0.131993
30 6 0 3.954233 -0.610831 -0.308717 30 6 0 4.283884 -0.300785 -1.427722
31 6 0 4.208609 0.099795 -1.480452 31 6 0 5.160103 -1.138786 0.659913
32 6 0 5.041162 -1.140177 0.416917 32 6 0 5.569653 -0.214684 -1.958849
33 6 0 5.509138 0.292934 -1.943860 33 1 0 3.436422 -0.001856 -2.036031
34 1 0 3.375168 0.520327 -2.034288 34 6 0 6.442607 -1.031914 0.121452
35 6 0 6.335319 -0.954074 -0.062682 35 6 0 6.665940 -0.584792 -1.183239
36 6 0 6.585251 -0.239354 -1.239078 36 1 0 5.725608 0.151849 -2.965553
37 1 0 5.680528 0.864228 -2.850552 37 1 0 7.291303 -1.302266 0.744937
38 1 0 7.168118 -1.368560 0.491049 38 1 0 1.194346 0.467737 3.002913
39 1 0 1.036505 0.361132 2.832641 39 1 0 0.873119 -1.132861 2.293474
40 1 0 0.744645 -1.178169 1.995459 40 1 0 2.402528 -1.913212 0.658470
41 1 0 2.322967 -1.841216 0.403632 41 1 0 1.939034 -0.594891 -0.424258
42 1 0 1.847151 -0.509433 -0.662537 42 6 0 4990128 -1.603029 2.092573
43 6 0 4.804842 -1.925188 1.698235 43 8 0 4.761847 -0.531659 3.003173
44 8 0 5.982494 -2.177626 2.456424 44 1 0 3.938987 -0.106703 2.703400
45 1 0 6.320047 -1.336809 2.783487 45 1 0 4.176510 -2.339066 2.155132
46 1 0 4.055162 -1.410344 2.306500 46 1 0 5.904708 -2.097671 2.427609
47 1 0 4.405659 -2.915368 1.455073 47 6 0 8.072570 -0.556810 -1.731080
48 6 0 7.995582 -0.086271 -1.751392 48 8 0 8.167696 0.379420 -2.807401
49 8 0 8.857250 0.292840 -0.673652 49 1 0 9.008549 0.245388 -3.253102
50 1 0 9.769733 0.196621 -0.962656 50 6 0 -7.543860 -0.603189 -0.617554
51 6 0 -7.505355 -0.604918 0.191034 51 8 0 -7.582832 0.828106 -0.285317
52 8 0 -7.410518 0.544605 1.036326 52 1 0 -7.237245 0.901682 0.613646
53 1 0 -6.807675 1.154570 0.595734 53 6 0 -1.485249 3.904702 0.414679
54 6 0 -1.499870 4.028080 0.418584 54 8 0 -0.280259 4.708163 0.257673
55 8 0 -0.274100 4.779969 0.355688 55 1 0 0.102304 4.487212 -0.599433
56 1 0 0.137120 4.639619 -0.505753 56 1 0 -2.225103 4.184486 -0.334153
57 1 0 -2.207664 4.437413 -0.313013 57 1 0 -1.864659 4.198145 1.398178
58 1 0 -1.907016 4.259367 1.406558 58 1 0 -7.790784 -0.602759 -1.686170
59 1 0 -7.941069 -0.318333 -0.775662 59 1 0 -8.348913 -1.125773 -0.089178
60 1 0 -8.206334 -1.281184 0.682719 60 1 0 8.771254 -0.291136 -0.926795
61 1 0 8.333150 -1.039811 -2.181870 61 1 0 8.344056 -1.561843 -2.086643
62 1 0 8.016645 0.666150 -2.549609

Xer” Xer- Met”* ml

Center Atomic  Atomic Coordinates Center Atomic  Atomic Coordinates

(Angstroms) (Angstroms)

Number Number Type X Y Z Number Number Type X Y V4
1 6 0 -6.442427 -1.021242 -0.397467 1 6 0 7.832265 -0.709994 -0.788966
2 6 0 -5.201907 -0.560807 -0.896133 2 6 0 6.869747 -0.167337 0.077465
3 6 0 -4.009200 -1.235319 -0.735167 3 6 0 5.870665 -0.951780 0.671375
4 6 0 -3.985762 -2.512364 -0.026495 4 6 0 5.847674 -2.318683 0.356216
5 6 0 -5.258112 -2.959072 0.494255 5 6 0 6.787700 -2.884661 -0.496153
6 6 0 -6.418654 -2.237230 0.312228 6 6 0 7.769958 -2.072220 -1.058442
7 1 0 -5.262607 -3.895407 1.043204 7 1 (1} 6.752731 -3.944908 -0.724829
8 1 0 -7.357424 -2.618111 0.713653 8 1 0 8.500742 -2.511056 -1.728777
9 6 0 -2.698485 -0.721373 -1.300457 9 6 0 4.858583 -0.377403 1.650053
10 6 0 -1.837642 0.109631 -0.355685 10 6 0 3.629476 0.227024 0.986336
11 6 0 -2.031673 1.489981 -0.188906 11 6 0 3.473711 1.611418 0.833318
12 6 0 -0.792497 -0.483152 0.358544 12 6 0 2.637329 -0.589528 0.453120
13 6 0 -1.204490 2.242465 0.665916 13 6 0 2.339376 2.174904 0.219826
14 6 0 0.068790 0.226097 1.199395 14 6 0 1.499402 -0.088261 -0.184246
15 1 0 -0.661867 -1.555321 0.249936 15 1 0 2.781230 -1.663716 0.512603
16 6 0 -0.162430 1.598472 1.351356 16 6 0 1.350062 1.300489 -0.260784
17 1 0 -2.116058 -1.603536 -1.575670 17 1 0 4.529947 -1.184543 2.305697
18 1 0 -2.882650 -0.152025 -2.217955 18 1 0 5.334418 0.362965 2.295594
19 8 0 -5.181114 0.660946 -1.593789 19 8 0 6.975423 1.179727 0.313777
20 8 0 -2.918419 -3.167939 0.120875 20 8 0 4.840203 -3.075239 0.925635
21 8 0 -3.017988 2.177771 -0.841827 21 8 0 4.508716 2.380031 1.308031
22 8 0 0.633441 2.304218 2.218145 22 8 0 0.203777 1.807948 -0.854947
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23 1 0 -5.975317 1.158143 -1.336822 23 1 0 6.232252 1.519674 0.829776
24 1 0 -3.708555 1.575952 -1.188156 24 1 0 4.406607 3.313219 1.097718
25 1 0 0.614941 3.238039 1.955913 25 1 0 0.196405 2.774530 -0.691373
26 6 0 1.215126 -0.447869 1.921470 26 1 0 5.041570 -4.009043 0.801234
27 8 0 2.515391 -0.142217 1.407293 27 6 0 0.556941 -1.022089 -0.890849
28 6 0 2.819191 -0.780425 0.158872 28 8 0 -0.813180 -1.003770 -0.401363
29 6 0 4.215970 -0.421254 -0.284833 29 6 0 -0.988649 -1.617425 0.892857
30 6 0 4.393138 0.475788 -1.346753 30 6 0 -2.313128 -1.145976 1.452114
31 6 0 5.365305 -0.961701 0.322445 31 6 0 -2.321433 -0.001708 2.256389
32 6 0 5.663380 0.815363 -1.807692 32 6 0 -3.539992 -1.759392 1.129942
33 1 0 3.513167 0.907376 -1.818144 33 6 0 -3.511377 0.597598 2.660371
34 6 0 6.634857 -0.600702 -0.149601 34 1 0 -1.375036 0.441511 2.547306
35 6 0 6.811092 0.277827 -1.218597 35 6 0 -4.726301 -1.169846 1.569919
36 1 0 5.767822 1.510374 -2.639965 36 6 0 -4.731520 0.030906 2.284613
37 1 0 7.550344 -0.986587 0.295529 37 1 0 -3.487795 1.496127 3.268412
38 1 0 1.250523 -0.118152 2.961806 38 1 0 -5.661292 -1.667539 1.341778
39 1 0 1.055083 -1.535573 1.907943 39 1 0 0.465140 -0.747582 -1.944840
40 1 0 2.711274 -1.868439 0.280966 40 1 0 0.942106 -2.045134 -0.844055
41 1 0 2.099612 -0.462392 -0.605356 41 1 0 -0.933503 -2.706413 0.790125
42 6 0 5.280691 -1.976432 1.436913 42 1 0 -0.176675 -1.302842 1.553988
43 8 0 5.305556 -3.339841 0.947383 43 6 0 -3.606185 -3.049514 0.339448
44 1 0 5.952699 -3.356789 0.233414 44 8 0 -4.903891 -3.179488 -0.259148
45 1 0 6.122564 -1.829471 2.125261 45 1 0 -5.029482 -4.101046 -0.510358
46 1 0 4.356336 -1.881821 2.004920 46 1 0 -2.834814 -3.061130 -0.436178
47 6 0 8.245490 0.617257 -1.695133 47 1 0 -3.417698 -3.895667 1.011604
48 8 0 9.235752 -0.004548 -1.058389 48 6 0 -6.031089 0.718247 2.575773
49 6 0 -7.704900 -0.297800 -0.705674 49 8 0 -6.476863 1.413878 1.336036
50 8 0 -7.687060 1.107285 -0.265806 50 1 0 -7.059310 2.140026 1.596872
51 1 0 -7.321611 1.094127 0.628514 51 6 0 8.892569 0.179593 -1.398996
52 6 0 -1.453364 3.707451 0.897824 52 8 0 8.356330 1.216436 -2.222316
53 8 0 -0.249315 4.512643 0.737498 53 1 0 7.891247 1.824573 -1.637756
54 1 0 0.111034 4.315210 -0.135243 54 6 0 2.217878 3.662775 -0.045777
55 1 0 -2.238797 4.071624 0.236424 55 8 0 0.877090 4.160963 0.163306
56 1 0 -1.755421 3.900688 1.932175 56 1 0 0.727116 4.276996 1.108609
57 1 0 -7.906100 -0.203380 -1.780355 57 1 0 2.909030 4.259442 0.555709
58 1 0 -8.558134 -0.812694 -0.249351 58 1 0 2.434507 3.886664 -1.093646
59 1 0 8.200985 0.429193 -2.813908 59 1 0 9.520592 0.611764 -0.609882
60 1 0 8.279295 1.750892 -1.643563 60 1 0 9.537843 -0.415515 -2.046103
61 1 0 -6.816232 0.015611 2.861157
62 1 0 -5.921972 1.471740 3.355866
63 1 0 -8.140331 0.954871 -2.870506
64 1 0 -6.308276 -1.216263 -3.152407
65 1 0 -8.198837 -1.376297 -1.995229
66 7 0 -5.539397 -0.652324 -2.805252
67 6 0 -5.763250 0.087166 -1.820580
68 7 0 -4.807874 0.889309 -1.217882
69 6 0 -7.944398 1.291777 -1.854378
70 6 0 -7.830504 -1.068138 -1.018326
71 1 0 -5.100729 1.427906 -0.406260
72 1 0 -3.556210 -0.769916 -2.699649
73 6 0 -3.432336  0.715159 -1.344013
74 7 0 -2.928189 -0.217875 -2.123810
75 7 0 -7.102548 0.249136 -1.147452
76 7 0 -2.650678 1.521166 -0.647657
77 1 0 -7.404259 2.237138 -1.870640
78 1 0 -1.994320 -0.554181 -1.878302
79 1 0 -8.879315 1.398943 -1.306533
80 1 0 -8.677232 -0.910484 -0.351982
81 1 0 -3.027825 2.121413 0.069323
82 1 0 -7.144937 -1.810116 -0.610946
83 1 0 -1.625173 1.413274 -0.684257
84 1 0 -6.931313 0.596613 -0.172319

Xer-1Met” m1 Xer-1Met"

Center Atomic  Atomic Coordinates Center Atomic  Atomic Coordinates

(Angstroms) (Angstroms)

Number Number Type X Y Z Number Number Type X Y V4
1 6 0 -4.939985 -3.302188 0.416138 1 6 (1} 5.485539 -2.855870 -1.145451
2 6 0 -4.691949 -2.177412 -0.386868 2 6 0 4.105217 -3.112610 -1.073604
3 6 0 -3.410091 -1.876459 -0.878999 3 6 0 3.142805 -2.156899 -1.401127
4 6 0 -2.377958 -2.764384 -0.544337 4 6 0 3.592164 -0.883338 -1.799884
5 6 0 -2.587360 -3.883570 0.245632 5 6 0 4.961248 -0.593799 -1.856483
6 6 0 -3.870628 -4.134783 0.725809 6 6 0 5.887071 -1.576930 -1.529582
7 1 0 -1.763684 -4.549495 0.471725 7 1 0 5.284690 0.395696 -2.155080
8 1 0 -4.043260 -5.004983 1.349220 8 1 0 6.947415 -1.350227 -1.585459

255



.-»-»-ax»—-»—-.—-\x»—\la\»—\x»—\la\»—a\\x»—»—.——-—-—-—-—-—-ooa\»-ooa\»-ma\»—»—-.-oca\—-—-—-—-—-—-cxam—-c\axa\cxaxoocm—-»—-»—-»—-oommm»—»—am—a\a\a\a\axa‘

=]

S O O O O O D O D e O D O OO OO OO OO OO DO OO OO OO OO OO OO DO OO OO OO OO OO OO SO e o

-3.189250
-3.157776
-4.160347
-2.132969
-4.105843
-2.020671
-1.389083
-3.008833
-2.253678
-3.955300
-5.776319
-1.058505
-5.225691
-2.899532
-5.571102
-5.902362
-3.472846
-1.078114
-0.897456

0.343264
0.952906
2.420002
2.861186
3.370851
4.213215
2.137391
4.718178
5.158661
4.527205
5.448851
-1.175986
-0.708870
0.834210
0.453414
2.969876
2.854179
2.826505
3.731217
2.012915
6.623430
7.376572
8.310834
-6.339614
-6.827393
-6.954000
-5.207458
-4.702768
-4.292111
-5.926730
-5.776518
-7.023516
-6.343664
6.795382
6.934613
3.919800
7.092580
4.667721
4.650028
3.694392
6.960881
3.526215
7.780167
5.706762
1.562554
2.241921
1.290140
6.964693
1.909101
0.331962
2.620089
6.370727
5.575045
0.935841
4.621335
5.646151

-0.628594
0.671341
1.638108
0.938894
2.865258
2.134800
0.167791
3.110267

-0.697161
-0.566993
-1.387354
-2.539517
1.276979
4.273504
-0.603326
1.961258
4.947647
-1.982466
2.359881
2.820897
1.896861
2.204636
2.756153
1.921508
3.014984
2.985991
2.192586
2.733628
3.439093
1.974856
3.124575
1.419793
0.880899
1.916376
1.358821
-0.107398
-0.438090
1.598682
1.767047
3.020849
1.845312
2.076678
-3.574118
-2.562314
-1.764001
3.901038
5.237181
5.327927
3.693443
3.932366
-3.704845
-4.500311
3.313879
3.856162
-4.849959
-3.943024
-4.465182
-3.182943
-1.580744
-3.140586
-2.398302
-2.425148
-2.435980
-1.129132
-2.632253
-1.879657
-3.578384
-3.588589
-1.985961
-4.189068
-0.465856
-1.133908
-3.722082
-0.666401
-1.251882

-1.716557
-0.921874
-1.056118
-0.019622
-0.379413

0.684439
0.151253
0.474639
-2.284185
-2.492103
-0.646532
-0.975730
-1.858084
1.159841
-1.177169
-1.880453
0.752381
-1.763015
1.671957
1.111660
0.220885
0.040509
-1.161103
1.043388

-1.387061
-1.935776
0.808090
-0.404045
-2.335007

1.580145
2.393294
2.211998
0.622615

-0.754871

2.380465
2.306897
3.213716
3.125034
2.707909

-0.619585
-0.290806
-0.260314

0.922290
1.800677
1.276144
-0.461278
-0.617120
-1.485311
-1.262284
0.471719
0.074410
1.498281

-1.661226

0.020988
0.571383
0.007024
0.000391
-0.028391
1.013213
-0.715048
0.428287
-0.633957
-0.442995
1.275327
0.095141
0.643299
-1.719283
-0.777065
0.321714
-1.170777
-0.771708
-1.103946
-1.018759
-0.871714
-2.192246

»-»-»-ax»—-»—-»-»-\1—-—-\l\lc\—-\lc\c\»—-\1»—»-»-»-»-»—-»—-»—-max»-ma\»-max»—-»—-»—-max»-»—-»-»-»-»—-a\c\»—c\c\axcxa\mc\»—»—»—mmmm»—»—c\»—a\a\a\c\axa‘

O R R R R R R R R - R - R R R N e e - - - R -1

1.656613
0.915664
1.021077
0.071604
0.319716

-0.662252

-0.020574

-0.517038
1.191178
1.520485
3.649526
2.649280
1.801096

-1.198306
4.387736
2.313132

-1.251511

-1.613447

-2.990976

-3.305563

-4.792170

-5.268900

-5.717081

-6.633216

-4.560901

-7.076673

-7.549777

-6.978914

-7.783968

-1.590296

-1.318786

-2.974804

-2.767635

-5.236269

-6.267779

-6.620668

-4.444343

-4.808060

-9.025044

-9.759863

-10.692351
6.479749
6.179620
6.256472
0.500760

-0.751363

-1.282160
1.018213
1.091542
6.459699
7.495520

-9.337768

-9.220402
0.666223
1.164608
1.651864
2.408040
2.556249
3.096674
3.828298
2.828188
3.224381
1.966718
1.798135
3.239146
3.355632
3.885756
2.272108
1.869708
3.035596
4.559281
5.209164
4.999959
4.523785

-2.471837
-1.962828
-2.590119
-0.854602
-2.105121
-0.350645
-0.368327
-0.987686
-2.019295
-3.551969
-4.348973

0.032742
-3.688282
-0.476298
-4.812755
-3.946721
-1.159077

0.809832

0.430988
-0.222017
-0.474947
-1.778027

0.572502
-2.060294
-2.584689

0.278148
-1.031815
-3.082021

1.083491

1.454120

1.402453

0.406704
-1.173964

2.007280

2.984687

2.959786

2.204012

2.148934
-1.322905
-0.399216

-0.470223
-3.955942
-4.712049
-4.122010
-2.738977
-2.905754
-3.558550
-3.693474
-2.092951
-4.709865
-3.552343
-1.227068
-2.355866

4.609811

5.238208

7.640605

5.309331

7.322054

4.498051

4.954943

3.186905

6.284001

2.483905

2.775667

8.168057

2.631366

3.278273

6.966186

1.498493

0.944711

5.944903

6.820094

5.136296

5.629115

-1.355367
-0.126267
1.126935
-0.219762
2.245092
0.853931
-1.186257
2.096419
-2.232760
-1.455658
-0.656221
-2.116767
1.339715
3.159169
-0.215910
0.552198
3.851466
0.688923
0.562369
-0.665508
-0.735151
-0.605016
-0.924750
-0.660444
-0.444124
-0.992788
-0.860723
-0.539903
-1.146203
1.567748
-0.189457
-1.508268
-0.741078
-1.077226
-0.976345
-0.080352
-0.348779
-2.074987
-0.974170
-0.163259
-0.388734
-0.884764
0.314446
1.073733
3.603941
4.313480
3.842796
3.516901
4.260012
-1.676956
-0.836545
-2.023775
-0.660340
-0.049932
0.574558
1.106397
0.285949
1.619665
-0.653027
-1.175961
-1.033337
0.838285
-0.245141
0.704383
1.723594
-2.077477
-2.651554
2.617952
-0.453346
-2.265938
1.333383
1.260441
0.753919
2.385689
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Xer-Met"_ml Xer”-Met_m1

Center Atomic  Atomic Coordinates Center Atomic  Atomic Coordinates

(Angstroms) (Angstroms)

Number Number Type X Y Z Number Number Type X Y V4
1 6 0 -5.131163 -2.261484 0.147569 1 6 0 -6.005752 -2.541395 0.027614
2 6 0 -3.848473 -2.403058 0.707883 2 6 0 -5.230407 -1.577269 -0.647258
3 6 0 -2.892265 -1.388465 0.671978 3 6 0 -3.847984 -1.563259 -0.629176
4 6 0 -3.240924 -0.173852 0.043605 4 6 0 -3.121131 -2.568264 0.118046
5 6 0 -4.506045 -0.018345 -0.545503 5 6 0 -3.921453 -3.536249 0.810854
6 6 0 -5.427387 -1.058475 -0.492291 6 6 0 -5.302668 -3.509047 0.763342
7 1 0 -4.741887 0.906263 -1.057019 7 1 0 -3.401277 -4.295133 1.385945
8 1 0 -6.402118 -0.931384 -0.954154 8 1 0 -5.871524 -4.266269 1.299739
9 6 0 -1.518005 -1.566233 1.295183 9 6 0 -3.058054 -0.514223 -1.381683
10 6 0 -0.434883 -2.074058 0.350670 10 6 0 -2.786145 0.775890 -0.621916
11 6 0 -0.166491 -3.442405 0.181460 11 6 0 -3.574525 1.926800 -0.787548
12 6 0 0.354434 -1.169232 -0.363095 12 6 0 -1.710761 0.855603 0.261307
13 6 0 0.874461 -3.881702 -0.655132 13 6 0 -3.233708 3.137581 -0.157862
14 6 0 1.400657 -1.556889 -1.197641 14 6 0 -1.331499 2.035880 0.907391
15 1 0 0.135279 -0.112004 -0.255355 15 1 0 -1.153541 -0.059124 0.439671
16 6 0 1.653600 -2.930646 -1.332783 16 6 0 -2.096212 3.183804 0.664899
17 1 0 -1.199100 -0.594870 1.675587 17 1 0 -2.091872 -0.965580 -1.617387
18 1 0 -1.599060 -2.229726 2.159860 18 1 0 -3.547126 -0.280780 -2.332094
19 8 0 -3.499982 -3.583914 1.334858 19 8 0 -5.886367 -0.575828 -1.377495
20 8 0 -2.316533 0.804054 0.033578 20 8 0 -1.842455 -2.572526 0.161518
21 8 0 -0.884590 -4.415580 0.818069 21 8 0 -4.698547 1.924084 -1.564233
22 8 0 2.658736 -3.317097 -2.167716 22 8 0 -1.736462 4.352637 1.284995
23 1 0 -4.117456 -4.280005 1.038523 23 1 0 -6.794663 -0.509625 -1.034706
24 1 0 -1.746662 -4.078328 1.120893 24 1 0 -5.071595 1.018816 -1.606971
25 1 0 2.910455 -4.231063 -1.946552 25 1 0 -2.145083 5.089620 0.800559
26 6 0 2.250348 -0.541715 -1.921758 26 6 0 -0.137851 2.073105 1.825504
27 8 0 3.509630 -0.260181 -1.292423 27 8 0 1.127344 2.344394 1.173088
28 6 0 3.399221 0.454930 -0.064926 28 6 0 1.539391 1.301842 0.283622
29 6 0 4.778799 0.798812 0.443325 29 6 0 2.976278 1.459349 -0.148277
30 6 0 5.278519 0.136817 1.563079 30 6 0 3.261228 1.588297 -1.508135
31 6 0 5.581652 1.772829 -0.186084 31 6 0 4.048904 1.377133 0.766418
32 6 0 6.547352  0.420495 2.067561 32 6 0 4.574315 1.575854 -1.977592
33 1 0 4.669187 -0.623581 2.040823 33 1 0 2.439896 1.671492 -2.213341
34 6 0 6.840813 2.059225 0.334767 34 6 0 5.353911 1.371899 0.277753
35 6 0 7.338506 1.390319 1.458576 35 6 0 5.639734 1.439869 -1.090086
36 1 0 6.919366 -0.121752 2.930935 36 1 0 4.767124 1.644326 -3.044082
37 1 0 7.450436 2.814395 -0.145872 37 1 0 6.176576 1.279852 0.980757
38 1 0 2.518750 -0.905533 -2.913290 38 1 0 -0.239784 2.871452 2.558521
39 1 0 1.683846 0.394260 -2.031625 39 1 0 -0.050897 1.114134 2.353015
40 1 0 2.802575 1.367689 -0.225724 40 1 0 1.413742 0.333721 0.792552
41 1 0 2.871890 -0.147532 0.683516 41 1 0 0.891309 1.290429 -0.597743
42 6 0 5.070611 2.521652 -1.407020 42 6 0 3.808626 1.297807 2.259870
43 8 0 6.075626 3.244594 -2.113292 43 8 0 3.404008 2.542022 2.830591
44 1 0 6.702275 2.610383 -2.478162 44 1 0 2.572373 2.776982 2.385940
45 1 0 4.557283 1.821892 -2.072551 45 1 0 3.068368 0.516382 2.481260
46 1 0 4.341244 3.277896 -1.098557 46 1 0 4.734858 1.017468 2.764276
47 6 0 8.696079 1.742878 2.010802 47 6 0 7.062909 1.291446 -1.588042
48 8 0 9.668593 1.684307 0.959597 48 8 0 7.605439 -0.000632 -1.347153
49 1 0 10.486653 2.076788 1.279718 49 6 0 -7.491057 -2.562601 -0.118838
50 6 0 -6.153397 -3.356169 0.296374 50 8 0 -8.113525 -1.277755 0.209699
51 8 0 -5.620675 -4.667484 -0.012324 51 1 0 -7.779217 -1.026103 1.079863
52 1 0 -5.370647 -4.683128 -0.944000 52 6 0 -4.101088 4.360294 -0.300875
53 6 0 1.117317 -5.354031 -0.883909 53 8 0 -3.332860 5.550959 -0.634147
54 8 0 2.524466 -5.699805 -0.833983 54 1 0 -2.895742 5.387438 -1.477961
55 1 0 2.840272 -5.546701 0.063969 55 1 0 -4.881310 4.193622 -1.042524
56 1 0 0.552984 -5.953790 -0.171067 56 1 0 -4.579641 4.618946 0.648375
57 1 0 0.810292 -5.647934 -1.891989 57 1 0 -7.817391 -2.729612 -1.151639
58 1 0 -6.491289 -3.453674 1.332325 58 1 0 -7.925452 -3.354622 0.500692
59 1 0 -7.032464 -3.146951 -0.320763 59 1 0 7.095583 1.536693 -2.660014
60 1 0 8.669106 2.756309 2.435585 60 1 0 7.722245 1.997441 -1.073049
61 1 0 8.956423 1.047747 2.818587 61 1 0 6.968047 -0.683314 -1.670141
62 1 0 -6.025438 6.602071 -0.838902 62 7 0 5.670626 -1.989407 -1.858074
63 1 0 -3.951283 4.603962 -3.091459 63 7 0 6.002444 -2.549131 0.358111
64 1 0 -4.390375 6.984973 -0.252171 64 1 0 6.881081 -2.056291 0.310071
65 1 0 -5.365525 1.384616 1.818804 65 6 0 5.200606 -2.410907 -0.723916
66 6 0 -5.136148 6.187450 -0.356258 66 1 0 3.311235 -2.661220 -1.397722
67 1 0 -2.529410 3.711425 -1.623446 67 7 0 3.856985 -2.784806 -0.562436
68 7 0 -3.113781 3.231309 -0.946577 68 1 0 5.527466 -2.703916 1.249606
69 6 0 -4.114282 3.939011 -0.551482 69 1 0 1.368333 -3.833703 -1.472213
70 6 0 -4.357316 3.152068 1.784582 70 1 0 1.103315 -4.266972 2.018724
71 7 0 -4.599252 5.081309 -1.153387 71 1 0 4.952012 -1.923343 -2.572501
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-3.362686
-5.117160
-4.047632
-3.012151
-4.886121
-2.657198
-4.780117
-5.887757
-4.732605
-3.066830
-5.395865

3.805942
2.168917
5.475361
3.406626
3.462910
1.665203
1.884913
3.568754
6.180729
5.962576
5.844098

2.237088
2.410844
-2.442167
3.105445
0.516063
-0.347332
3.319638
0.455848
-2.916027
-2.349085
0.641737

72

74
75
76

78
79
80

- e O\ = N D N

3.756918
3.125819
1.764957
0.921166
3.121953
1.123716
-0.125565
1.407750
0.042437
1.112012

-3.076568
-2.961814
-2.993366
-3.262244
-3.192173
-2.950786
-3.174298
-2.047428
-2.910426
-2.531106

1.748997
0.624503
0.450417
1.614513
2.528325
-0.866281
1.317393
-1.419281
-0.722853
2.408020
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